Основные фармакокинетические параметры. Фармакокинетика

ШКОЛА КЛИНИЧЕСКОЙ ФАРМАКОЛОГИИ

ФАРМАКОКИНЕТИЧЕСКИЕ ИССЛЕДОВАНИЯ И ПРАКТИЧЕСКАЯ МЕДИЦИНА

В.Г. Белолипецкая, Я.В. Суханов

Фармакокинетические исследования и практическая медицина

В.Г Белолипецкая, Я.В. Суханов

Государственный научно-исследовательский центр профилактической медицины Росздрава, Москва

В статье в доступной для практических врачей форме даются основные понятия о фармакокинетике как о науке о закономерностях поведения веществ во внутренней среде организма, а также об основных параметрах фармакокинетических исследований. В статье приводятся наглядные и очень убедительные примеры о большой практической значимости данной науки как для создания новых лекарственных форм препаратов, так и для подбора оптимального режима терапии.

Ключевые слова: фармакокинетика, клиренс, площадь под кривой.

РФК 2005; 2: 43-47.

Pharmacokinetic researches and practical medicine

V.G. Belolipetskaya, YV. Sukhanov

State Research Center for Preventive Medicine of Roszdrav, Moscow

An article gives in a comprehensive manner the main idea of pharmacokinetics, as the science about rules of substances behavior in the internal environment of the organism, as well as of main parameters of pharmacokinetic researches. The article provides vivid and very persuasive examples of high practical importance of this science both for creating new medical forms of drugs and for choosing the optimal of therapy regime .

Key words: pharmacokinetics, clearance, area under curve

Rational Pharmacother. Cardiol. 2005; 2: 43-47.

Любой практический врач, вероятно, без затруднений вспомнит несколько случаев из своей профессиональной практики, когда назначенная, казалось бы оптимальная, терапия не приносила ожидаемого результата или, напротив, давала аномальные реакции. Приходилось с сожалением назначать другой, менее эффективный препарат. А между тем, возможно, не стоило отказываться от первого, лучшего, варианта лечения, нужно было лишь изменить схему применения препарата. Решить эту и другие важные практические проблемы можно с помощью фармакокинетических исследований.

Фармакокинетика - наука о кинетических закономерностях поведения инородных веществ во внутренней среде организма. Она не анализирует механизм взаимодействия между химическим веществом и чувствительным к нему субстратом, но позволяет изучать условия для наилучшего обеспечения подобного взаимодействия или, напротив, для его предотвращения . Фармакокинетика - молодая наука, насчитывающая всего около полувека, но уже занявшая достойное место среди наук о здоровье. На сегодняшний день является обязательным проведение фармакокинетических исследований при создании новых лекарственных препаратов и но-

вых лекарственных форм. В развитых странах при назначении целого ряда лекарств, имеющих узкий терапевтический диапазон и/или опасные побочные эффекты (например, при назначении сердечных гли-козидов, цитостатиков, антиконвульсантов и др.), обязательным является терапевтический мониторинг концентраций действующего вещества, а при необходимости и его метаболитов. Незаменимы фармакокинетические исследования при выяснении вопроса об истинной рефрактерности больного к препарату или неверной системы дозирования, при изучении проблемы толерантности к лекарственным средствам, при решении других научных и практических задач.

Целью фармакокинетического исследования является определение фармакокинетических параметров, дающих количественную оценку процессов, происходящих в организме с лекарственным веществом. Первым этапом фармакокинетического исследования является сбор биологических образцов (чаще всего крови или мочи) в определенные моменты времени и определение в них концентрации изучаемого лекарственного вещества. В результате исследователь получает т.н. фармакокинетическую кривую (график «концентрация-время») Для расчета фар-

