Поступление кислорода. Особенности дыхательной системы – как кислород поступает в организм? Газообмен

Дыхание - это совокупность процессов, обеспечивающих поступление из атмосферного воздуха в организм кислорода, использование кислорода в биологическом окислении органических веществ и удаление из организма углекислого газа.

Естественно ли мы дышим.

Большинство из нас не обращает внимание на этот природный процесс, полагая, что организм сам знает, как дышать. Но биологические механизмы нашего тела намного старше нашего общества, а мы можем дышать иначе и оттого, что в городе такой воздух и оттого, что нас так воспитали.

Для чего мы дышим.

Энергия для жизни вырабатывается на 90% благодаря поступлению в организм кислорода из воздуха. Жиры и углеводы окисляются в организме, высвобождая при этом энергию. Без поступления кислорода со вдохом невозможен синтез белков, а значит и жизнь клеток и тканей. Основным продуктом обмена в клетках является углекислый газ, который выводится из организма с выдохом.

Как происходит газообмен.

Организм потребляет из воздуха окружающей среды кислород в форме О2 (озон, О3, для организма токсичен) и выделяет углекислый газ СО2 с незначительным количеством других газообразных продуктов и паров воды. Регулирование окислительно-восстановительных процессов, происходящих во всех органах и тканях, производится нервной и эндокринной системами. Лёгочное дыхание обеспечивает основной обмен газов между наружным воздухом и кровью. Около 2% кислорода поступает в организм через кожу. Кровь переносит газы от лёгких к тканям и обратно.

Почему так важен гемоглобин.

Кислород и углекислый газ переносятся молекулами гемоглобина, содержащимися в эритроцитах крови (красных кровяных тельцах). Гемоглобин - это белок, способный обратимо связываться с кислородом и углекислым газом. При вдохе создаётся избыток кислорода, и в капиллярах лёгких кислород соединяется с гемоглобином. Током крови эритроциты, содержащие молекулы гемоглобина со связанным кислородом, доставляются к органам и тканям, где кислорода мало, и здесь кислород освобождается из связи с гемоглобином. Аналогично, скапливающиеся в результате реакций в тканях молекулы углекислого газа связываются гемоглобином, переносятся им с током крови в лёгкие, где освобождаются и выводятся из организма с выдохом.

Почему плохому бегуну не хватает воздуха и что такое одышка.

Появление одышки, то есть нарушения частоты и глубины дыхания с возникновением ощущения нехватки воздуха при физической нагрузке возникает оттого, что организм работает интенсивнее, и требуется больше кислорода для расщепления белков, жиров и углеводов, а легкие не справляются. При правильно поставленных регулярных тренировках увеличивается капиллярная плотность мышц и повышается окислительная способность организма, а одышка исчезает. Но причиной одышки может быть и болезнь: при заболеваниях органов дыхания, болезнях сердца, при нарушении кровообращения, особенно лёгочного, при сахарном диабете, заболеваниях почек, и тогда для появления одышки достаточно и небольшой физической нагрузки.

Что мы вдыхаем.

Человек вдыхает воздух, содержащий около 21% кислорода и 0,03% углекислого газа. Состав воздуха может меняться: в крупных городах содержание углекислого газа выше, чем в лесах, в горах - пониженное содержание кислорода. Воздух всегда содержит пары воды. При высокой влажности человек труднее переносит как жару, так и холод. Углекислый газ возбуждает дыхательный центр мозга. Однако повышение концентрации СО2 до 3-4% приводит к головной боли, шуму в ушах , замедлению пульса, а при концентрации 10% может наступить потеря сознания и смерть. По содержанию углекислого газа оценивают степень чистоты воздуха в помещениях.

Наши органы дыхания.

Лёгкие и дыхательные пути: верхние (нос, придаточные пазухи носа, глотка) и нижние (гортань, трахея, бронхи, и бронхиолы). Лёгкие находятся в герметичном мешке – плевральной полости. Ткань лёгких состоит из мельчайших заполненных воздухом пузырьков - альвеол. В этих омываемых кровью пузырьках из воздуха в кровь поступает кислород, а из крови выходит углекислый газ. От каждой альвеолы отходит крошечная воздухоносная трубка - бронхиола. Сливаясь, бронхиолы образуют мельчайшие бронхи, которые затем последовательно соединяются в бронхи все большего и большего диаметра, пока не образуются два главных бронха - правый и левый. Эти бронхи соединяются и образуют трахею или дыхательное горло. В регуляции дыхания участвуют дыхательный центр продолговатого мозга, периферические нервы и рецепторы.

Каждый вдох - это сокращение мышц.

Лёгкие не имеют мышц, но осуществление вдоха требует мышечной работы. К дыхательной системе относятся и дыхательные мышцы, обеспечивающие растяжение лёгких и изменение давления в плевральной полости. К основным дыхательным мышцам относят диафрагму (плоскую мышцу, отделяющую грудную полость от наполненной жидкостью брюшной), а также наружные и внутренние межреберные мышцы и мышцы брюшного пресса.

Вдох происходит в связи с увеличением объёма грудной клетки при опускании диафрагмы, поднятии рёбер и расширении межреберных промежутков в результате сокращения диафрагмы и наружных межреберных мышц. Расслабление этих мышц создает условия для выдоха, который происходит, в основном, пассивно, при небольшом участии мышц брюшного пресса. При затрудненном и усиленном дыхании во вдохе могут участвовать и мышцы шеи, а также практически все мышцы туловища.

Почему дети умеют дышать лучше, чем взрослые.

Наиболее естественно дышат маленькие дети. У них работают все дыхательные механизмы: мягко расширяется грудная клетка и опускается диафрагма, выдвигая вперёд живот. С возрастом стрессы и возникающие психологические проблемы сжимают грудную клетку, возникают привычки использовать только часть лёгких, и частота дыхания повышается. Движения взрослых менее разнообразны и с возрастом становятся менее резкими. Поэтому многие мышцы, включая дыхательные, становятся менее эластичными, а некоторые из них оказываются хронически напряжёнными.

Можем ли мы изменить дыхание по желанию.

При дыхании рёбра могут подниматься вверх (верхнее или ключичное дыхание), рёбра могут раздвигаться в стороны (среднее или грудное дыхание), может опускаться вниз диафрагма (нижнее или брюшное дыхание). Возможны также любые комбинации этих трёх способов, включая использование всех трёх одновременно (полное дыхание). Мы можем использовать по желанию любой из них, сознательно задерживать вдох или выдох, менять ритм и глубину дыхания в зависимости от понимания потребностей организма.

Мы можем изменить свои дыхательные привычки и приучить себя к такому способу дыхания, какой считаем самым удобным. В зависимости от состояния организма и внешних условий разные способы дыхания могут оказаться более предпочтительными, существует и множество методов и школ дыхательной гимнастики. Умело маневрируя дыханием, мы можем повысить свою работоспособность и выносливость, избегать одышки и просто оставаться здоровыми.

Сознательное использование дыхания.

Вдох соответствует напряжению, а выдох – расслаблению мышц . Поэтому вдох можно осознанно использовать для тонизирования тела, чтобы проснуться или поднять работоспособность. Мысленное сопровождение вдоха в определённую часть тела расправляет его, тренируя мышцы, а направление вдоха в голову способствует достижению ясности мысли. С помощью выдоха можно добиться глубокого расслабления, успешно бороться с хроническими напряжениями мышц, успокаивать нервную реакцию. Направленный в определённую область тела выдох устраняет боль , улучшает местное кровообращение и согревает.

Своё психологическое состояние вы можете изменить с помощью смены темпа дыхания.

Ритмично выполняемая физическая работа требует существенно меньших энергетических затрат, если её ритм сочетается с ритмом дыхания.

Акцентирование мыслей на брюшном дыхании способно улучшить состояние органов, находящихся в брюшной полости и поясничного отдела позвоночника.

С помощью сознательного грудного дыхания можно успешно бороться с последствиями стрессов и улучшать условия работы сердца.

Искусственно используя ключичное дыхание, можно снять напряжение и улучшить работу плеч.

Почему лучше дышать носом.

Важно не только дышать через нос, но и ощущать его чистым. Нос очищает вдыхаемый воздух от пыли и микроорганизмов, увлажняет и согревает его. Вдох через рот загрязняет лёгкие, так как на пути между губами и лёгкими нет ничего, что процеживало бы воздух и очищало его от пыли и прочих посторонних примесей. А, если воздух недостаточно увлажнён и согрет, он повредит ткани легкого.

Увлажнение зависит от желёз во внутренней оболочке носа и его придаточных полостях. Длинные и узкие проходы носовой полости выложены тёплой слизистой оболочкой и согревают проходящий воздух настолько, что он уже не может повредить нежные ткани гортани и лёгких. Примеси и пыль, захватываемая волосками и слизистой оболочкой носа, выносятся наружу при выдохе или, если они накапливаются слишком быстро, выбрасываются наружу через чихание.

Возможно, что противоестественная привычка дышать через рот приобретена цивилизованным миром вследствие неестественного образа жизни и чрезмерного тепла в доме. Вредным последствием дыхания через рот является и то, что носовая область, оставшаяся без своего нормального употребления, сама наполняется болезнетворными микроорганизмами.

