Яды и их противоядия. Основные вопросы антидотной терапии

В составе механизма их действия лежит непосредственная реакция между ядом и антидотом. Химические антидоты могут быть как местного, так и резорбтивного действия.

Местное действие. Если физические антидоты оказывают малоспецифический антидотный эффект, то химические обладают довольно высокой специфичностью, что связано с самим характером химической реакции. Местное действие химических антидотов обеспечивается в результате реакций нейтрализации, образования нерастворимых соединений, окисления, восстановления, конкурентного замещения и образования комплексов. Первые три механизма действия имеют особую важность и изучены лучше других.

Хорошим примером нейтрализации ядов служит использование щелочей для противодействия случайно проглоченным или попавшим на кожу сильным кислотам. Нейтрализующие антидоты применяются и для осуществления реакций, в результате которых образуются соединения, имеющие низкую биологическую активность. Например, в случае попадания в организм сильных кислот рекомендуется провести промывание желудка теплой водой, в которую добавлен оксид магния (20 г/л). В случае отравления плавиковой или лимонной кислотой больному дают проглотить кашицеобразную смесь хлорида кальция и оксида магния. При попадании едких щелочей следует провести промывание желудка 1 % раствором лимонной или уксусной кислоты. Во всех случаях попадания в организм едких щелочей и концентрированных кислот следует иметь в виду, что рвотные средства противопоказаны. При рвоте происходят резкие сокращения желудочных мышц, а поскольку эти агрессивные жидкости могут поразить желудочную ткань, возникает опасность прободения.

Антидоты, образующие нерастворимые соединения, которые не могут проникнуть через слизистые оболочки или кожу, обладают избирательным действием, т. е. эффективны только в случае отравления определенными химическими веществами. Классическим примером антидотов такого типа могут служить 2,3–димеркаптопропанол, образующий нерастворимые, химически инертные сульфиды металлов. Он дает положительный эффект при отравлении цинком, медью, кадмием, ртутью, сурьмой, мышьяком.

Таннин (дубильная кислота) образует нерастворимые соединения с солями алкалоидов и тяжелых металлов. Токсиколог должен помнить, что соединения таннина с морфином, кокаином, атропином или никотином обладают различной степенью стабильности.

После приема любых антидотов этой группы необходимо производить промывание желудка для выведения образовавшихся химических комплексов.

Большой интерес представляют антидоты комбинированного действия, в частности состав, в который входят 50 г таннина, 50 г активированного угля и 25 г оксида магния. В этом составе сочетаются антидоты как физического, так и химического действия.

В последние годы привлекает к себе внимание местное применение тиосульфата натрия. Он используется в случаях отравления мышьяком, ртутью, свинцом, цианистым водородом, солями брома и йода.

Тиосульфат натрия применяется внутрь в виде 10 %-го раствора (2–3 столовые ложки).

Местное применение антидотов при указанных выше отравлениях следует сочетать с подкожными, внутримышечными или внутривенными инъекциями.

В случаях попадания в организм опия, морфина, аконита или фосфора широко применяется окисление твердого вещества. Наиболее распространенным антидотом для этих случаев является перманганат калия, который применяется для промывания желудка в виде 0,02–0,1 %-го раствора. Этот препарат не дает эффекта при отравлении кокаином, атропином и барбитуратами.

Резорбтивное действие. Резорбтивные антидоты химического действия можно подразделить на две основные подгруппы:

a) антидоты, вступающие во взаимодействие с некоторыми промежуточными продуктами, образующимися в результате реакции между ядом и субстратом;

б) антидоты, непосредственно вмешивающиеся в реакцию между ядом и определенными биологическими системами или структурами. В этом случае химический механизм часто бывает связан с биохимическим механизмом антидотного действия.

Антидоты первой подгруппы применяются в случае отравления цианидами. До настоящего времени не существует антидота, который подавлял бы взаимодействие между цианидом и подверженной его влиянию ферментной системой. После всасывания в кровь цианид переносится кровотоком к тканям, где взаимодействует с трехвалентным железом окисленной цитохром-оксидазы одного из ферментов, необходимых для тканевого дыхания. В результате кислород, поступающий в организм, прекращает реагировать с ферментной системой, что вызывает острое кислородное голодание. Однако комплекс, образуемый цианидом с железом цитохромоксидазы, нестабилен и легко диссоциирует.

Следовательно, лечение антидотами протекает в трех основных направлениях:

1) нейтрализация яда в кровотоке немедленно после его поступления в организм;

2) фиксация яда в кровотоке с целью ограничения количества яда, поступающего в ткани;

3) нейтрализация яда, поступающего в кровь, после диссоциации цианометгемоглобина и комплекса цианида и субстрата.

Прямую нейтрализацию цианидов можно обеспечить путем введения глюкозы, реагирующей с синильной кислотой, в результате чего образуется слаботоксичный циангидрид. Более активным антидотом является ß-оксиэтил-метилендиамин. Оба антидота следует вводить внутривенно в течение нескольких минут или секунд после попадания яда в организм.

Более распространенным является метод, при котором ставится задача фиксации яда, циркулирующего в кровотоке. Цианиды не взаимодействуют с гемоглобином, но активно сочетаются с метгемоглобином, образуя цианометгемоглобин. Хотя он не отличается высокой стабильностью, но некоторое время может сохраниться. Поэтому в данном случае необходимо вводить антидоты, способствующие образованию метгемоглобина. Осуществляется это путем вдыхания паров амилнитрита или внутривенного введения раствора нитрита натрия. В результате свободный цианид, присутствующий в плазме крови, связывается в комплекс с метгемоглобином, теряя в значительной степени свою токсичность.

Необходимо иметь в виду, что антидоты, образующие метгемоглобин, могут влиять на артериальное давление: если амилнитрит вызывает выраженное, кратковременное падение давления, то нитрит натрия оказывает продолжительное гипотоническое действие. При введении веществ, образующих метгемоглобин, следует учитывать, что он не только принимает участие в переносе кислорода, но и сам может стать причиной кислородного голодания. Поэтому применение антидотов, образующих метгемоглобин, должно подчиняться определенным правилам.