макокинетических параметров по экспериментальным данным в настоящее время существует два подхода: метод математического моделирования и вне-модельный метод. В первом случае организм рассматривают как несколько однородных камер или компартментов (чаще всего один или два). Одноком-партментная модель рассматривает организм как единую однородную камеру, в которую препарат поступает, равномерно распределяется и выводится. Двухкомпартментная - как две: центральную, в состав которой, как правило, входят кровь и активно перфузируемые органы, и периферическую, включающую все остальные ткани. Препарат поступает в центральный компартмент, из него - в периферический, между ними устанавливается равновесие. Элиминация осуществляется из центрального компарт-мента. Иногда прибегают к помощи и более сложных, физиологически обоснованных моделей, т.н. перфузионных. Однако использование сложных моделей требует привлечения очень серьезного математического аппарата, что далеко не всегда выполнимо, поэтому применяется только при решении специальных задач. Метод математического моделирования позволяет рассчитывать фармакокинетические параметры после предварительного построения теоретической кривой «концентрация - время», более или менее удовлетворительно описывающей экспериментальные точки. При расчетах с помощью вне-модельного метода плавная кривая не строится, а через экспериментальные точки проводится ломаная линия.

Наиболее важными и информативными для клиницистов являются следующие фармакокинетические параметры.

Площадь под фармакокинетической кривой (AUC - area under curve) - интегральный параметр, пропорциональный общему количеству лекарственного вещества в системном кровотоке.

Максимальная концентрация (Cmax) характеризует эффективность и безопасность лекарственного средства, ее значения не должны выходить за границы терапевтического диапазона.

Время достижения максимальной концентрации (Тmax) при линейной зависимости «концентрация - эффект» позволяет оценить время наступления максимального эффекта препарата.

Объем распределения (Vd) - условный параметр, характеризующий степень захвата препарата тканями из плазмы или сыворотки крови, образно говоря, это такой объем, в котором надо растворить всю попавшую в организм дозу препарата, чтобы получить концентрацию, равную его концентрации в плазме. Он не эквивалентен объему циркулирующей крови и может быть значительно выше: так для силь-

но липофильного пропранолола (Обзидан, Индерал, Анаприлин) он в среднем в 100 раз превышает объем циркулирующей крови из-за значительного распределения в жировую и другие слабо васкуляризо-ванные ткани.

Клиренс (С1) характеризует скорость «очищения» организма от лекарственного вещества (условно смысл его можно представить как ту часть кажущегося объема распределения, которая «очищается» от препарата в единицу времени).

Константа абсорбции (каЬ) характеризует скорость поступления лекарственного вещества в системный кровоток при внесосудистом введении.

Константа элиминации (ке|) характеризует скорость всей совокупности процессов, приводящих к выведению препарата из организма (экскреция и метаболизм).

Период полувыведения (Т1/2) обратно пропорционален КЕ1_, показывает, за какое время концентрация препарата в организме уменьшается вдвое.

Биодоступность ("0 показывает, какая часть дозы лекарственного препарата при внесосудистом введении достигает системного кровотока.

Проиллюстрируем важность изучения фармакокинетики лекарственных веществ и необходимости учета их фармакокинетических параметров для оптимизации терапии. Для всех лекарственных веществ важна такая характеристика, как терапевтический диапазон концентраций, под которым мы понимаем ту область концентраций лекарственного вещества в сыворотке или плазме крови, которая ограничена снизу минимальным значением, при котором наблюдается терапевтический эффект, а сверху - минимальным значением, при котором наблюдаются токсические эффекты. Безусловно, это некая обобщенная характеристика, позволяющая, тем не менее, оценить уровень эффективности и безопасности при применении того или иного лекарственного средства. Терапевтический диапазон для разных лекарственных веществ может быть весьма различным: так, он очень узок, например, для сердечных гликозидов (для дигоксина верхняя граница всего в 1,5 - 2 раза выше нижней), а для большинства р-блокаторов терапевтический диапазон широкий (для пропранолола верхняя граница превышает нижнюю приблизительно в 10- 20 раз). Понятно, что чем шире терапевтический диапазон лекарственного вещества, тем меньше риск «выйти» из него и получить нежелательный побочный эффект. Наибольшие проблемы для препаратов с узким терапевтическим диапазоном возникают, если симптомы передозировки препарата совпадают с симптомами недостигнутого терапевтического уровня, т.е. с симптомами заболевания. Решить вопрос об увеличении или уменьшении дозы в