Откуда берётся насморк.

Сопли или носовая слизь вырабатываются в носовой полости и играют важную роль в защите наших дыхательных путей и лёгких от обезвоживания, попадания пыли, бактерий и опасных вирусов.

Почему их становится слишком много? Насморк или ринит - это воспалительная реакция слизистой носа на действие болезнетворных агентов. Наиболее часто провоцируют насморк вирусы. Количество соплей при простудных заболеваниях увеличивается, так как возникает необходимость борьбы с вирусами. Основной первопричиной усиленной выработки носовой слизи является переохлаждение или перепады температуры. Еще одной частой причиной увеличения соплей является аллергическая реакция. Насморк может быть также реакцией на острую пищу или дым.

Что такое простуда.

Простуда – это острое респираторное заболевание (ОРЗ), точнее ряд сходных острых инфекций с воспалением слизистой оболочки дыхательных путей. Чаще всего простудиться можно осенью или весной, особенно, если ходить в промокшей обуви в холодную погоду. Иногда и в помещении достаточно сквозняка, чтобы уже через полчаса появился озноб или начался насморк, что ещё более вероятно, если в помещении есть кондиционер и воздух, поэтому, слишком сухой.

Все простудные болезни вызываются микробами или вирусами (в последнем случае используют термин острая респираторная вирусная инфекция или ОРВИ). Возбудители болезней постоянно обитают в слизистых оболочках носа, носоглотки, трахеи и бронхов. Эти возбудители получают прекрасные условия для жизни и размножения, когда организм угнетён, иммунная защита ослаблена, а чаще всего такое угнетение происходит при переохлаждении или резких перепадах температуры. Вспышкам простудных заболеваний способствует и то, что они передаются от больного человека здоровому воздушно-капельным путем, то есть, при кашле и чихании.

Опасность воспаления лёгких или пневмонии.

Загрязнённый воздух, стрессы или недолеченные заболевания верхних дыхательных путей могут привести к пневмонии. Пневмония - это группа заболеваний лёгких, характеризующаяся воспалительным процессом в альвеолярной, соединительной тканях лёгких и в бронхиолах, но может распространяться и на сосудистую систему лёгких. Воспаление лёгких может вызываться вирусами или бактериями, а также - вследствие различных повреждений, например, ожога или отравления дыхания. Наиболее частый путь проникновения бактерий и вирусов - через дыхательные пути, значительно реже - по лимфатическим и кровеносным сосудам. Развитие пневмонии напрямую связано с сопротивляемостью организма. Снижение сопротивляемости может быть результатом переутомления, предшествующих, прежде всего, простудных, заболеваний или переохлаждения. Примерно в 5% случаев заболеваний пневмония является причиной смерти.


Гипоксия или говоря простым языком - кислородное голодание головного мозга, является тяжелым заболеванием, которое требует диагностики и лечения. При гипоксии блокируется поступление кислорода к нервным соединениям. В случае, когда отсутствуют симптомы нарушения функционирования, мозг может выдержать 4 секунды острой гипоксии, уже спустя несколько секунд после прекращения кровообеспечения, человек теряет сознание, спустя 30 секунд, человек впадает в кому.

Наиболее серьезным исходом при данном нарушении является смерть человека. Поэтому важно знать, основные причины кислородного голодания мозга и симптомы, которые помогут определить первые признаки нарушения и избежать тяжелых последствий и длительного лечения.

Можно выделить 3 вида гипоксии:


  • Молниеносная гипоксия – развитие происходит быстро, в течение нескольких секунд и минут;
  • Острая гипоксия – продолжается в течение нескольких часов, причиной может быть – инфаркт, отравление;
  • Хроническая недостаточность – развивается длительное время, причинами являются, сердечная недостаточность, церебральный атеросклероз, порок сердца.

Кислородная недостаточность головного мозга может быть вызвана несколькими причинами:

  1. Респираторная – мозг не способен получить должное количество кислорода, вследствие нарушения дыхательных процессов. В пример можно привести, такие заболевания как: пневмония, бронхиальная астма, травма груди.
  1. Сердечно-сосудистая – нарушение кровообращения в головном мозге. Причинами могут выступать: шоковое состояние, тромбоз. Нормализация работы сердца и сосудов, позволяет предотвратить развитие инсульта головного мозга.
  1. Гипоксическая – кислородное голодание, которое возникает при снижении кислорода в воздухе. Наиболее яркий пример – альпинисты, которые при подъеме в гору, наиболее отчетливо ощущают недостаток кислорода.
  1. Кровяная – при данном факторе, нарушается транспорт кислорода. Основная причина – анемия.
  1. Тканевая – развитие происходит вследствие нарушения транспортировки кислорода. Причиной могут быть яды или лекарства, которые могли разрушить или блокировать ферментные системы.

Симптомы нехватки кислорода в мозге у каждого человека могут проявляться по-разному. У одного больного может снизиться чувствительность, появиться заторможенность, у другого могут начаться головные боли.


Основные симптомы кислородного голодания мозга:

  • Головокружения, вероятность потери сознания вследствие торможения активности нервной системы. У пациента появляется сильные приступы тошноты и рвоты;
  • Нарушение зрения, темнота в глазах.
  • Изменение цвета кожи. Кожа бледнеет либо становиться красной. Мозг реагирует и пытается восстановить кровоснабжение, вследствие чего появляется холодный пот.
  • Повышается адреналин, после которого наступает мышечная слабость и вялость у пациента. Человек перестает контролировать свои движения и поступки.
  • Появляется раздражительность, обидчивость, развивается депрессия и другие психические нарушения.
  • Невнимательность, пациент тяжело усваивает информацию, снижается умственная работоспособность.

Конечной стадией болезни при кислородном голодании, является развитие комы, а потом вскоре остановка дыхания и сердца.

Если пациенту будет оказана своевременная медицинская помощь, все функции организма можно будет вернуть.


Чтобы определить, текущее состояние пациента и действительно ли он болен, требуется пройти ряд медицинских исследований.

В них входят:

  • Магнитно-резонансная томография мозга. Данный метод показывает последствия кислородной недостаточности. При данном методе можно увидеть участки мозга, где поступает достаточно насыщенный кислород.
  • УЗИ – метод позволяет определить отклонение от нормы при развитии ребенка, находящимся в утробе матери. Позволяет определить кислородное голодание на начальной стадии.
  • Общая и селективная ангиография.

Лечение кислородной недостаточности, в первую очередь заключается в восстановлении требуемого поступления кислорода в мозг.


При нехватке кислорода в головном мозге назначаются следующие мероприятия:

  • Поддержание нормальной работы сердечно-сосудистой и дыхательной системы;
  • Препараты для улучшения кровообращения в мозге;
  • Антигипоксаны;
  • Противоотечные средства;
  • Бронхорасширяющие препараты.

Также проводится радикальное лечение заболевания, когда пациент уже находится в тяжелом состоянии. К такому лечению относится: переливание крови, установка кислородной маски, процедуры по реанимации пациента.


Предотвратить болезнь всегда проще, чем заниматься ее лечением. Для нормального поступления в организм кислорода, нужно просто следовать рекомендациям специалистов. Данные советы можно применять как для профилактики, так и при лечении кислородной недостаточности.

К основным советам можно отнести:

  1. Свежий воздух. Прогулки должны занимать не менее 2-ух часов, желательно перед сном. Прогулки лучше совершать в экологически чистых местах (парки, лес).
  1. Спорт. Легкая зарядка по утрам, способствует лучшему кровообращению, а если заниматься этим еще и на улице, эффект будет увеличен вдвое.
  1. Правильный распорядок дня. Требуется нормализовать свой режим, отвести требуемое время отдыху и сну. Для нормализации процессов в организме сну требуется уделять не менее 7-8 часов. Не забывайте делать разминку, если работаете за столом.
  1. Правильное питание. Для нормального поступления кислорода в мозг, не последнюю очередь играет питание. Рацион должен складываться из большого количества овощей и фруктов. Следует употреблять пищу богатую железом (гречку, мясо, сухофрукты), при этом молочные продукты и потребление кофе требуется свести к минимуму.
  1. Отсутствие стресса. Старайтесь избегать стрессовых ситуаций и попусту не нервничать.

Один из самых удобных и простых способов профилактики болезни, является дыхательная гимнастика. Данный метод очень прост в применении, не требует каких-либо дополнительных усилий.

Несколько полезных упражнений, которые стоит взять на заметку:

  1. Полностью расслабьтесь, нужно сделать 4-ех секундный глубокий вдох, затем на это же время задержите дыхание и медленно выдохните. Повторять около 12-15 раз. Через 1 месяц увеличьте время вдоха и выдоха.
  1. Глубоко вдохните и сделайте не менее 6-7 коротких выдохов через нос. Рот остается закрытым. Повторять 3-4 раза.

Данные упражнения желательно повторять от 2 до 4 раз в день.

Симптомы нехватки кислорода в мозге, могут проявляться у новорожденного в период, когда еще малыш находится в утробе матери, так непосредственно при родах. Гипоксия в тяжелой стадии, не редко, может привести к тяжелым последствиям, как для матери, так и для малыша.