Третий метод лечения антидотами заключается в нейтрализации цианидов, высвобожденных из комплексов с метгемоглобином и цитохром-оксидазой. С этой целью производится внутривенное взбрызгивание тиосульфата натрия, преобразующего цианиды в нетоксические тиоцианаты.

Специфичность химических антидотов ограничена, поскольку они не влияют на прямое взаимодействие между ядом и субстратом. Однако воздействие, которое такие антидоты оказывают на определенные звенья механизма токсического действия, имеет несомненное терапевтическое значение, хотя применение этих антидотов требует высокой врачебной квалификации и предельной осторожности.

Химические антидоты, непосредственно взаимодействующие с токсичным веществом, отличаются высокой специфичностью, позволяющей им связывать токсические соединения и выводить их из организма.

Комплексообразующие антидоты образуют стабильные соединения с двух- и трехвалентными металлами, которые затем легко выводятся с мочой.

В случаях отравления свинцом, кобальтом, медью, ванадием большой эффект дает двунатриевокальциевая соль этилендиаминтетрауксусной кислоты (ЭДТА). Кальций, содержащийся в молекуле антидота, реагирует только с металлами, образующими более стабильный комплекс. Эта соль не реагирует с ионами бария, стронция и некоторых других металлов с более низкой константой устойчивости. Имеется несколько металлов, с которыми этот антидот образует токсичные комплексы, поэтому его следует применять с большой осторожностью; в случае отравления кадмием, ртутью и селеном применение этого антидота противопоказано.

При острых и хронических отравлениях плутонием и радиоактивными йодом, цезием, цинком, ураном и свинцом применяется пентамил. Данный препарат применяется также в случаях отравления кадмием и железом. Его применение противопоказано лицам, страдающим нефритом и сердечно-сосудистыми заболеваниями. Комплексообразующие соединения в целом включают также антидоты, молекулы которых содержат свободные меркаптогруппы – SH. Большой интерес в этом плане представляют димеркаптопром (БАЛ) и 2,3-димер­каптопропансульфат (унитиол). Молекулярная структура этих антидотов сравнительна проста:

H 2 C – SH H 2 C – SH | |

HC – SH HC – SH

H 2 C – OH H 2 C – SO 3 Na

БАЛ Унитиол

В обоих этих антидотах имеются две SH-группы, близкие друг к другу. Значение данной структуры раскрывается в приводимом ниже примере, где антидоты, содержащие SH-группы, реагируют с металлами и неметаллами. Реакцию димеркаптосоединений с металлами можно описать следующим образом:

Фермент + Me → фермент Ме

HSCH 2 S – CH 2

HSCH + фермент Me → фермент + Me– S – CH

HOCH 2 OH–CH 2

Здесь можно выделить следующие фазы:

а) реакция ферментных SH-групп и образование малоустойчивого комплекса;

б) реакция антидота с комплексом;

в) высвобождение активного фермента благодаря образованию комплекса металл-антидот, выводящегося с мочой. Унитиол менее токсичен, чем БАЛ. Оба препарата применяются при лечении острых и хронических отравлений мышьяком, хромом, висмутом, ртутью и некоторыми другими металлами, но не свинцом. Не рекомендуется при отравлении селеном.

Для лечения отравлений никелем, молибденом и некоторыми другими металлами эффективных антидотов не существует.

2.6.3. Антидоты биохимического действия

Эти препараты отличаются высокоспецифичным антидотным эффектом. Для этого класса типичны антидоты, применяемые при лечении отравлений фосфорорганическими соединениями, являющимися основными компонентами инсектицидов. Даже очень небольшие дозы фосфорорганических соединений подавляют функцию холинэстеразы в результате ее фосфорилирования, что приводит к накоплению ацетилхолина в тканях. Поскольку ацетилхолин имеет огромное значение для передачи импульсов как в центральной, так и в периферической нервной системе, его чрезмерное количество ведет к нарушению нервных функций, и, следовательно, к серьезным патологическим изменениям.

Антидоты, восстанавливающие функцию холинэстеразы, принадлежат к производным гидроксамовых кислот и содержат оксимную группу R – CH = NOH. Практическое значение имеют оксимные антидоты 2–ПАМ (пралидоксим), дипироксим (ТМБ – 4) и изонитрозин. При благоприятных условиях эти вещества могут восстановить функцию фермента холинэстеразы, ослабляя или ликвидируя клинические признаки отравления, предотвращая отдаленные последствия и способствуя успешному выздоровлению.

Практика, однако, показала, что наилучшие результаты достигаются в тех случаях, когда биохимические антидоты применяются в сочетании с антидотами физиологического действия.

СТРОНЦИЙ (Strontium, Sr ) - химический элемент периодической системы Д. И. Менделеева, подгруппы щелочноземельных металлов. В организме человека С. конкурирует с кальцием (см.) за включение в кристаллическую решетку оксиапатита кости (см.). 90 Sr, один из наиболее долгоживупих радиоактивных продуктов расщепления урана (см.), накапливаясь в атмосфере и биосфере при испытаниях ядерного оружия (см.), представляет огромную опасность для человечества. Радиоактивные изотопы С. применяют в медицине для лучевой терапии (см.), в качестве радиоактивной метки в диагностических радиофар-мацевтических препаратах (см.) в медико-биол. исследованиях, а также в атомных электрических батареях. Соединения С. используют в дефектоскопах, в чувствительных приборах, в устройствах для борьбы со статическим электричеством, кроме того, С. применяют в радиоэлектронике, пиротехнике, в металлургической, химической промышленности и при изготовлении керамических изделий. Соединения С. неядовиты. При работе с металлическим С. следует руководствоваться правилами обращения со щелочными металлами (см.) и щелочноземельными металлами (см.).

С. был открыт в составе минерала, позднее названного стронцианитом SrC03, в 1787 г. вблизи шотландского города Стронциана.