этом случае можно лишь с помощью фармакокинетического исследования. На рис. 1 представлены фармакокинетические профили лидокаина . Один из них получен при в/в введении по схеме, предложенной разработчиком и состоящей из 2 этапов: болюс 80 мг струйно (в течение 3 - 4 мин, чтобы не превысить терапевтический диапазон), затем постоянная инфузия со скоростью 2 мг/мин. Однако хорошо видно, что при такой схеме приблизительно к 20-й минуте концентрация опускается ниже терапевтического уровня и остается такой приблизительно в течение получаса (а у некоторых больных в течение нескольких часов). Не зная хода фармакокинетической кривой, нельзя было бы сказать, что происходит в этот промежуток времени: например, является ли желудочковая тахикардия следствием превышения терапевтической концентрации или падения ниже терапевтического уровня. Опираясь на полученные данные, удалось предложить более рациональную схему внутривенного введения лидокаина: болюс 80 мг (струйно в течение 3 - 4 мин), затем постоянная инфузия со скоростью 2 мг/мин и на фоне этой ин-фузии на 10-й минуте от начала введения - повторный болюс 40 мг (струйно в течение 3 - 4 мин). Подобная схема позволяет удерживать концентрацию препарата приблизительно в середине терапевтического диапазона в течение всего интервала наблюдения. Хотелось бы подчеркнуть, насколько необходимым для некоторых препаратов является терапевтический мониторинг. В странах, позволяющих себе реально заботиться о здоровье населения, определение концентраций в крови для многих препаратов является обязательным. И это находит отражение даже в листовках-вкладышах.

Абсолютно необходимо изучение фармакокинетики при создании новых лекарственных препаратов, в т.ч. новых лекарственных форм и генериков . Задача фармакокинетических исследований в этом случае - не допустить на фармацевтический рынок некачественные препараты и открыть дорогу достойным и зачастую более доступным, с точки зрения

Фармакокинетические параметры суматриптана у здоровых добровольцев после однократного введения суппозиториев и таблеток

фармакоэкономики, лекарственным средствам. Примером такого исследования может быть выполненное лабораторией фармакокинетических исследований ФГУ «ГНИЦ ПМ Росздрава» сравнительное изучение 2 препаратов суматриптана: зарегистрированных в России таблеток зарубежной фирмы и отечественных суппозиториев, предлагаемых для регистрации на территории РФ. Актуальность появления на отечественном фармацевтическом рынке ректальной лекарственной формы суматриптана обусловлена, с одной стороны, его высокой клинической эффективностью, а с другой стороны, недостатками других зарегистрированных в России лекарственных форм . Так, у значительной части пациентов, страдающих мигренью, во время приступа отмечается тошнота и рвота, что обусловливает неудовлетворительность перорального применения. Инъекционное применение для многих пациентов неприемлемо вследствие выраженности негативных побочных реакций или страха перед инъекцией, кроме того, системы для подкожного введения достаточно дороги. Весьма эффективное интраназальное введение суматриптана характеризуется значительной вариабельностью показателей фармакокинетики и неприятными органолептическими свойствами (плохой вкус). Задачей выполненного нами исследования было определить место новых отечественных суппозиториев среди уже имеющихся препаратов суматриптана, сравнив их с наиболее популярной лекарственной формой - таблетками для перорального приема. На рис. 2 представлены средние фармакокинетические профили у 18 здоровых добровольцев при однократном применении таблеток и суппозиториев. Ощутимая разница между значениями средних концентраций наблюдалась только в течение первого часа после введения препаратов на «восходящей» ветви фармакокинетической кривой, различие было максимальным (до 9 нг/мл) и достоверным через 15 и 30 мин; достоверная разница между значениями средних концентраций наблюдалась еще в 3 точках на «нисходящей» ветви, однако она была не столь существенной - менее 1 - 4 нг/мл. Этот результат свидетельствует о более быстром поступлении суматриптана в системный кровоток при применении суппозиториев по сравнению с таблетками. Такой же вывод следует из анализа фармакокинетических параметров суматриптана (см. таблицу). Значения Ттах были значительно и достоверно ниже при использовании суппозиториев. Средние значения Стах также достоверно отличались, но разница между ними была не столь выраженной (около 4 нг/мл). Таким образом, по скорости достижения максимальной (и соответственно терапевтической) концентрации отечественный препарат был наиболее близок к парентераль-