Из них можно отметить:

  • Преждевременные роды;
  • Внутриутробная гибель ребенка;
  • Мертворождение;
  • Тяжелая инвалидность ребенка.

Причины, по которым могут быть вызваны эти тяжелые последствия у детей:

  1. Проблемы сердечно-сосудистой системы;
  1. Внутриутробные инфекции;
  1. Неправильный образ жизни (алкоголь, сигареты, наркотические вещества);
  1. Патология плода;
  1. Родовые травмы.

Кислородная недостаточность, как диагноз, ставится примерно в 15% случаев беременности.

Наиболее часто, гипоксия мозга у ребенка развивается вследствие неправильного образа жизни матери, употреблению алкоголя, курению.

Поэтому, чтобы ваше чадо выросло здоровым и крепким ребенком, следует отказаться от вредных привычек.

Состояние кислородного голодания, может привести к патологическим изменениям. Нарушается мозговая активность и основные функции мозга.

Будет ли прогноз благоприятным, зависит от степени повреждения мозга, и на каком этапе болезнь была обнаружена.

Шансы на выздоровление человека также зависят, в каком состоянии он находится на текущий момент. При длительной коме, основные функции организма нарушены и шанс на выздоровление, становится очень низким.

При кратковременной коме, шансы реабилитироваться очень высоки. При этом лечение может занять достаточное время.

На первые симптомы кислородного голодания мозга необходимо незамедлительно реагировать. Признаки голодания мозга человека от кислородной недостаточности на первых этапах могут быть почти незаметными, однако впоследствии могут нанести непоправимый ущерб всему организму.

  • Человек испытывает резкое возбуждение в организме, повышение адреналина и состояние эйфории. Затем, такое состояние быстро переходит в заторможенность, вялость и утомление. После прилива сил, люди чувствуют сильную усталость и апатию. В этом состоянии сильно кружится голова, учащается сердцебиение, появляется холодный пот, могут возникнуть судороги.
  • Внезапное ухудшение памяти, человек может не ориентироваться в месте нахождения и резко забыть, куда он шел и что хотел сделать. Люди испытывают растерянность и даже дезориентацию. Такое состояние быстро проходит, успокоившись, люди не обращают на него особого внимания, списывая свое состояние на усталость, переутомление или длительное голодание.
  • Симптом гипоксии может вызвать резкая головная боль. Это возникает в перепаде давления и долгого пребывания в душном помещении.
  • Нарушение чувствительности в различных частях тела. Может не слушаться рука или нога, непроизвольно совершать неконтролируемые действия. После восстановления люди испытывают чувства заторможенности и боли в конечностях.
  • Резко повышается нервозность. Человеку хочется плакать или смеяться без видимых причин.
  • К симптомам кислородной недостаточности мозга относится нарушение сна. Люди страдают бессонницей. Нередко просыпаются среди ночи и долгое время не могут уснуть.
  • Общая усталость организма. Человек чувствует разбитость и не может сосредоточиться на определенной работе. Появляется раздражительность и агрессия.
  • Нарушение зрительных и речевых функций организма. Люди не могут связно произнести несколько слов.

Кислородное голодание мозга может быть вызвано долгим пребыванием на большой глубине, нахождением на высоте, пребыванием в очень загазованном помещении, резкой нехваткой кислорода или асфиксией, долгим нахождением в душном помещении.

Все симптомы свидетельствуют о резком ухудшении работоспособности головного мозга и могут привести к серьезным нарушениям в функционировании всего организма человека. На симптомы кислородного голодания мозга, необходимо обращать внимание и сразу же обращаться к специалистам. Ранняя диагностика и вовремя примененное лечение предотвратят более глубокие заболевания.

Причины кислородного голодания организма различны. Это состояние может возникать:

  • при снижении объема кислорода в воздухе, который вдыхает человек (такое явление наблюдается во время подъемов в горы или при нахождении в плохо вентилируемых помещениях);
  • при появлении механической помехи поступлению воздуха в легкие человека (наблюдается при закрытии дыхательных путей водой или рвотными массами, при сужении носовых проходов в результате аллергической реакции);
  • при отравлении угарным газом;
  • при большой потере крови;
  • при приеме некоторых лекарств;
  • при недостатке витамина B2 в результате цирроза печени или гепатита.

Кроме этого, состояние, при котором возникает кислородное голодание мозга, а также сердца, вызывает ишемическая болезнь, тромбоз, спазмы сосудов и курение.

Головной мозг не может приказать сердцу биться быстрее или медленнее. Управляют работой сердца клетки тканей организма. Инструментом управления пульсацией сердца служит кислород. При недостатке кислорода клетки требуют крови, насыщенной им. Сердце ускоряет свою работу и напряжение мышцы. При этом увеличивается скорость движения крови и артериальное давление.

Как только поступит необходимое количество кислорода, клетки снимают свои требования, и сердце переходит на спокойный режим работы, утихает боль. Только ежедневными упражнениями гимнастики, посильной физической работой и правильным питанием можно обеспечить хорошую проницаемость капилляров. Человек должен на обеспечение хорошего здоровья затрачивать ежедневно 1/10 часть суточного времени.

При вдохе воздух поступает в легкие и раздвигает альвеолы. Если вдох слабый, то раздвигается небольшая часть альвеол, и не вся поверхность кровеносных сосудов соприкасается с поступившим воздухом. В этом случае легкие не обеспечат потребность организма в кислороде.

При большом, энергичном вдохе альвеолы будут прижаты друг к другу, сдавятся кровеносные сосуды, уменьшится их площадь, соприкасаемая с воздухом, замедлится движение крови в них. Насыщение крови кислородом будет небольшим - возникнет острое кислородное голодание. Может закружиться голова, и человек потеряет сознание. Нужен комфортный, свободный вдох, наполняющий легкие полностью.

Слабый вдох и чрезмерное наполнение воздухом легких вызывают неудовлетворительное насыщение крови кислородом.

Повседневное дыхание - это дыхание, при котором соблюдается постоянная очередность вдоха, выдоха и паузы. Это привычно, так дышит человек с рождения до смерти, но при этом не всегда обеспечивается потребность организма в кислороде.

Кислородное голодание организма происходит при уменьшении содержания кислорода во вдыхаемом воздухе, болезненном состоянии организма, активизации обмена веществ в клетках, выполнении тяжелой физической работы, нервных перенапряжениях, употреблении пищи сверх нормы и старении организма. Кислородное голодание человек ощущает не сразу. Он не обращает внимание на дискомфорт в организме, недомогание, изменение кровяного давления и пульса, обильное потоотделение, неожиданные боли в сердце и голове и т. д.

При временном кислородном голодании изменяется кровяное давление, возникают аритмия, головные и сердечные боли, ухудшаются зрение и слух, снижаются функции самозащиты организма.

При длительном кислородном голодании, кроме симптомов временного кислородного голодания, возникают заболевания:

  • сердца, кровеносной системы (стенокардия, сердечная недостаточность, инфаркт, варикозное расширение вен), головного мозга (инсульт) и т. д.;
  • обмена веществ в клетках - ожирение, сахарный диабет, заболевания печени и т. д.;
  • систем защиты организма (опухоли различной этиологии).

Длительное кислородное голодание подавляет способность организма к самовыздоровлению.

Человеческий организм может адекватно функционировать только в условиях правильного энергетического баланса. Регулируется этот показатель уровнем кислорода в крови. Снижение процентного содержания кислорода в органе (отделе) любой из внутренних систем организма приводит к полной или частичной дисфункции этого органа (отдела).

Мозг в этом отношении не является исключением. Краткосрочная кислородная диета может не привести к значимым нарушениям, но краткосрочный период в данном случае не превышает 4-х секунд. Временные отрезки большего размера в состоянии кислородного голода вызывают разрушение клеток мозга.

Представьте себе две совершенно различные картины.

Картина первая :

  • Резкая эмотивная деятельность.
  • Некоторые признаки гиперактивности.
  • Ускорение сердечного ритма, потливость и бледность.

Предыдущие пункты сменяются на:

  • Резкое снижение двигательной активности.
  • Невнимательность.
  • Темноту в глазах.
  • Обморок (в крайнем случае судороги).

Через несколько минут после отключения сознания человек приходит к состоянию комы.

Картина вторая:

  • На протяжении нескольких дней или даже недель наблюдается острая головная боль.
  • Бессонница или наоборот излишняя сонливость.
  • Состояния сходные с депрессивными.
  • В отдельных случаях ухудшаются зрение и слух.

Обе эти зарисовки иллюстрируют недостаточное снабжение мозга кислородом.

Кислородное голодание мозга (иначе гипоксия ) может быть вызвана экзогенными (внешними) и эндогенными (внутренними) причинами.

К экзогенным причинам относят:

  • Низкий процент кислорода в воздухе.
  • Переизбыток угарного газа.
  • Перекрытие дыхательных путей.
  • Отравление алкоголем.
  • Нахождение в местах с иными показателями давлениями (меньшими на высоте и более высокими на глубине).

В число эндогенных причин обычно входят нарушения деятельности организма и определённых его функций:

  1. Проблемы с кровообращением.
  2. Паралич мышц, связанных с дыхательной системой.
  3. Болевой шок и иные категории шоковых состояний.
  4. Неспособность к усвоению кислорода на клеточном уровне.
  5. Заболевания сердца.