Порядковый номер стронция 38, атомный вес (масса) 87,62. Содержание С. в земной коре составляет в среднем 4-10 2 вес. %, в морской воде - 0,013% (13 мг/л). Промышленное значение имеют минералы стронцианит и целестин SrSO 4 .

В организме человека содержится ок. 0,32 г стронция, в основном в костной ткани, в крови концентрация С. в норме составляет 0,035 мг/л, в моче - 0,039 мг/л.

С. представляет собой мягкий серебристо-белый металл, t°пл 770°, t°кип 1383°.

По хим. свойствам С. сходен с кальцием и барием (см.), в соединениях валентность стронция 4-2, химически активен, окисляется при обычных условиях водой с образованием Sr(OH) 2 , а также кислородом и другими окислителями.

В организм человека С. поступает гл. обр. с растительной пищей, а также с молоком. Он всасывается в тонкой кишке и быстро обменивается со С., содержащимся в костях. Выведение С. из организма усиливают комп-лексоны, аминокислоты, полифосфаты. Повышенное содержание кальция и фтора (см.) в воде препятствует кумуляции С. в костях. При увеличении концентрации кальция в рационе в 5 раз накопление С. в организме снижается вдвое. Избыточное поступление С. с пищей и водой вследствие его повышенного содержания в почве нек-рых геохим. провинций (напр., в отдельных р-нах Восточной Сибири) вызывает эндемическое заболевание - уровскую болезнь (см. Кашина - Бека болезнь).

В костях, крови и других биол. субстратах С. определяют гл. обр. спектральными методами (см. Спектроскопия).

Радиоактивный стронций

Природный С. состоит из четырех стабильных изотопов с массовыми числами 84, 86, 87 и 88, из к-рых наиболее распространен последний (82,56%). Известны 18 радиоактивных изотопов С. (с массовыми числами 78-83, 85, 89-99) и 4 изомера у изотопов с массовыми числами 79, 83, 85 и 87 (см. Изомерия).

В медицине 90Sr применяют для лучевой терапии в офтальмологии и дерматологии, а также в радиобиологических экспериментах в качестве источника р-изл учения. 85Sr получают либо облучением в ядерном реакторе нейтронами стронциевой мишени, обогащенной по изотопу 84Sr, по реакции 84Sr (11,7) 85Sr, либо производят на циклотроне, облучая протонами или дейтронами мишени из природного рубидия, напр, по реакции 85Rb (p, n) 85Sr. Радионуклид 85Sr распадается с электронным захватом, испуская гамма-излучение с энергией Е гамма, равной 0,513 Мэв (99,28%) и 0,868 Мэв (< 0,1%).

87m Sr также можно получить облучением стронциевой мишени в реакторе по реакции 86Sr (n, гамма) 87mSr, но выход искомого изотопа мал, кроме того, одновременно с 87mSr образуются изотопы 85Sr и 89Sr. Поэтому обычно 87niSr получают с помощью изотопного генератора (см. Генераторы радиоактивных изотопов) на основе материнского изотопа иттрия-87 - 87Y (Т1/2 = 3,3 сут.). 87mSr распадается с изомерным переходом, испуская гамма-излучение с энергией Егамма, равной 0,388 Мэв, и частично с электронным захватом (0,6%).

89Sr содержится в продуктах деления вместе с 90Sr, поэтому 89Sr получают облучением природного С. в реакторе. При этом неизбежно образуется и примесь 85Sr. Изотоп 89Sr распадается с испусканием P-излучения с энергией 1,463 Мэв (ок. 100%). В спектре имеется также очень слабая линия гамма-излучения с энергией Е гамма, равной 0,95 Мэв (0,01%).

90Sr получают выделением из смеси продуктов деления урана (см.). Этот изотоп распадается с испусканием бета-излучения с энергией Е бета, равной 0,546 Мэе (100%), без сопровождающего гамма-излучения. Распад 90Sr приводит к образованию дочернего радионуклида 90Y, к-рый распадается (Т1/2 = 64 часа) с испусканием р-из-лучения, состоящего из двух компонент с Ер, равной 2,27 Мэв (99%) и 0,513 Мэв (0,02%). При распаде 90Y испускается также весьма слабое гамма-излучение с энергией 1,75 Мэв (0,02%).

Радиоактивные изотопы 89Sr и 90Sr, присутствующие в отходах атомной промышленности и образующиеся при испытаниях ядерного оружия, при загрязнении окружающей среды могут попадать в организм человека с пищей, водой, воздухом. Количественная оценка миграции С. в биосфере обычно проводится в сравнении с кальцием. В большинстве случаев при движении 90Sr от предшествующего звена цепи к последующему происходит уменьшение концентрации 90Sr в расчете на 1 г кальция (так наз. коэффициент дискриминации), у взрослых людей в звене организм - рацион этот коэффициент равен 0,25.

Подобно растворимым соединениям других щелочноземельных элементов растворимые соединения С. хорошо всасываются из жел.-киш. тракта (10-60%), всасывание плохорастворимых соединений С. (напр., SrTi03) составляет менее 1%. Степень всасывания радионуклидов С. в кишечнике зависит от возраста. С увеличением содержания кальция в рационе накопление С. в организме уменьшается. Молоко способствует увеличению всасывания С. и кальция в кишечнике. Полагают, что это связано с присутствием в молоке лактозы и лизина.

При вдыхании растворимые соединения С. быстро элиминируются из легких, в то время как плохорастворимый SrTi03 обменивается в легких крайне медленно. Проникновение радионуклида С. через неповрежденную кожу составляет ок. 1%. Через поврежденную кожу (резаная рана, ожоги и др.)? так же как из подкожной клетчатки и мышечной ткани, С. всасывается почти полностью.

С. является остеотропным элементом. Независимо от пути и ритма поступления в организм растворимые соединения 90Sr избирательно накапливаются в костях. В мягких тканях задерживается менее 1% 90Sr.