Параметр Суппозитории Таблетки

Т Л сэ О < 71,0 ± 12,7 75,4 ± 16,2

Ттах (ч) 0,57 ± 0,29** 1,36 ± 0,45

Стах (нг/мл) 26,1 ± 4,74* 22,2 ± 5,5

Т1/2 (ч) 1,83 ± 0,52 2,05 ± 0,40

С1 (л /ч) 680±108 640±150

V, (л) 1811 ±662 1914±705

* р< 0.005; ** р < 0.000005

Рисунок 1. Средние фармакокинетические профили лидокаина у больных после внутривенного введения при различной схеме дозирования (пунктирной линией обозначены границы терапевтического диапазона) .

Концентрация,

Время после введения препарата, час

Рисунок 2. Средние фармакокинетические профили суматриптана у здоровых добровольцев после однократного введения таблеток и суппозиториев (* р<0,05, ** р<0,005, *** р<0,001, **** р<0,00005)

ной и интраназальной лекарственным формам, обеспечивающим максимально быстрое снятие головной боли и сопутствующих ей симптомов мигрени. При этом в отличие от назального спрея, вариабельность фармакокинетических параметров при применении суппозиториев не была столь значительной и не возникало проблем с негативными органолептическими свойствами. Быстрое нарастание до очень высоких значений (свыше 70 нг/мл) концентрации суматриптана при применении подкожных инъекционных систем сопровождается значительным количеством побочных эффектов. Кроме того, эта лекарственная форма неприемлема для значи-

тельной части пациентов из-за страха перед инъекцией и/или достаточно высокой стоимости. При применении суппозиториев максимальная концентрация нарастала быстро, но не достигала значений, характеризующихся высокой частотой и выраженностью побочных эффектов, применение ее не вызывало затруднений у испытуемых. Главными недостатками пероральных таблеток являются невозможность их использования в случаях, когда приступ мигрени сопровождается тошнотой и рвотой, а также медленное нарастание концентрации суматриптана в плазме крови и, следовательно, более медленное избавление пациентов от симптомов мигрени. В случае при-

менения суппозиториев концентрация суматриптана нарастала приблизительно втрое быстрее, чем при приеме таблеток, а применение суппозиториев возможно при любой симптоматике. Кроме того, отечественный препарат характеризовался лучшей переносимостью (2 случая нежелательных побочных явлений по сравнению с 4 при приеме таблеток). Полученные результаты позволили сделать вывод о предпочтительности суппозиториев по сравнению с таблетками и целесообразности их применения в клинической практике.

Мы остановились здесь на самых общих понятиях фармакокинетики, даже не упомянув о таких важных

и интересных ее разделах, как стереофармакокинетика, фармакогенетика, изучение связи «фармакокинетические параметры - терапевтический эффект» и многое другое. Нашей целью было привлечь внимание самого широкого круга практических врачей к важности информации о фармакокинетических свойствах назначаемых ими препаратов, сделать привычным использование этой информации в своей повседневной клинической практике. Лишь учитывая все характеристики лекарственного средства, современный клиницист сможет сделать правильный выбор среди сотен тысяч препаратов, которые предлагает мировой фармацевтический рынок.