Скорость развития мозговой гипоксии варьируется:

  • Молниеносный вариант (максимально – несколько минут).
  • Острый вариант (обычно является следствием кровотечения или сильного отравления).
  • Хронический вариант (вызывается соответственно хроническими заболеваниями, например, нарушениями в работе сердца).

Наиболее травмирующими являются молниеносная и острая гипоксии. К сожалению, нарушения проявляющиеся при этих видах КГМ необратимы. Даже если доступ к кислороду был возобновлён – никто не даст гарантии полноценного реанимирования мозговых функций. Многие участки мозга, подвергшиеся негативному воздействию, размягчаются и впоследствии могут спровоцировать появление массы различных заболеваний.

Максимально возможная длительность нормального функционирования головного мозга при отсутствии кислородной подпитки не превышает пяти минут. После этого начинаются необратимые изменения и разрушение тканей. Спустя 10 минут можно с уверенностью в 99% констатировать смерть.

Наиболее значимо при выборе методов излечения КГМ, это то, какая именно форма гипоксии имеет место быть.

Если пациент в состоянии острого КГМ, то необходимо:

  • Обеспечить поддержку его дыхательной и сердечной систем.
  • Компенсировать ацидозное состояние (нарушение кислотно-щелочного баланса).
  • Применить методики замедления метаболизма, поскольку это параллельно замедляет отмирание тканей.

Из лекарственных препаратов более всего используют те, которые предназначены для улучшения кровообращения и защиты нервных клеток.

Излечение хронического КГМ полностью зависит от нахождения его действительной причины. Процесс восстановления может включать в себя специальные дыхательные процедуры, приём лекарств повышающих гемоглобин (который отвечает за перенос кислорода по сосудам к тканям и органам) и препаратов улучшающих кровоснабжение органов и тканей.

Помимо строго медицинских подходов, включающих применение лекарств и использование метода ГБО (гипербарической оксигенации), степень насыщения мозга кислородом можно регулировать самостоятельно. Для этого в первую очередь рекомендуется выполнение спокойных дыхательных упражнений.

Кстати говоря, большая часть современных людей совершенно не умеет дышать, полагая, что глубокий вдох подразумевает только расширение грудной клетки, в то время как сюда же должно подключаться движение живота. Но подробнее об этом можно узнать из других источников.

Помимо правильного дыхания, следует привить себе любовь к долгим прогулкам и выполнению лёгких спортивных упражнений активизирующих кровообращение.

В отдельных случаях может помочь специальная диета, но её необходимо согласовывать со специалистом.

Кислородное голодание головного мозга врачи называют гипоксией. Данное состояние наступает в результате недостаточного поступления кислорода в организм человека. Также причиной могут быть различные нарушения его работы – встречаются ситуации, когда клеткам не удается усваивать кислород. В любом случае клетки организма не получают достаточного количества кислорода.

Гипоксия может носить кратковременный характер или продолжаться довольно долго. Во втором случае она нередко становится причиной патологических изменений, опасных для жизни. Это связано с тем, что продолжительное кислородное голодание вызывает структурные изменения и приводит к отмиранию клеток. Стоит отметить, что последствия кислородного голодания не всегда проявляются сразу, однако в любом случае необходимо сразу же обратиться к специалисту.

Кислородное голодание может возникнуть по самым разным причинам. К наиболее распространенным из них относят следующее:

  1. Подъемы на большую высоту, работа на подводной лодке. В данном случае причина очевидна: недостаточное количество вдыхаемого кислорода.
  2. Закупорка дыхательных путей или попадание в них инородных предметов.
  3. Отравление угарным газом. В этой ситуации наблюдается острое кислородное голодание. Это связано с тем, что кровь не может поставлять кислород в ткани, и в итоге развивается гипоксия.
  4. Порок сердца или инфаркт миокарда. В данной ситуации причиной недостаточного кровоснабжения тканей является нарушение работы сердечной системы.

Гипоксия сопровождается возбуждением нервной системы, после чего состояние эйфории и возбуждения сменяется общей усталостью и заторможенностью. К прочим симптомам кислородного голодания относят головокружение, холодный пот, сердцебиение. Также могут наблюдаться судороги и беспорядочная мышечная активность.

Кроме того, кислородное голодание становится причиной изменения безусловных рефлексов, причем у каждого человека это проходит индивидуально. У одних людей происходит постепенная потеря рефлексов – вначале угасают кожные рефлексы, после чего пропадают надкостничные, затем сухожильные, а в конце концов больной утрачивает и зрительные. У других людей пропадают лишь отдельные рефлексы, а остальные в течение определенного времени продолжают свою работу.

В том случае, если кислородное голодание происходит очень быстро, то больной может на некоторое время потерять сознание. Кроме того, встречаются ситуации, когда больной впадает в кому. Причем кома может быть разной – терминальной, вялой, гиперактивной, подкорковой. В тяжелых случаях кома приводит к угнетению состояния центральной нервной системы, нарушению ритма дыхания, снижению активности головного мозга. Во время восстановления больной испытывает ощущение оглушения, после чего постепенно восстанавливаются функции коры мозга.

С целью определения кислородного голодания мозга назначают такие методы исследования:

  • анализ крови;
  • электрокардиограмма;
  • электроэнцефалограмма;
  • магнитно-резонансная томография;
  • компьютерная томография мозга.

В любом случае человек, страдающий кислородным голоданием мозга, нуждается в экстренной помощи. При появлении первых же симптомов необходимо сразу же вызвать врача, а до его прибытия обеспечить больному приток свежего воздуха. Нужно расстегнуть тесную одежду, сделать искусственное дыхание, вылить воду из легких, вынести из прокуренного помещения на свежий воздух.

Затем врачи обеспечивают насыщение организма кислородом. В особенно тяжелых ситуациях может понадобиться переливание крови. В случае необходимости человеку назначают противоотечные препараты, а также всевозможные терапевтические процедуры. Для лечения гипоксии у новорожденных их помещают в специальную камеру, проводят реанимационные мероприятия, вводят питательные растворы.

Безусловно, необходимо постараться не допускать развития этого состояния. Для этого нужно придерживаться здорового образа жизни, как можно больше бывать на свежем воздухе, заниматься спортом. Кроме того, следует регулярно обследоваться у врача и принимать лекарственные препараты, которые улучшают кровоснабжение головного мозга.

С целью профилактики этого состояния показано употребление кислородных коктейлей. Кроме того, можно подышать обогащенным кислородом, в который добавляют эвкалиптовые, лавандовые, мятные отдушки. В салонах красоты также предлагается кислородная терапия в качестве омолаживающей процедуры.

Для профилактики заболеваний, причиной которых является кислородное голодание, используют гипербарическую оксигенацию. В этом случае пациента помещают в барокамеру, и там на него воздействуют сжатым кислородом. Данная процедура показана людям, которые страдают различными сосудистыми заболеваниями и ишемической болезнью сердца.

Кислородное голодание головного мозга – это достаточно опасное состояние, которое может привести к серьезным проблемам со здоровьем. Потому так важно вовремя поставить правильный диагноз и назначить необходимое лечение. Эти мероприятия помогут сохранить крепкое здоровье на долгие годы.

— это физиологический процесс, обеспечивающий поступление в организм кислорода и удаление углекислого газа. Дыхание протекает в несколько стадий:

  • внешнее дыхание (вентиляция легких);
  • (между альвеолярным воздухом и кровью капилляров малого круга кровообращения);
  • транспорт газов кровью;
  • обмен газов в тканях (между кровью капилляров большого круга кровообращения и клетками тканей);
  • внутреннее дыхание (биологическое окисление в митохондриях клеток).

Изучает первые четыре процесса. Внутреннее дыхание рассматривается в курсе биохимии.

2.4.1. Транспорт кровью кислорода

Функциональная система транспорта кислорода — совокупность структур сердечно-сосудистого аппарата, крови и их регуляторных механизмов, образующих динамическую саморегулирующуюся организацию, деятельность всех составных элементов которой создает диффузионные ноля и градиенты pO2 между кровью и клетками тканей и обеспечивает адекватное поступление кислорода в организм.

Целью ее функционирования является минимизация разности между потребностью и потреблением кислорода. Оксидазный путь использования кислорода , сопряженный с окислением и фосфорилированием в митохондриях цепи тканевого дыхания, является наиболее емким в здоровом организме (используется около 96-98 % потребляемого кислорода). Процессы транспорта кислорода в организме обеспечивают также и его антиоксидантную защиту .

  • Гипероксия — повышенное содержание кислорода в организме.
  • Гипоксия - пониженное содержание кислорода в организме.
  • Гиперкапния — повышенное содержание углекислого газа в организме.
  • Гиперкапнемия — повышенное содержание углекислого газа в крови.
  • Гипокапния — пониженное содержание углекислого газа в организме.
  • Гипокаппемия - пониженное содержание углекислого газа в крови.

Рис. 1. Схема процессов дыхания

Потребление кислорода — количество кислорода, поглощаемое организмом в течение единицы времени (в покое 200- 400 мл/мин).