При внутривенном введении С. очень быстро элиминируется из кровяного русла. Вскоре после введения концентрация С. в костях становится в 100 раз и более выше, чем в мягких тканях. Отмечены нек-рые отличия в накоплении 90Sr в отдельных органах и тканях. Относительно более высокая концентрация 90Sr у экспериментальных животных обнаруживается в почках, слюнной и щитовидной железах, а самая низкая - в коже, костном мозге и надпочечниках. Концентрация 90Sr в корковом веществе почек всегда выше, чем в мозговом веществе. С. первоначально задерживается на костных поверхностях (надкостнице, эндосте), а затем распределяется сравнительно равномерно по всему объему кости. Тем не менее распределение 90Sr в различных частях одной и той же кости и в разных костях оказывается неравномерным. В первое время после введения концентрация 90Sr в эпифизе и метафизе кости экспериментальных животных примерно в 2 раза выше, чем в диафизе. Из эпифиза и метафиза 90Sr выделяется быстрее, чем из диафиза: за 2 мес. концентрация 90Sr в эпифизе и метафизе кости снижается в 4 раза, а в диафизе почти не изменяется. Первоначально 90Sr концентрируется в тех участках, в к-рых происходит активное образование кости. Обильное крово- и лимфообращение в эпиметафизарных участках кости способствует более интенсивному отложению в них 90Sr по сравнению с диафизом трубчатой кости. Величина отложения 90Sr в костях у животных непостоянна. Резкое понижение фиксации 90Sr в костях с возрастом обнаружено у всех видов животных. Отложение 90Sr в скелете существенным образом зависит от пола, беременности, лактации, состояния нейроэндокринной системы. Более высокое отложение 90Sr в скелете отмечено у самцов крыс. В скелете беременных самок 90Sr накапливается меньше (до 25%), чем у контрольных животных. Существенное влияние на накопление 90Sr в скелете самок оказывает лактация. При введении 90Sr через 24 часа после родов в скелете крыс 90Sr задерживается в 1,5-2 раза меньше, чем у нелактирующих самок.

Проникновение 90Sr в ткани эмбриона и плода зависит от стадии их развития, состояния плаценты и длительности циркуляции изотопа в крови матери. Проникновение 90Sr в плод тем больше, чем больше срок беременности в момент введения радионуклида.

Для уменьшения повреждающего действия радионуклидов стронция необходимо ограничить накопление их в организме. С этой целью при загрязнении кожи следует произвести быструю дезактивацию ее открытых участков (препаратом «Защита-7», моющими порошками «Эра» или «Астра», пастой НЭДЭ). При пероральном поступлении радионуклидов стронция следует применять антидоты, позволяющие связать или сорбировать радионуклид. К таким антидотам относят активированный сульфат бария (адсо-бар), полисурьмин, препараты альгиновой к-ты и др. Напр., препарат адсобар при немедленном приеме после попадания радионуклидов в желудок снижает их всасывание в 10-30 раз. Адсорбенты и антидоты следует назначать сразу после обнаружения поражения радионуклидами стронция, т. к. промедление в этом случае приводит к резкому снижению их положительного действия. Одновременно рекомендуют назначать рвотные средства (апоморфин) или производить обильное промывание желудка, применять солевые слабительные, очистительные клизмы. При поражении пылевидными препаратами необходимо обильное промывание носа и полости рта, отхаркивающие средства (термопсис с содой), хлорид аммония, инъекции препаратов кальция, мочегонные. В более поздние сроки после поражения для уменьшения отложения радионуклидов С. в костях рекомендуют применять так наз. стабильный стронций (лактат С. или глюконат С.). Большие дозы кальция перорально или внутривенно MofyT заменить препараты стабильного стронция, если они недоступны. В связи с хорошей реабсорбцией радионуклидов стронция в почечных канальцах показано также применение мочегонных средств.

Нек-рое уменьшение накопления радионуклидов С. в организме может быть достигнуто путем создания конкурентных отношений между ними и стабильным изотопом С. или кальция, а также созданием дефицита этих элементов в тех случаях, когда радионуклид С. уже зафиксировался в скелете. Однако эффективных средств декорпорации радиоактивного стронция из организма пока не найдено.

Минимально значимая активность, не требующая регистрации или получения разрешения органов Государственного санитарного надзора, для 85mSr, 85Sr, 89Sr и 90Sr составляет соответственно 3,5*10 -8 , 10 -10 , 2,8*10 -11 и 1,2*10 -12 кюри/л.

Библиография: Борисов В. П. и д р. Неотложная помощь при острых радиационных воздействиях, М., 1976; Булдаков Л. А. и М о с к а л е в Ю. И. Проблемы распределения и экспериментальной оценки допустимых уровней Cs137, Sr90 и Ru106, М., 1968, библиогр.; Войнар А. И. Биологическая роль микроэлементов в организме животных и человека, с. 46, М., 1960; Ильин JI. А. и Иванников А. Т. Радиоактивные вещества и раны, М., 1979; К а с а в fi-на Б. С. и Т о р б е н к о В. П. Жизнь костной ткани, М., 1979; JI е в и н В. И. Получение радиоактивных препаратов, М., 1972; Метаболизм стронция, под ред. Дж. М. А. Ленихена и др., пер. с англ., М., 1971; Полуэктов Н. С. и д р. Аналитическая химия стронция, М., 1978; P е м и Г. Курс неорганической химии, пер. с нем., т. 1, М., 1972; Protection of the patient in radionuclide investigations, Oxford, 1969, bibliogr.; Table of isotopes, ed. by С. M. Lederer a. V. S. Shirley, N. Y. a. o., 1978.

А. В. Бабков, Ю. И. Москалев (рад.).

Противоядия (антидоты) - это средства, используемые для лечения отравлений с целью обезвреживания яда и устранения вызываемых им патологических нарушений. Применение противоядий при лечении отравлений не исключает ряда общих мероприятий, направленных на борьбу с интоксикацией и проводимых в соответствии с общими принципами лечения отравления (прекращение контакта с ядом, удаление его, применение средств реанимации и др.).