Литература

1. Соловьев В.Н., Фирсов А.А., Филов В.А. Фармакокинетика.1980; М.: Медицина

2. Пиотровский В.К., Смирнова Е.Б., Метелица В.И., Мазур Н.А. Фармакокинетика лидокаина и обоснование нового режима его введения больным острым инфарктом миокарда. Кардиология. 1979; 8: 23-27.

3. Марцевич С.Ю., Суханов Я.В., Белолипецкая В.П, Кутишенко Н.П. Исследования биоэквивалентности как способ доказательства идентичности оригинального препарата и препарата-дженерика. Российский кардиологический журнал. 2005;2(52):С. 76-78.

4. Bertin L., Brion N., Farkkila M., Gobel H., Wessely P A dose-defining study of sumatriptan suppositories in the acute treatment of migraine. Int.J. Clin.Pract. 1999;v.53(8):593-598.

5. Dahlof C.G. Sumatriptan: pharmacological basis and clinical results. Curr. Med.Res.Opin 2001;117, Suppl.1:35-45.

6. Duquesnoy C., Mamet J.P, Summer D., Fuseau E. Comparative clinical pharmacocinetics of single doses of sumatriptan following subcutaneous, oral, rectal and intranasal administration. Eur. J.Pharm.Sci. 1998;6(2):99-104.

7. Fowler PA., Lacey L.F., Thomas M., Keen O.N., Tanner R.J.N., Bader N.S. The clinical pharmacology, pharmacokinetics and metabolism of sumatriptan. Eur. Neurol.1991;31:291-294.

8. Kunka R.L., Hussey E.K., Shaw S., Warner P, Aubert B. et al. Safety, tolerability and pharmacokinetic of sumatriptan suppositories following single and multiple doses in healthy volunteers. Chephalalgia 1997;17(4):532-540.

МОКСИФЛОКСАЦИН

ФАРМАКОКИНЕТИКА

Фармакокинетические свойства моксифлоксацина детально изучены и изложены в ряде публикаций Stass H.H. с соавторами (1996-2001 гг.). Вопросы фармакокинетики моксифлоксацина рассматриваются в ряде обзоров .

Всасывание. Концентрации в крови

Моксифлоксацин хорошо всасывается из желудочно-кишечного тракта. После приема препарата внутрь в дозе 400 мг максимальные концентрации в плазме (1,6 - 3,8 мг/л, в среднем - 2,5 мг/л) достигаются через 0,5 - 6 ч (в среднем через 2 ч) . После приема внутрь всасывается 86% принятой дозы. Кинетика концентраций моксифлоксацина в плазме после приема внутрь представлена на рис. 9, а фармакокинетические параметры - в табл. 29.

Рис. 9.
Концентрации моксифлоксацина в плазме здоровых людей после однократного приема внутрь (V) или внутривенной инфузии ( ) 400мг

После однократного приема моксифлоксацина в дозах 50, 100, 200, 400, 600 или 800 мг максимальные концентрации в плазме и показатель AUC повышались пропорционально принятой дозе и определялись через 0,75-3 часа вне зависимости от дозы; другие фармакокинетические параметры моксифлоксацина (Т}/2, обший и почечный клиренсы, объем распределения) не зависели от дозы (табл. 30) . Фармакокинетика моксифлоксацина линейна после однократного применения в дозах от 50 до 800 мг .

Абсолютная биодоступность моксифлоксацина после приема внутрь почти полная (86-89%) и не зависит от дозы: при приеме 100 мг она составляет 92%, при приеме 400 мг - 86% .