Степень насыщения крови кислородом — отношение содержания кислорода в крови к ее кислородной емкости.

Объем газов, находящихся в крови, принято выражать в объемных процентах (об%). Этот показатель отражает количество газа в миллилитрах, находящееся в 100 мл крови.

Кислород транспортируется кровью в двух формах:

  • физического растворения (0,3 об%);
  • в связи с гемоглобином (15-21 об%).

Молекулу гемоглобина, не связанную с кислородом, обозначают символом Нb, а присоединившую кислород (оксигемоглобин) — НbO 2 . Присоединение кислорода к гемоглобину называют оксигенацией (сатурацией), а отдачу кислорода — де- оксигенацией или восстановлением (десатурацией). Гемоглобину принадлежит основная роль в связывании и транспорте кислорода. Одна молекула гемоглобина при полной оксигена- ции связывает четыре молекулы кислорода. Один грамм гемоглобина связывает и транспортирует 1,34 мл кислорода. Зная содержание гемоглобина в крови, легко рассчитать кислородную емкость крови.

Кислородная емкость крови — это количество кислорода, связанного с гемоглобином, находящимся в 100 мл крови, при его полном насыщении кислородом. Если в крови содержится 15 г% гемоглобина, то кислородная емкость крови составит 15 . 1,34 = 20,1 мл кислорода.

В нормальных условиях гемоглобин связывает кислород в легочных капиллярах и отдает его в тканевых благодаря особым свойствам, которые зависят от ряда факторов. Основным фактором, влияющим на связывание и отдачу гемоглобином кислорода, является величина напряжения кислорода в крови, зависящая от количества растворенного в ней кислорода. Зависимость связывания гемоглобином кислорода от его напряжения описывается кривой, получившей название кривой диссоциации оксигемоглобина (рис. 2.7). На графике но вертикали отмечен процент молекул гемоглобина, связанных с кислородом (%НbO 2), по горизонтали — напряжение кислорода (рO 2). Кривая отражает изменение %НbO 2 в зависимости от напряжения кислорода в плазме крови. Она имеет S-образный вид с перегибами в области напряжения 10 и 60 мм рт. ст. Если рО 2 в плазме становится больше, то оксигенация гемоглобина начинает нарастать почти линейно нарастанию напряжения кислорода.

Рис. 2. Кривые диссоциации: а — при одинаковой температуре (Т = 37 °С) и различном рСО 2 ,: I- оксимиоглобина нрн нормальных условиях (рСО 2 = 40 мм рт. ст.); 2 — окенгемоглобина при нормальных условиях (рСО 2 , = 40 мм рт. ст.); 3 — окенгемоглобина (рСО 2 , = 60 мм рт. ст.); б — при одинаковом рС0 2 (40 мм рт. ст.) и различной температуре

Реакция связывания гемоглобина с кислородом является обратимой, зависит от сродства гемоглобина к кислороду, которое, в свою очередь, зависит от напряжения кислорода в крови:

При обычном парциальном давлении кислорода в альвеолярном воздухе, составляющем около 100 мм рт. ст., этот газ диффундирует в кровь капилляров альвеол, создавая напряжение, близкое к парциальному давлению кислорода в альвеолах. Сродство гемоглобина к кислороду в этих условиях повышается. Из приведенного уравнения видно, что реакция сдвигается в сторону образования окенгемоглобина. Оксигенация гемоглобина в оттекающей от альвеол артериальной крови достигает 96-98%. Из-за шунтирования крови между малым и большим кругом оксигенация гемоглобина в артериях системного кровотока немного снижается, составляя 94-98%.

Сродство гемоглобина к кислороду характеризуется величиной напряжения кислорода, при котором 50% молекул гемоглобина оказываются оксигенированными. Его называют напряжением полунасыщения и обозначают символом Р 50 . Увеличение Р 50 свидетельствует о снижении сродства гемоглобина к кислороду, а его снижение — о возрастании. На уровень Р 50 влияют многие факторы: температура, кислотность среды, напряжение СО 2 , содержание в эритроците 2,3-дифосфоглицерата. Для венозной крови Р 50 близко к 27 мм рт. ст., а для артериальной — к 26 мм рт. ст.

Из крови сосудов микроциркуляторного русла кислород но его градиенту напряжения постоянно диффундирует в ткани и его напряжение в крови уменьшается. В то же время напряжение углекислого газа, кислотность, температура крови тканевых капилляров увеличиваются. Это сопровождается снижением сродства гемоглобина к кислороду и ускорением диссоциации оксигемоглобина с высвобождением свободного кислорода, который растворяется и диффундирует в ткани. Скорость высвобождения кислорода из связи с гемоглобином и его диффузии удовлетворяет потребности тканей (в том числе высокочувствительных к недостатку кислорода), при содержании НbО 2 в артериальной крови выше 94%. При снижении содержания НbО 2 менее 94% рекомендуется принимать меры к улучшению сатурации гемоглобина, а при содержании 90% ткани испытывают кислородное голодание и необходимо принимать срочные меры, улучшающие доставку в них кислорода.

Состояние, при котором оксигенация гемоглобина снижается менее 90%, а рО 2 крови становится ниже 60 мм рт. ст., называют гипоксемией.

Приведенные на рис. 2.7 показатели сродства Нb к О 2 , имеют место при обычной, нормальной температуре тела и напряжении углекислого газа в артериальной крови 40 мм рт. ст. При возрастании в крови напряжения углекислого газа или концентрации протонов Н+ сродство гемоглобина к кислороду снижается, кривая диссоциации НbО 2 , сдвигается вправо. Такое явление называют эффектом Бора. В организме повышение рСО 2 , происходит в тканевых капиллярах, что способствует увеличению деоксигснации гемоглобина и доставке кислорода в ткани. Снижение сродства гемоглобина к кислороду происходит также при накоплении в эритроцитах 2,3-дифосфоглицерата. Через синтез 2,3-дифосфоглицерата организм может влиять на скорость диссоциации НbO 2 . У пожилых людей содержание этого вещества в эритроцитах повышено, что препятствует развитию гипоксии тканей.

Повышение температуры тела снижает сродство гемоглобина к кислороду. Если температура тела снижается, то кривая диссоциации НbО 2 , сдвигается влево. Гемоглобин активнее захватывает кислород, но в меньшей мере отдает его тканям. Это является одной из причин, почему при попадании в холодную (4-12 °С) воду даже хорошие пловцы быстро испытывают непонятную мышечную слабость. Развивается переохлаждение и гипоксия мышц конечностей по причине как уменьшения в них кровотока, так и сниженной диссоциации НbО 2 .

Из анализа хода кривой диссоциации НbО 2 видно, что рО 2 в альвеолярном воздухе может быть снижено с обычного 100 мм рт. ст. до 90 мм рт. ст., а оксигенация гемоглобина будет сохраняться на совместимом с жизнедеятельностью уровне (уменьшится лишь на 1-2%). Такая особенность сродства гемоглобина к кислороду дает возможность организму приспосабливаться к снижению вентиляции легких и понижению атмосферного давления (например, жить в горах). Но в области низкого напряжения кислорода крови тканевых капилляров (10-50 мм рт. ст.) ход кривой резко меняется. На каждую единицу снижения напряжения кислорода деоксигенируется большое число молекул оксигемоглобина, увеличивается диффузия кислорода из эритроцитов в плазму крови и за счет повышения его напряжения в крови создаются условия для надежного обеспечения тканей кислородом.

На связь гемоглобина с килородом влияют и другие факторы. На практике важно учитывать то, что гемоглобин обладает очень высоким (в 240-300 раз большим, чем к кислороду) сродством к угарному газу (СО). Соединение гемоглобина с СО называют карбоксигелюглобином. При отравлении СО кожа пострадавшего в местах гиперемии может приобретать вишнево-красный цвет. Молекула СО присоединяется к атому железа гема и тем самым блокирует возможность связи гемоглобина с кислородом. Кроме того, в присутствии СО даже те молекулы гемоглобина, которые связаны с кислородом, в меньшей степени отдают его тканям. Кривая диссоциации НbО 2 сдвигается влево. При наличии в воздухе 0,1% СО более 50% молекул гемоглобина превращается в карбоксигемогло- бин, а уже при содержании в крови 20-25% НbСO человеку требуется врачебная помощь. При отравлении угарным газом важно обеспечить пострадавшему вдыхание чистого кислорода. Это увеличивает скорость диссоциации НbСO в 20 раз. В условиях обычной жизни содержание НbСOв крови составляет 0-2%, после выкуренной сигареты оно может возрасти до 5% и более.

При действии сильных окислителей кислород способен образовывать прочную химическую связь с железом гема, при которой атом железа становится трехвалентным. Такое соединение гемоглобина с кислородом называют метгемоглобином. Оно не может отдавать кислород тканям. Метгемоглобин сдвигает кривую диссоциации оксигемоглобина влево, ухудшая таким образом условия высвобождения кислорода в тканевых капиллярах. У здоровых людей в обычных условиях из-за постоянного поступления в кровь окислителей (перекисей, нитропронзводных органических веществ и т.д.) до 3% гемоглобина крови может быть в виде метгемоглобина.