Одни противоядия применяют до всасывания яда, другие - после его резорбции. К первым относятся противоядия, связывающие или нейтрализующие яд в желудке, на коже и слизистых оболочках, ко вторым - вещества, обезвреживающие яд в крови и биохимических системах организма, а также противодействующие токсическим эффектам благодаря физиологическому антагонизму (таблица 1).

Обезвреживание невсосавшегося яда может осуществляться путем адсорбции или химического взаимодействия с последующим удалением из организма. Наиболее эффективно совместное применение соответствующих противоядий, в частности использование для приема внутрь смеси, состоящей из активированного угля, танина и окиси магния (ТУМ). Применение противоядий подобного рода целесообразно сочетать с проведением всех мероприятий, направленных на удаление невсосавшегося яда (обильное питье, промывание желудка, рвотные). При атом желательно для промывания желудка применять химические противоядия.

Противоядия резорбтивного действия предназначены для обезвреживания всосавшегося яда. Обезвреживание яда в крови может быть достигнуто применением химических противоядий. Так, унитиол (см.) обезвреживает мышьяк и другие тиоловые яды. Кальций-динатриевая соль этилендиаминтетрауксусной кислоты (см. Комплексоны) образует нетоксичные соединения с ионами щелочноземельных и тяжелых металлов. Метиленовый синий (см.) в больших дозах превращает гемоглобин в метгемоглобин, который связывает синильную кислоту. Применение химических противоядий эффективно только в начальном периоде интоксикации, когда яд еще не успел вступить во взаимодействие с биохимически важными системами организма. В связи с этим их применение имеет некоторые ограничения. Кроме того, количество химических противоядий сравнительно невелико.

По этим причинам наибольшее распространение имеют противоядия, действие которых направлено не на сам токсический агент, а на вызванный им токсический эффект. В основе антидотного эффекта таких веществ лежат конкурентные отношения между противоядием и ядом в действии на биохимические системы организма, в результате чего противоядие вытесняет яд из этих систем и тем самым восстанавливает их нормальную деятельность. Так, некоторые оксимы (пиридинальдоксим-метйодид и др.), реактивируя заблокированную фосфорорганическими ядами холинэстеразу, восстанавливают нормальный ход передачи импульсов в нервной системе. Действие таких противоядий строго избирательно, а потому весьма эффективно. Однако конкурентные отношения между ядом и противоядием в действии на биохимические системы организма характеризуют лишь один из возможных вариантов механизма действия противоядий. Значительно чаще речь идет о функциональном антагонизме между ядом и противоядием. В этом случае противоядие действует на организм в противоположном по сравнению с ядом направлении или косвенно противодействует токсическому эффекту, влияя на системы, непосредственно не пораженные ядом. В этом смысле к противоядиям следует отнести и многие симптоматические средства.

См. также Антидоты ОВ, Отравления, Отравляющие вещества, Пищевые отравления, Ядовитые животные, Ядовитые растения, Ядохимикаты сельскохозяйственные, Яды промышленные.

Таблица 1. Классификация противоядий
Группа противоядий Виды противоядий Конкретные представители Механизм действия противоядий
Обезвреживающие яд до всасывания Адсорбенты Активированный уголь, жженая магнезия Связывание яда в результате физико-химического процесса
Химические противоядия Танин, перманганат калия, слабые растворы кислот, гидрокарбонат натрия, хлорид кальция; унитиол, этилендиаминтетрауксусная кислота (ЭДТА) и др. Обезвреживание в результате непосредственного химического взаимодействия с ядом
Обезвреживающие яд после всасывания Химические противоядия Унитиол, ЭДТА, метиленовый синий, тиосульфат натрия, антидот против металлов (стабилизированная сероводородная вода) Обезвреживание в результате непосредственного взаимодействия с ядом в крови или при участии ферментных систем организма
Противоядия физиологического действия
а) конкурентные антагонисты
Физостигмин при отравлении кураре; атропин при отравлении мускарином; аминазин при отравлении адреналином; антигистаминные препараты; реактиваторы холинэстеразы при отравлении фосфорорганическими антихолинэстеразными ядами; налорфин (анторфин) при отравлении морфином; антисеротониновые препараты и др. Устранение токсического эффекта вследствие конкурентных отношений между ядом и противоядием при реакции с одноименной биохимической системой, в результате чего происходит «вытеснение» яда из этой системы и ее реактивация
б) функциональные антагонисты Наркотики при отравлении стрихнином и другими стимуляторами ЦНС; аналептики при отравлении барбитуратами и др. Устранение токсического эффекта в результате противоположно направленного действия на одни и те же органы и системы
в) противоядия симптоматического действия Сердечно-сосудистые средства, стимуляторы ЦНС, спазмолитические средства, препараты, влияющие на тканевой обмен и др., назначаемые по показаниям Ослабление отдельных (как первичных, так и отдаленных) симптомов отравления путем применения средств с различным механизмом действия, но непосредственно не вступающих в антагонистические отношения с ядом
г) противоядия, способствующие выведению яда и продуктов его превращения из организма Слабительные, рвотные, мочегонные и другие средства Ускорение выведения яда из организма путем усиления эвакуаторных функций

Ядовитые вещества, которыми можно отравиться, подстерегают на каждом шагу – они содержатся в растениях, животных, лекарствах и различных веществах, которые окружают людей в быту. Большинство ядов являются смертельными . Чтобы нейтрализовать их воздействие, используются антидоты при отравлениях, таблица с классификацией которых представлена в данной статье.

Общие сведения об антидотах при отравлении

Как любое сильное лекарство, антидоты, даваемые при отравлении, имеют свои фармакологические свойства, которые оценивают разную специфику препаратов. К ним в частности относятся:

  • время приема;
  • эффективность;
  • доза применения;
  • побочные эффекты.

В зависимости от периода и остроты заболевания значение антидотной терапии может разниться. Таким образом, лечение отравления антидотами эффективно только на ранней стадии , называемой токсикогенной.