Таблица 29.
Фармакокинетические параметры моксифлоксацина (геометрические средние) у 12 здоровых молодых людей после однократного приема внутрь или внутривенной 1-часовой инфузии 400 мг /57, в модификации]

Обозначения:
С макс - максимальные концентрации в плазме;
Т макс - время достижения максимальных концентраций в плазме;
Т 1/2 - время снижения концентраций в плазме в 2 раза;
MRT - среднее время удержания;
AUC - площадь под фармакокинетической кривой.

Таблица 30.
Фармакокинетические параметры моксифлоксацина после однократного приема внутрь или внутривенного введения

Способ применения, лоза (мг)

С макс, мг/л

Т макс, ч

T l /2 , ч

AUC, мг x ч/л

ОК, мл/ мин/кг

ПК, мл/ мин/кг

ОР, л/кг

Прием внутрь

Внутривенное введение

Обозначения:
С макс - максимальные концентрации в крови;
Т макс - время достижения С макс;
T 1/2 - период полуэлиминации;
MRT - время удержания;
ОК - общий клиренс;
ПК - почечный клиренс;
ВМ - выведение с мочой;
ОР - объем распределения.
* В конце внутривенной инфузии.

Прием высококалорийного завтрака с высоким содержанием жира вызывает замедление всасывания моксифлоксацина (рис. 10): С макс снижается примерно на 16% (с 1,22 до 1,04 мг/л), а Т макс - удлиняется (с 1,4 -1,5 до 3,5 - 3,6 ч), но величина биодоступности не меняется . Йогурт мало влияет на всасывание моксифлоксацина: относительная биодоступность (всасывание после приема йогурта по сравнению со всасыванием натощак) при оценке показателей AUC составляет 85%, а при сравнении показателей С макс - 85%; Т макс при приеме йогурта удлиняется с 0,88 до 2,75 ч. .

Рис. 10.
Влияние высококалорийной пиши с большим содержанием жира на всасывание моксифлоксацина 163]

После повторного применения моксифлоксацина стационарные концентрации в плазме создавались в течение 2-3 дней .

После многодневного (5-10 дней) применения моксифлоксацина в разных дозах кумуляции препарата в крови не наблюдали . После 5-10-дневного применения моксифлоксацина в дозах 400 и 600 мг 1 раз в сутки отмечается тенденция к увеличению показателей С макс или AUC . После повторного применения моксифлоксацина по 400 мг 1 раз в сутки показатель AUC увеличивался в ряде случаев на 31%, а после применения по 600 мг 1 раз в сутки - на 20%; при применении по 100 или 200 мг 2 раза в сутки показатель AUC существенно не менялся . Эти данные свидетельствуют об отсутствии клинически значимого накопления препарата в плазме при различных режимах перорального применения препарата (табл. 31).

После однократной 30-мин внутривенной инфузии моксифлоксацина в дозах 100, 200 и 400 мг в плазме создавались концентрации пропорционально введенной дозе. Концентрации препарата в плазме снижались линейно вне зависимости от дозы. Кинетика концентраций моксифлоксацина в плазме хорошо описывается трехкамерной моделью: быстрое начальное снижение концентраций (T 1/2 в альфа-фазе около 10-15 мин) с последующим бифазным снижением концентраций (Т 1/2 в бета-фазе примерно 4-5 ч, в гамма-фазе - около 20 ч). Большинство фармакокинетических параметров моксифлоксацина (T 1/2 , объем распределения, общий и почечный клиренсы и некоторые другие) не зависели от введенной дозы .

Таблица 31.
Фармакокинетические параметры моксифлоксацина у здоровых людей после повторного приема препарата внутрь в разных дозах

Режим дозирования, мг

Время исследования

С макс, мг/л

Т макс, ч

C мин, мг/л

AUC, мг x ч/л

Почечный клиренс, л/ч

100 (2 раза в день)

1-я доза
8-я доза

200 (2 раза в день)

1-я доза
8-я доза

400 (один раз в день)

1-я доза
5-я доза

400 (один раз в день)

1-я доза
7-я доза

400 (один раз в день)

1-я доза
10-я доза

600 (один раз в день)

1-я доза
10-я доза

Обозначения: См. табл. 29;
С мин - минимальные определяемые концентрации в крови.