Низкий уровень содержания этого соединения поддерживается благодаря функционированию антиоксидантных ферментных систем. Образование метгемоглобина ограничивают антиоксиданты (глутатион и аскорбиновая кислота), присутствующие в эритроцитах, а его восстановление в гемоглобин происходит в процессе ферментативных реакций с участием эритроцитариых ферментов дегидрогеназ. При недостаточности этих систем или при избыточном попадании в кровоток веществ (например, фенацетина, противомалярийных лекарственных препаратов и т.д.), обладающих высокими оксидантными свойствами, развивается мстгсмоглобинсмия.

Гемоглобин легко взаимодействует и со многими другими растворенными в крови веществами. В частности, при взаимодействии с лекарственными препаратами, содержащими серу, может образовываться сульфгемоглобин, сдвигающий кривую диссоциации оксигемоглобина вправо.

В крови плода преобладает фетальный гемоглобин (HbF), обладающий большим сродством к кислороду, чем гемоглобин взрослого. У новорожденного в эритроцитах содержится до 70% фстального гемоглобина. Гемоглобин F заменяется на НbА в течение первого полугодия жизни.

В первые часы после рождения рО 2 артериальной крови составляет около 50 мм рт. ст., а НbО 2 - 75-90%.

У пожилых людей напряжение кислорода в артериальной крови и насыщение гемоглобина кислородом постепенно снижается. Величину этого показателя рассчитывают по формуле

рO 2 = 103,5-0,42 . возраст в годах.

В связи с существованием тесной связи между насыщением кислородом гемоглобина крови и напряжением в ней кислорода был разработан метод пульсоксиметрии , получивший широкое применение в клинике. Этим методом определяют насыщение гемоглобина артериальной крови кислородом и его критические уровни, при которых напряжение кислорода в крови становится недостаточным для его эффективной диффузии в ткани и они начинают испытывать кислородное голодание (рис. 3).

Современный пульсоксиметр состоит из датчика, включающего светодиодный источник света, фотоприемника, микропроцессора и дисплея. Свет от светодиода направляется через ткань пальца кисти (стопы), мочки уха, поглощается оксигемоглобином. Непоглощенная часть светового потока оценивается фотоприемником. Сигнал фотоприемника обрабатывается микропроцессором и подается на экран дисплея. На экране отображается процентное насыщение гемоглобина кислородом, частота пульса и пульсовая кривая.

На кривой зависимости насыщения гемоглобина кислородом видно, что гемоглобин артериальной крови, опекающей из альвеолярных капилляров (рис. 3), полностью насыщенкислородом (SaO2 = 100%), напряжение кислорода в ней составляет 100 мм рт. ст. (рО2, = 100 мм рт. ст.). После диссоциации оксигсмоглобина в тканях кровь становится деоксигенированной и в смешанной венозной крови, возвращающейся в правое предсердие, в условиях покоя гемоглобин остается насыщенным кислородом на 75% (Sv0 2 = 75%), а напряжение кислорода составляет 40 мм рт. ст. (pvO2 = 40 мм рт. ст.). Таким образом, в условиях покоя ткани поглотили около 25% (≈250 мл) кислорода, высвободившегося из оксигсмоглобина после его диссоциации.

Рис. 3. Зависимость насыщения кислородом гемоглобина артериальной крови от напряжения в ней кислорода

При уменьшении всего лишь на 10% насыщения гемоглобина артериальной крови кислородом (SaO 2 , <90%), диссоциирующий в тканях оксигемоглобин не обеспечивает достаточного напряжения кислорода в артериальной крови для его эффективной диффузии в ткани и они начинают испытывать кислородное голодание.

Одной из важных задач, которая решается при постоянном измерении пульсоксиметром насыщения гемоглобина артериальной крови кислородом, является обнаружение момента, когда насыщение снижается до критического уровня (90%) и пациенту необходимо оказание неотложной помощи, направленной на улучшение доставки кислорода в ткани.

Транспорт кровью углекислого газа и его связь с кислотно-щелочным состоянием крови

Углекислый газ транспортируется кровью в формах:

  • физического растворения — 2,5-3 об%;
  • карбоксигемоглобина (НbСО 2) — 5 об%;
  • бикарбонатов (NaHCO 3 и КНСO 3) — около 50 об%.

В оттекающей от тканей крови содержится 56-58 об% СО 2 , а в артериальной — 50-52 об%. При протекании через тканевые капилляры кровь захватывает около 6 об% СО 2 , а в легочных капиллярах этот газ диффундирует в альвеолярный воздух и удаляется из организма. Особенно быстро идет обмен СО 2 , связанного с гемоглобином. Углекислый газ присоединяется к аминогруппам в молекуле гемоглобина, поэтому карбоксигемоглобин называют еще карбаминогемоглобином. Большая часть углекислого газа транспортируется в виде натриевых и калиевых солей угольной кислоты. Ускоренному распаду угольной кислоты в эритроцитах при прохождении их по легочным капиллярам способствует фермент карбоангидра- за. При рСО2 ниже 40 мм рт. ст. этот фермент катализирует распад Н 2 СO 3 на Н 2 0 и С0 2 , способствуя удалению углекислого газа из крови в альвеолярный воздух.

Накопление углекислого газа в крови свыше нормы называют гиперкапнией , а понижение гипокапнией. Гиперкаппия сопровождается сдвигом рН крови в кислую сторону. Это обусловлено тем, что углекислый газ, соединяясь с водой, образует угольную кислоту:

CO 2 + H 2 O = H 2 CO 3

Угольная кислота диссоциирует согласно закону действующих масс:

Н 2 СО 3 <-> Н + + HCO 3 - .

Таким образом, внешнее дыхание через влияние на содержание углекислого газа в крови принимает непосредственное участие в поддержании кислотно-щелочного состояния в организме. За сутки с выдыхаемым воздухом из организма человека удаляется около 15 ООО ммоль угольной кислоты. Почки удаляют приблизительно в 100 раз меньше кислот.

где рН — отрицательный логарифм концентрации протонов; рК 1 — отрицательный логарифм константы диссоциации (К 1) угольной кислоты. Для ионной среды, имеющейся в плазме, рК 1 =6,1.

Концентрацию [СО2] можно заменить напряжением [рС0 2 ]:

[С0 2 ] = 0,03 рС0 2 .

Тогда рН = 6,1 + lg / 0,03 рСО 2 .

Подставив эти значения, получим:

рН = 6,1 + lg24 / (0,03 . 40) = 6,1 + lg20 = 6,1 + 1,3 = 7,4.

Таким образом, пока соотношение / 0,03 рС0 2 равно 20, рН крови будет 7,4. Изменение этого соотношения происходит при ацидозе или алкалозе, причинами которых могут быть нарушения в системе дыхания.

Различают изменения кислотно-щелочного состояния, вызванные нарушениями дыхания и метаболизма.

Дыхательный алкалоз развивается при гипервентиляции легких, например при пребывании на высоте в горах. Недостаток кислорода во вдыхаемом воздухе приводит к возрастанию вентиляции легких, а гипервентиляция — к избыточному вымыванию из крови углекислого газа. Соотношение / рС0 2 сдвигается в сторону преобладания анионов и рН крови увеличивается. Увеличение рН сопровождается усилением выведения почками бикарбонатов с мочой. При этом в крови будет обнаруживаться меньшее, чем в норме, содержание анионов HCO 3 - или так называемый «дефицит оснований».

Дыхательный ацидоз развивается из-за накопления в крови и тканях углекислого газа, обусловленного недостаточностью внешнего дыхания или кровообращения. При гиперкапнии показатель соотношения / рСО 2 , снижается. Следовательно, снижается и рН (см. выше приведенные уравнения). Это подкисление может быть быстро устранено усилением вентиляции.

При дыхательном ацидозе почки увеличивают выведение с мочой протонов водорода в составе кислых солей фосфорной кислоты и аммония (Н 2 РО 4 - и NH 4 +). Наряду с усилением секреции протонов водорода в мочу увеличивается образование анионов угольной кислоты и усиление их реабсорбции в кровь. Содержание HCO 3 - в крови возрастает и рН возвращается к норме. Это состояние называют компенсированным дыхательным ацидозом. О его наличии можно судить по величине рН и нарастанию избытка оснований (разности между содержанием в исследуемой крови и в крови с нормальным кислотно-щелочным состоянием.

Метаболический ацидоз обусловлен поступлением в организм избытка кислот с пищей, нарушениями метаболизма или введением лекарственных препаратов. Увеличение концентрации водородных ионов в крови приводит к возрастанию активности центральных и периферических рецепторов, контролирующих рН крови и ликвора. Учащенная импульсация от них поступает к дыхательному центру и стимулирует вентиляцию легких. Развивается гипокапиия. которая несколько компенсирует метаболический ацидоз. Уровень в крови снижается и это называют дефицитом оснований.

Метаболический алкалоз развивается при избыточном приеме внутрь щелочных продуктов, растворов, лекарственных веществ, при потере организмом кислых продуктов обмена или избыточной задержке почками анионов . Дыхательная система реагирует на повышение соотношения /рС0 2 гиповентиляцией легких и повышением напряжения углекислого газа в крови. Развивающаяся гиперкапния может в определенной мере компенсировать алкалоз. Однако объем такой компенсации ограничен тем, что накопление углекислого газа в крови идет не более, чем до напряжения 55 мм рт. ст. Признаком компенсированного метаболического алкалоза является наличие избытка оснований.