Длительность стадии различна и зависит от вещества, вызвавшего отравление. Наибольшее время действия этой фазы составляет 8-12 суток и относится к воздействию на организм тяжелых металлов. Наименьшее время относится к отравлению цианидами, хлорированными углеводородами и другими высокотоксичными и быстрометаболизируемыми соединениями.

Не следует применять антидотную терапию, если есть сомнения в достоверности диагноза и вида отравления , так как из-за определенной специфичности такого рода лечения можно оказать двойной вред организму, ведь часто антидот – это не менее токсичное средство, чем сам предмет интоксикации.


Если упущена первая стадия болезни и развиваются тяжелые нарушения в системе кровообращения, то, помимо антидотной терапии, эффективность которой будет теперь снижена, необходимо мероприятие по срочным реанимационным действиям.

Антидоты незаменимы при состояниях необратимости отсроченных или острых отравлений, но во вторую фазу болезни, называемую соматогенной, перестают оказывать лечебное влияние.

Все антидоты по механизму воздействия можно разделить на три группы:

  • этиотропные – ослабляют или устраняют все проявления интоксикации;
  • патогенетические – ослабляют или устраняют те проявления отравления, которые соответствуют конкретному патогенетическому феномену;
  • симптоматические – ослабляют или устраняют некоторые проявления отравления, такие как боль, судороги, психомоторное возбуждение.

Таким образом, эффективные антидоты, которые более всего помогают при отравлении, имеют высокий уровень токсичности . И наоборот – чем безопаснеt противоядие, тем менее оно эффективно.

Классификация антидотов

Виды антидотов разработал С. Н. Голиков – именно его вариант классификации часто используется современной медициной:

  • местное действие антидотов, при котором происходит впитывание действующего вещества тканью организма и обезвреживание яда;
  • общерезорбтивное действие основано на эффекте химического конфликта между антидотом и ядом;
  • конкурентное действие антидотов, при котором яд вытесняется и связывается безвредными соединениями на основании химической идентичности между антидотом и ферментами, а также другими элементами организма;
  • физиологическое действие основано на противоположности между поведением яда и противоядия в организме, что позволяет удалить нарушения и вернуть нормальное состояние;
  • иммунологическое действие заключается в вакцинировании и использовании специфической сыворотки, действующей при конкретном отравлении.

Антидоты классифицируются и разделяются также по своей природе. Отдельно различают противоядия:

  • от животного/бактериального отравления;
  • от токсинов грибов;
  • от растительного и алкалоидного;
  • при лекарственном отравлении.

В зависимости от вида яда, отравления могут быть пищевыми и непищевыми . Любые отравления, приводящие к ухудшению состояния больного, должны быть нейтрализованы антидотами. Они препятствуют распространению и отравлению ядами в органах, системе, биологических процессах, а также затормаживают функциональные нарушения, вызванные интоксикацией.

Пищевые отравления


Состояние с острым расстройством пищеварения, возникшим после употребления в пищу некачественных продуктов или питья, называют пищевым отравлением. Оно возникает при приеме порченой еды, зараженной вредоносными организмами, или в состав которой попали опасные химические соединения. Главными симптомами являются тошнота, рвота, диарея .

Бывают инфекционные и токсические отравления: источниками первого являются всевозможные бактерии, микробы, вирусы и простейшие одноклеточные организмы, попадающие в организм вместе с пищей. Токсическими отравлениями называют попавшие в организм яды тяжелых металлов, несъедобных растений и прочих продуктов с критическим содержанием токсинов.

Проявления заболевания развиваются уже через 2-6 часов после заражения и характеризуются резким развитием симптомов. Среди инфекционных отравлений наибольшую опасность для заражения представляют мясные и молочные продукты, которые, если они имеют заражение и прошли недостаточную термообработку, могут причинить серьезный вред, так как представляют собой идеальную среду для размножения бактерий и других организмов.

Способы определения опасных продуктов

Внешне свежий и вкусный продукт тоже может быть опасен, так как изначально попавшие в него микроорганизмы размножаются постепенно, но уже само их наличие грозит испортить функциональность ЖКТ. Поэтому первым и самым главным правилом потребления продуктов является контроль безопасности . Пищевые продукты можно покупать только в специально отведенных для этого местах, они должны продаваться людьми, у которых есть медкнижки. Еду нужно содержать в помещениях, прошедших санитарную проверку, зарегистрированных в системе и имеющих право на соответствующую деятельность. Конечно же, различные закусочные с шаурмой , уличными пирожками и прочие сомнительные пищевые точки в этот список не входят.


Инфекционные отравления крайне опасны для окружающих и могут привести к их заражению
. Свежеприготовленные продукты имеют минимальные шансы быть зараженными, но полежавшая пища становится потенциально опасной уже через несколько часов.

Помимо срока годности, который следует всегда проверять, даже если покупка совершается в крупной торговой сети, к признакам, которые могут свидетельствовать, что пища лежала больше положенного срока, можно отнести следующие:

  • нарушенная упаковка, следы дефектов на пачке, которые привели к нарушению ее целостности;
  • нетипичный, слишком резкий запах или, наоборот, – его отсутствие;
  • расслаивание консистенции, ее неоднородность;
  • любые пузырьки при размешивании, если это не минералка;
  • цвет и запах не соответствует должному – особенно, если это мясо, яйца, молоко;
  • наличие осадка, непрозрачность, любые подозрительные изменения привычного вида товара.

Наличие этих характеристик должно остановить от покупки подобного продукта и выбрать тот, который не вызывает сомнений.

Симптомы


Токсин или микроб, попавший в организм, может действовать по-разному, но есть характерные общие симптомы, которые встречаются наиболее часто. Это температура, общая слабость, нарушение работы ЖКТ . Также врачи часто отмечают потерю у пациента аппетита, тошноту, боли и вздутие в животе. Пациент ослаблен, выглядит бледным, у него может выступить холодный пот и снизиться давление.