Взаимосвязь между транспортом кислорода и углекислого газа кровью

Имеется три важнейших пути взаимосвязи транспорта кислорода и углекислого газа кровью.

Взаимосвязь по типу эффекта Бора (увеличение рСО-, снижает сродство гемоглобина к кислороду).

Взаимосвязь по типу эффекта Холдэна . Она проявляется в том, что при деоксигенации гемоглобина увеличивается его сродство к углекислому газу. Высвобождается дополнительное число аминогрупп гемоглобина, способных связывать углекислый газ. Это происходит в тканевых капиллярах и восстановленный гемоглобин может в больших количествах захватывать углекислый газ, выходящий в кровь из тканей. В соединении с гемоглобином транспортируется до 10% от всего переносимого кровью углекислого газа. В крови легочных капилляров гемоглобин оксигенируется, его сродство к углекислому газу снижается и около половины этой легко обмениваемой фракции углекислого газа отдастся в альвеолярный воздух.

Еще один путь взаимосвязи обусловлен изменением кислотных свойств гемоглобина в зависимости от его соединения с кислородом. Величины констант диссоциации этих соединений в сопоставлении с угольной кислотой имеют такое соотношение: Hb0 2 > Н 2 С0 3 > Нb. Следовательно, НbО2 обладает более сильными кислотными свойствами. Поэтому после образования в легочных капиллярах он забирает катионы (К+) от бикарбонатов (КНСО3) в обмен на ионы Н + . В результате этого образуется H 2 CO 3 При повышении концентрации угольной кислоты в эритроците фермент карбоангидраза начинает разрушать ее с образованием СО 2 и Н 2 0. Углекислый газ диффундирует в альвеолярный воздух. Таким образом, оксигенация гемоглобина в легких способствует разрушению бикарбонатов и удалению аккумулированного в них углекислого газа из крови.

Превращения, описанные выше и происходящие в крови легочных капилляров, можно записать в виде последовательных символических реакций:

Деоксигенация Нb0 2 в тканевых капиллярах превращает его в соединение с меньшими, чем у Н 2 С0 3 , кислотными свойствами. Тогда вышеприведенные реакции в эритроците текут в обратном направлении. Гемоглобин выступает поставщиком ионов К" для образования бикарбонатов и связывания углекислого газа.

Транспорт газов кровью

Переносчиком кислорода от легких к тканям и углекислого газа от тканей к легким является кровь. В свободном (растворенном) состоянии переносится лишь небольшое количество этих газов. Основное количество кислорода и углекислого газа переносится в связанном состоянии.

Транспорт кислорода

Кислород, растворяющийся в плазме крови капилляров малого круга кровообращения, диффундирует в эритроциты, сразу связывается с гемоглобином, образуя оксигемоглобин. Скорость связывания кислорода велика: время полунасыщения гемоглобина кислородом около 3 мс. Один грамм гемоглобина связывает 1,34 мл кислорода, в 100 мл крови 16 г гемоглобина и, следовательно, 19,0 мл кислорода. Эта величина называется кислородной емкостью крови (КЕК).

Превращение гемоглобина в оксигемоглобин определяется напряжением растворенного кислорода. Графически эта зависимость выражается кривой диссоциации оксигемоглобина (рис. 6.3).

На рисунке видно, что даже при небольшом парциальном давлении кислорода (40 мм рт. ст.) с ним связывается 75-80% гемоглобина.

При давлении 80-90 мм рт. ст. гемоглобин почти полностью насыщается кислородом.

Рис. 4. Кривая диссоциации оксигемоглобина

Кривая диссоциации имеет S-образную форму и состоит из двух частей — крутой и отлогой. Отлогая часть кривой, соответствующая высоким (более 60 мм рт. ст.) напряжениям кислорода, свидетельствует о том, что в этих условиях содержание оксигемоглобина лишь слабо зависит от напряжения кислорода и его парциального давления во вдыхаемом и альвеолярном воздухе. Верхняя отлогая часть кривой диссоциации отражает способность гемоглобина связывать большие количества кислорода, несмотря на умеренное снижение его парциального давления во вдыхаемом воздухе. В этих условиях ткани достаточно снабжаются кислородом (точка насыщения).

Крутая часть кривой диссоциации соответствует напряжению кислорода, обычному для тканей организма (35 мм рт. ст. и ниже). В тканях, поглощающих много кислорода (работающие мышцы, печень, почки), оке и гемоглобин диссоциирует в большей степени, иногда почти полностью. В тканях, в которых интенсивность окислительных процессов мала, большая часть оксигемоглобина не диссоциирует.

Свойство гемоглобина — легко насыщаться кислородом даже при небольших давлениях и легко его отдавать — очень важно. Благодаря легкой отдаче гемоглобином кислорода при снижении его парциального давления обеспечивается бесперебойное снабжение тканей кислородом, в которых вследствие постоянного потребления кислорода его парциальное давление равно нулю.

Распад оксигемоглобина на гемоглобин и кислород увеличивается с повышением температуры тела (рис. 5).

Рис. 5. Кривые насыщения гемоглобина кислородом при разных условиях:

А — в зависимости от реакции среды (рН); Б — от температуры; В — от содержания солей; Г — от содержания углекислого газа. По оси абцисс — парциальное давление кислорода (в мм рт. ст.). по оси ординат — степень насыщения (в %)

Диссоциация оксигемоглобина зависит от реакции среды плазмы крови. С увеличением кислотности крови возрастает диссоциация оксигемоглобина (рис. 5, А).

Связывание гемоглобина с кислородом в воде осуществляется быстро, но полного его насыщения не достигается, как и не происходит полной отдачи кислорода при снижении его парциального
давления. Более полное насыщение гемоглобина кислородом и полная его отдача при понижении напряжения кислорода происходят в растворах солей и в плазме крови (см. рис. 5, В).

Особое значение в связывании гемоглобина с кислородом имеет содержание углекислого газа в крови: чем больше его содержание в крови, тем меньше связывается гемоглобина с кислородом и тем быстрее происходит диссоциация оксигемоглобина. На рис. 5, Г показаны кривые диссоциации оксигемоглобина при разном содержании углекислого газа в крови. Особенно резко понижается способность гемоглобина соединяться с кислородом при давлении углекислого газа, равном 46 мм рт. ст., т.е. при величине, соответствующей напряжению углекислого газа в венозной крови. Влияние углекислого газа на диссоциацию оксигемоглобина очень важно для переноса газов в легких и тканях.

В тканях содержится большое количество углекислого газа и других кислых продуктов распада, образующихся в результате обмена веществ. Переходя в артериальную кровь тканевых капилляров, они способствуют более быстрому распаду оксигемоглобина и отдаче кислорода тканям.

В легких же по мере выделения углекислого газа из венозной крови в альвеолярный воздух с уменьшением содержания углекислого газа в крови увеличивается способность гемоглобина соединяться с кислородом. Тем самым обеспечивается превращение венозной крови в артериальную.

Транспорт углекислого газа

Известны три формы транспорта двуокиси углерода:

  • физически растворенный газ — 5-10%, или 2,5 мл/100 мл крови;
  • химически связанный в бикарбонатах: в плазме NaHC0 3 , в эритроцитах КНСО, — 80-90%, т.е. 51 мл/100 мл крови;
  • химически связанный в карбаминовых соединениях гемоглобина — 5-15%, или 4,5 мл/100 мл крови.

Углекислый газ непрерывно образуется в клетках и диффундирует в кровь тканевых капилляров. В эритроцитах он соединяется с водой и образует угольную кислоту. Этот процесс катализируется (ускоряется в 20 000 раз) ферментом карбоангидразой. Карбоангидраза содержится в эритроцитах, в плазме крови ее нет. Поэтому гидратация углекислого газа происходит практически только в эритроцитах. В зависимости от напряжения углекислого газа карбоангидраза катализируется с образованием угольной кислоты, так и расщеплением ее на углекислый газ и воду (в капиллярах легких).

Часть молекул углекислого газа соединяется в эритроцитах с гемоглобином, образуя карбогемоглобин.

Благодаря указанным процессам связывания напряжение углекислого газа в эритроцитах оказывается невысоким. Поэтому все новые количества углекислого газа диффундируют внутрь эритроцитов. Концентрация ионов НС0 3 - , образующихся при диссоциации солей угольной кислоты, в эритроцитах возрастает. Мембрана эритроцитов обладает высокой проницаемостью для анионов. Поэтому часть ионов НСО 3 - переходит в плазму крови. Взамен ионов НСО 3 - в эритроциты из плазмы входят ионы СI - , отрицательные заряды которых уравновешиваются ионами K+. В плазме крови увеличивается количество бикарбоната натрия (NaНСО 3 -).

Накопление ионов внутри эритроцитов сопровождается повышением в них осмотического давления. Поэтому объем эритроцитов в капиллярах большого круга кровообращения несколько увеличивается.