При токсическом отравлении симптомы и нарушения более серьезны: у больного видны признаки обезвоживания, нарушается зрение – он видит раздвоение предметов, может наступить временная слепота. Возможны слюноотделение, галлюцинации, паралич, потеря сознания, судороги, кома.

Группа риска – маленькие дети, беременные женщины и пожилые люди. Для них признаки могут быть более резкими, болезнь имеет неблагоприятный прогноз.

Первичные симптомы отравления при некоторых токсинах могут появляться уже через час и нарастать вплоть до нескольких суток. Важно как можно раньше выявить недуг и начать лечение.

Лечение


Необходимо немедленно вызвать скорую помощь и начать оказывать пострадавшему первую неотложную помощь: промывание желудка содой или марганцовкой, применение энтеросорбентов, прием большого количества жидкости . В таком состоянии необходимо дождаться скорой помощи и не предпринимать другого лечения. Антибиотики, бифидобактерии, любые противорвотные или спиртосодержащие препараты, а также любые лекарства, которые будут даны без подтвержденного диагноза и при подозрении на отравление, могут пагубно сказаться на человеке и существенно затруднить лечение.

Все дальнейшие меры должны проводиться в стационаре под наблюдением специалистов. При своевременном обращении прогноз часто благоприятен.

Антидоты, применяемые при острых отравлениях

При первых признаках острого отравления в первую очередь необходимо диагностировать характер интоксикации. Для этого понадобятся данные анамнеза, различные вещественные доказательства – остатки емкостей со следами использования ядовитой жидкости и иное. Также стоит обратить внимание на наличие специфического запаха, который может определить характер вещества, вызвавшего отравление . Следует немедленно зафиксировать и передать медикам все данные о клиническом проявлении симптомов отравившегося.

Токсикогенная фаза отравления – самая первая стадия интоксикации, при которой яд еще не успел поразить весь организм, и еще не достигнута его максимальная концентрация в крови. Но уже на этом этапе происходит поражение организма токсинами с характерными проявлениями токсического шока.


Лечение важно начать как можно быстрее. Как правило, врач применят помощь в первую токсикогенную фазу на месте, до госпитализации пациента. Так как именно на этом этапе оказания или неоказания помощи решается весь дальнейший прогноз.

В первую очередь применяют промывание желудка, вводят энтеросорбенты и слабительные средства, затем вводят антидоты .

При определенных видах отравления промывать желудок следует только через зонд, поэтому подобные вопросы следует обсудить с врачом.

Симптоматическое лечение заключается в поддержании и контроле функций жизнеобеспечения человека. Если нарушена проходимость дыхательных путей, следует освободить ее необходимым способом. Используются анальгетики для обезболивания, но только перед процессом промывания желудка, вводится глюкоза и аскорбиновая кислота.

Таблица наиболее распространенных отравлений с антидотами

При остром отравлении необходима срочная госпитализация в отделение интенсивной терапии и реанимации. Врач продолжает промывание желудочно-кишечного тракта, осуществляется искусственная вентиляция легких, лечение диуретиками, антидотами и антагонистами.

Но наиболее эффективные результаты достигаются с помощью искусственной детоксикации, состоящей из гемосорбции, гемодиализа, плазмафереза, перитонеального диализа. С помощью этих шагов происходит более интенсивное выведение ядов и токсинов.

Общая таблица антидотов при отравлении токсинами и ядами


Необходимо принимать антидоты, не только чтобы воспрепятствовать поражению организма ядовитыми веществами, но и чтобы приостановить те или иные симптомы, которые развиваются на фоне отравления. Нужно разработать и применять правильную схему, которая будет эффективна в каждом индивидуальном случае, для предотвращения интоксикации. Некоторые виды отравлений имеют отсроченный старт и их проявления могут быть внезапными и сразу перейти в клиническую картину .

Группа токсинов Антидоты
Цианиды, синильная кислота Амилнитрит, пропилнитрит, антициан, дикобольтовая соль ЭДТА, метиленовый синий, натрия нитрит, натрия тиосульфат
Соли железа Десфериоксамин (десферал)
Наркотические анальгетики Налоксон
Медный купорос Унитиол
Йод Тиосульфат натрия
Опиаты, морфин, кодеин, промедол Налмефен, налоксон, леварфанол, налорфин
Мышьяк Унитиол, тиосульфат натрия, купренил, динатриевая соль
Нитрат серебра Хлорид натрия
Пары ртути Унитиол, купренил, тиосульфат натрия, пентацин
Этиловый спирт Кофеин, атропин
Цианистый калий Амилнитрит, хромоспан, тиосульфат натрия, метиленовый синий
Сероводород Метиленовый синий, амилнитрит

Способ применения, лекарственные формы и дозировку антидотов при отравлениях следует согласовывать с лечащим врачом , также необходимо подтвердить диагноз с помощью анализов, чтобы правильно вести терапию.

Любой антидот – это такое же химическое вещество, неосторожное обращение с которым способно также навредить организму. Эффект противоядия достигается благодаря химической реакции, которая происходит при взаимодействии его с источником отравления.

Таблица антидотов при отравлении веществами с различной природой

От животной/бактериальной интоксикации

При лекарственном отравлении

Антидоты растительные и алкалоидные

Противоядия от токсинов грибов

Детали терапии при некоторых отравлениях

Рассмотрим терапию антидотами при самых распространенных и опасных отравлениях подробно:

  1. Хлор. Его пары способны рефлекторно остановить дыхание, вызвать химический ожог и отек легких. При тяжелом отравлении смерть наступает через несколько минут. Если поражение токсином имеет среднюю или легкую форму тяжести, назначают эффективную терапию. В первую очередь пострадавшего выносят на свежий воздух , в тяжелых случаях делают кровопускание, промывают глаза новокаином, дают антибиотики пенициллиновой группы, сердечно-сосудистые средства. Лечат морфином, атропином, эфедрином, кальцием хлорида, димедролом, гидрокортизоном.
  2. Соли тяжелых металлов. Необходимы обильное питье, мочегонные препараты, энтеросорбенты. При промывании желудка использовать зонд, ввести через него унитиол. Использовать слабительное.
  3. Фосфорорганические соединения. Это бытовые и медицинские ядохимикаты, которые используются повсеместно как класс ФОСов. При отравлении этими токсинами поражаются в первую очередь кожные покровы и слизистая. Антидотом служат кальция глюконат, лактат. Применима смесь из белка яйца и молока. Необходимо промыть желудок солевым или содовым раствором.