Для связывания большей части углекислого газа исключительно большое значение имеют свойства гемоглобина как кислоты. Оксигемоглобин имеет константу диссоциации в 70 раз большую, чем дезоксигемоглобин. Оксигемоглобин — более сильная кислота, чем угольная, а дезоксигемоглобин — более слабая. Поэтому в артериальной крови оксигемоглобин, вытеснивший ионы К + из бикарбонатов, переносится в виде соли КНbO 2 . В тканевых капиллярах КНbО 2 , отдает кислород и превращается в КНb. Из него угольная кислота как более сильная вытесняет ионы К + :

КНb0 2 + H 2 CO 3 = КНb + 0 2 + КНСО 3

Таким образом, превращение оксигемоглобина в гемоглобин сопровождается увеличением способности крови связывать углекислый газ. Это явление носит название эффекта Холдейна. Гемоглобин служит источником катионов (К+), необходимых для связывания угольной кислоты в форме бикарбонатов.

Итак, в эритроцитах тканевых капилляров образуется дополнительное количество бикарбоната калия, а также карбогемоглобин, а в плазме крови увеличивается количество бикарбоната натрия. В таком виде углекислый газ переносится к легким.

В капиллярах малого круга кровообращения напряжение углекислого газа снижается. От карбогемоглобина отщепляется СО2,. Одновременно происходит образование оксигемоглобина, увеличивается его диссоциация. Оксигемоглобин вытесняет калий из бикарбонатов. Угольная кислота в эритроцитах (в присутствии карбоангидразы) быстро разлагается на воду и углекислый газ. Ионы НСОГ входят в эритроциты, а ионы СI - входят в плазму крови, где уменьшается количество бикарбоната натрия. Углекислый газ диффундирует в альвеолярный воздух. Схематически все эти процессы представлены на рис. 6.

Рис. 6. Процессы, происходящие в эритроците при поглощении или отдаче кровью кислорода и углекислого газа

Кислород является жизненно важным газом для организма человека. При его нехватке возникает голодание, и клетки теряют возможность нормального восстановления. В результате в органах начинаются необратимые изменения, из-за которых возникают болезни. Жизнь человека без кислорода может длиться около 7 минут. Притом, клиническая смерть наступает всего через несколько минут после того, как он перестает поступать в организм.

Транспорт газа из атмосферы к клеткам тела осуществляется из-за разницы в давлении – из зоны высокой концентрации он перемещается в зону низкой концентрации.

Отвечает за поступление кислорода из воздуха в кровь дыхательная система. Она состоит из верхних и нижних путей. Первые включают в свой состав носо- и ротоглотку, полость носа. Нижние дыхательные пути – это гортань, трахея, бронхи. Главным органом системы являются легкие. Именно в них осуществляется газообмен.

Кислород передается в кровь через альвеолы. Каждая из них находится в окружении множества капилляров. Когда кислород достигает альвеол, из-за разницы в давлении он переходит из них в кровь, движущуюся по малому кругу кровообращения.

Попав в капилляры, молекулы О2 связываются с гемоглобином (большая часть) и плазмой крови. Так он доставляется в правое предсердие, после чего распространяется к органам по большому кругу кровообращения. В ткани и клетки кислород попадает благодаря процессу диффузии.

Органы дыхательной системы передают организму достаточно большое количество жизненно необходимого газа. 1 гр. гемоглобина способен связываться с 1,31 мл кислорода. За один цикл вдох-выдох в кровь с белком поступает около 200 мл О2, с плазмой – 3 мл О2. Для выполнения своих функций телу требуется всего 250 мл газа. Однако, в последнее время ученые склоняются к тому, что на самом деле потребности организма несколько больше.

Несмотря на то, что к тканям доставляется много кислорода, в органах не возникает его запасов. Резервным для человека является лишь анаэробное (клеточное) дыхание. При недостаточном поступлении О2 в организм некоторые органы начинают вырабатывать его самостоятельно, обеспечивая тем самым, свою жизнедеятельность.

Однако, у людей, страдающих от тех или иных заболеваний, газообмен может быть нарушен. Низкий уровень гемоглобина, уменьшение способности белка присоединять молекулы О2, нарушение кровоснабжения, закупорка вен и нехватка нужного газа в загрязненной атмосфере – все это приводит к тому, что содержание кислорода в крови становится недостаточным. Клетки теряют возможность нормального восстановления. Из-за нарушения работы органов, они перестают вырабатывать кислород самостоятельно. В результате такого голодания, проблемы со здоровьем становятся регулярными, а их последствия – необратимыми.

В настоящее время считается единственным средством, при помощи которого можно не только улучшить транспорт кислорода. Благодаря тренажеру удается добиться одновременно множества эффектов, таких как:

  • очищение и оздоровление организма, в том числе органов дыхательной системы;
  • нормализация гемоглобина;
  • подключение внутренних резервов организма (клеточное дыхание).

В результате занятий на ТДИ-01, ткани и клетки получают достаточное количество газа для собственного восстановления, сохранения здоровья органов и поддержания молодости.

В основе проведения лечебных мероприятий , связанных с переливанием продуктов крови и плазмозаменителей, лежит оценка клинических данных, показателей кислородного статуса и состояния гемодинамики пациентов.

Основная функция системы кровообращения заключается в распределении кислорода между метаболически активными тканями и выведении продуктов обмена и двуокиси углерода. Потребность в кислороде является наиболее важным регулятором кровотока в большинстве тканей. Например, по данным К.A. Gaar (1987), достаточное снабжение клеток глюкозой может сохраняться при тридцатикратном уменьшении кровотока, в то время как для кислорода этот резерв значительно меньше. Из этого следует, что главным результатом острой недостаточности кровообращения является циркуляторная гипоксия, возникающая вследствие несоответствия доставки кислорода органам и тканям потребности в нем. Для полной оценки кислородного статуса организма необходимы данные, отражающие пять основных этапов кислородного снабжения:
поступление кислорода;
содержание кислорода в крови;
транспорт кислорода;
высвобождение кислорода;
эффективность утилизации кислорода.

Поступление кислорода в легкие определяется:
парциальным напряжением кислорода в альвеолярном воздухе, которое, в свою очередь, зависит от атмосферного давления или фракции кислорода на вдохе (Fi02), минутной вентиляции легких и альвеолярного рС02;
степенью внутрилегочного шунтирования крови;
диффузионной способностью легочной ткани.

Ключевым параметром , используемым для оценки адекватности поступления кислорода, является парциальное напряжение кислорода в артериальной крови (р02а). Для расчета нормальных или должных ндивидуальных значений р02а (при условии, что Fi02 = 0,21) пользуются следующей формулой:
р02а (должное) = 100 - половина возраста пациента.

Термин «внутрилегочное шунтирование крови » отражает соответствие между вентиляцией и перфузией в различных участках легочной ткани. Оксигенация притекающей к легким венозной крови происходит лишь в капилляре, прилежащем к вентилируемой альвеоле. В случае, когда вентилируемая альвеола прилежит к легочному капилляру, в котором кровоток отсутствует, или, наоборот, открытый капилляр прилежит к невентилируемой альвеоле, оксигенации венозной крови не происходит. Чем больше таких несоответствий, тем выше фракция внутрилегочного шунтирования.
Фракцию внутрилегочного шунтирования можно рассчитать по формуле :
Q/Q, = / 0,03 х (А - а) р02 + [ 1,36 х Нb х х (Sa02 - Sv02)].

При нормальных значениях Fshunt, составляющих 2-6 %, адекватные значения р02а будут определяться на фоне дыхания атмосферным воздухом. По мере возрастания Fshunt для поддержания достаточного р02а необходимо использование повышенных Fi02. При высокой степени внугрилегочного шунтирования, достигающей 30 % и выше, даже использование 100 %-ного кислорода не позволяет достичь нормального р02а.

В клинических ситуациях, связанных с проведением инфузионно-трансфузионной терапии , к увеличению Fshunt может приводить целый ряд факторов, вызывающих нарушения как вентиляции, так и перфузии легких. Среди них:
закупорка альвеол кровью или бронхиальным секретом, количество которого может увеличиваться при гипергидратации;
образование гемо- или гидроторакса;
травма легкого;
пневмоторакс;
формирование ателектазов;
бронхоспазм при анафилактических реакциях на переливание продуктов крови и кровезаменителей и др.

Нарушения перфузии легких могут быть обусловлены значительным сокращением числа открытых капилляров при выраженной гиповолемии, сладжем форменных элементов и образованием микросгустков при ДВС-синдроме, тромбоэмболическим синдромом, воздушной эмболией (например, при использовании центральных венозных катетеров), сдавлением легочных капилляров при установке неоправданно высоких значений дыхательного объема или PEEP во время ИВЛ у пациентов с гиповолемией.

Несмотря на то что во многих классических учебниках нарушению диффузионной способности легочной ткани придается второстепенное значение, у пациентов отделений реанимации и интенсивной терапии этот фактор может играть ведущюю роль в развитии артериальной гипоксемии. Известно, что избыточное введение кристаллоидных растворов приводит к увеличению интерстициального пространства легких. При нарушении капиллярной проницаемости в интерстиции могут накапливаться вводимые в вену альбумин и коллоидные растворы с относительно небольшой молекулярной массой.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.