Заключение

На сегодняшний день разработаны неотложные мероприятия для своевременного реагирования при отравлениях разной степени, чтобы эффективно устранять все последствия. Помимо применения антидота, меры, направленные на предупреждение и лечение интоксикации, классифицируются следующим образом:

  1. Экстренные меры, которые заключаются в промывании желудочно-кишечного тракта, слизистой, кожных покровов .
  2. Ускоренные меры, при которых используется разного рода мочегонные препараты, впитывающие токсины, сорбенты и прочие процессы, направленные на выведение токсинов из организма.
  3. Восстановительные меры, направленные на терапию жизнедеятельности систем организма и отдельных органов.
  4. Процесс кислородного насыщения, необходимый для отравленного организма.

При соблюдении правил гигиены, внимательном отношении к потребляемой пище и воде, бдительности относительно химических средств и бытовой утвари, профилактика отравлений наиболее эффективна. Но если отравление все-таки произошло, необходимо немедленно принимать меры, первое из которых – вызов бригады скорой помощи . Следует помнить, что эффективность лечения увеличивается в разы при своевременном и грамотном подходе.

Антидотом называется лекарство, применяемое при лечении отравлений и способствующее обезвреживанию яда или предупреждению и устранению вызываемого ими токсического эффекта.

Антидоты бывают прямого и непрямого действия.

(I)Прямого действия – осуществляется непосредственное химическое или физико – химическое взаимодействие яда и противоядия. Основные варианты – сорбентные препараты и химические реагенты. Сорбентные препараты – защитное действие осуществляется за счет неспецифической фиксации (сорбции) молекул на сорбенте. Результат – снижение концентрации яда, взаимодействующего с биоструктурами, что приводит к ослаблению токсичного эффекта. Сорбция происходит за счет неспецифических межмолекулярных взаимодействий – водородных и Ван – дер – Ваальсовых связей (не ковалентных!). Сорбцию возможно осуществлять с кожных покровов, слизистых оболочек, из пищеварительного тракта (энтеросорбция), из крови (гемосорбция, плазмосорбция). Если яд уже проник в ткани, то применение сорбентов не эффективно. Примеры сорбентов: активированный уголь, каолин (белая глина), окись Zn, ионообменные смолы.

При отравлении цианидами (солями синильной кислоты HCN) применяются глюкоза и тиосульфат натрия, которые связывают HCN. Ниже приведена реакция с глюкозой:

Очень опасна интоксикация тиоловыми ядами (соединениями ртути, мышьяка, кадмия, сурьмы и и др. тяжелых металлов- Ме2+ ). Тиоловыми такие яды называют по механизму их действия - связыванию с тиоловыми (-SH) группами белков:

Связывание металла с тиоловыми группами белков приводит к разрушению структуры белка, что вызывает прекращение его функций. Результат - нарушение работы всех ферментных систем организма.
Для нейтрализации тиоловых ядов применяются дитиоловые антидоты (доноры SH-групп). Механизм их действия представлен на нижней схеме. Образовавшийся комплекс яд-антидот выводится из организма, не причиняя ему вреда.

Еще один класс антидотов прямого действия - антидоты – комплексоны (комплексообразователи ).Они образуют прочные комплексные соединения с токсичными катионами Hg, Co, Cd, Pb . Такие комплексные соединения выводятся из организма, не причиняя ему вреда. Среди комплексонов наиболее распространены соли этилендиаминтетрауксусной кислоты (ЭДТА), прежде всего этилендиаминтетраацетат натрия.

II)Антидоты непрямого действия .
Антидоты непрямого действия - это вещества, которые сами не реагируют с ядами, но устраняют или предупреждают нарушения в организме, возникающие при интоксикациях (отравлениях).
1) Защита рецепторов от токсичного воздействия.
Отравление мускарином (ядом мухомора) и фосфорорганическими соединениями происходит по механизму блокирования фермента холинэстеразы. Этот фермент отвечает за разрушение ацетилхолина, вещества, принимающего участие в передаче нервного импульса от нерва к мышечным волокнам. При избытке ацетилхолина происходит беспорядочное сокращение мышц – судороги, которые часто приводят к смерти. Противоядием является атропин. Атропин применяется в медицине для расслабления мышц. Антропин связывается с рецептором, т.е. защищает его от действия ацетилхолина.
2) Восстановление или замещение поврежденной ядом биоструктуры.
При отравлениях фторидами и HF, при отравлениях щавелевой кислотой H2C2O4 происходит связывание ионов Са2+ в организме. Противоядие – CaCl2.
3) Антиоксиданты. Отравление четыреххлористым углеродом CCl4 приводит к образованию в организме свободных радикалов. Избыток свободных радикалов очень опасен, он вызывает повреждение липидов и нарушение структуры клеточных мембран. Антидоты – вещества, связывающие свободные радикалы (антиоксиданты), например альфа -токоферол (витамин Е).



4) Конкуренция с ядом за связывание с ферментом. При отравлении метанолом в организме образуются очень токсичные соединения - формальдегид и муравьиная кислота. Они более токсичны, чем сам метанол. Это пример летального синтеза. Летальный синтез – превращение в орг-ме в процессе метаболизма менее токсичных соед-ний в более токсичные.

Этиловый спирт C2H5OH лучше связывается с ферментом алкоголь-дегидрогеназой. Это тормозит превращение метанола в формальдегид и муравьиную кислоту. CH3OH выводится в неизменном виде. Поэтому прием этилового спирта сразу вслед за отравлением метанолом значительно снижает тяжесть отравления.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.