После внутривенного введения 400 мг С макс моксифлоксацина в крови здоровых людей равнялась в среднем 4,48 мг/л, AUC - 34 мгч/л, стационарный объем распределения - 1,9 л/кг, T 1/2 - 11,9 ч, обший клиренс 11,8 л/ч . После внутривенного введения максимальные концентрации моксифлоксацина в плазме были выше (на 31%), чем после приема внутрь, а величина показателя AUC при обоих способах применения была одинаковой .

Распределение

Моксифлоксацин связывается белками сыворотки крови (преимущественно альбумином) на 39%, при этом величина связывания не зависит от концентрации препарата в плазме в диапазоне 0,07 - 3,3 мг/л (табл. 32); соответственно свободная (не связанная белками фракция) составляет около 60% .

Быстрое снижение концентраций моксифлоксацина в плазме после окончания внутривенной инфузии указывает на его быстрое распределение в организме. Высокий показатель объема распределения препарата (см. табл. 29, 30) свидетельствует о его хорошем проникновении в органы, ткани и клетки.

Моксифлоксацин после однократного приема внутрь или внутривенного введения 400 мг быстро проникает в интерстициальную жидкость: после внутривенного введения С макс в интерстициальной жидкости в подкожных тканях составляли 0,47 мг/л, в мышечной ткани - 0,62 мг/л; величина T 1/2 в интерстициальной жидкости и в плазме было одинаковой и соствляла примерно 14 ч. Через 24 ч концентрации препарата в интерстициальной жидкости были приблизительно в 2 раза выше, чем в плазме .

Таблица 32.
Связывание (%) моксифлоксацина и его метаболитов белками плазмы человека

* Приводятся данные двух определений.

Моксифлоксацин быстро проникает в воспалительную жидкость кожного волдыря, полученного наложением на кожу кантаридинового пластыря. После приема внутрь 400 мг препарата максимальные концентрации в жидкости волдыря (2,8 мг/л) были ниже, чем в плазме (4,9 мг/л) и достигались позже (Т макс соответственно 3,1 и 1 ч); показатель T 1/2 в жидкости волдыря был немного больше (10 ч), чем в плазме (8,3 ч), а величина AUC - меньше (соответственно 32,5 и 39 мг-ч/л). Примерно такие же тенденции отмечены при внутривенном введении препарата. Показатель проникновения моксифлоксацина в воспалительную жидкость после приема внутрь составил 83,5%, а после внутривенного введения - 93,7% .

После внутривенного введения 400 мг моксифлоксацина С макс в слюне составляли в среднем 4,95 мг/л, а в плазме - 4,19 мг/л . С увеличением дозы моксифлоксацина повышались его концентрации в слюне. Фармакокинетические параметры препарата в слюне были в целом близки параметрам, установленным для плазмы, - после внутривенного введения в дозах 100, 200 и 400 мг С макс равнялись соответственно 1,09; 2,88 и 6,3 мг/л, AUC - 6,6; 15,8 и 40,9 мг-ч/л, Т 1/2 - 16,9; 12,3 и 12,6 ч, MRT - 17,4; 14,6 и 14,5 ч, стационарный объем распределения - 3,1; 2,0 и 1,6 л/кг, обший клиренс -254, 210 и 163 мл/мин .

У18 больных, которым была проведена диагностическая бронхоскопия, концентрации моксифлоксацина в плазме через 3, 12 и 24 ч после однократного приема 400 мг равнялись соответственно 3,28; 1,27 и 0,5 мг/л, в слизистойбронхов - 5,5; 2,2 и 1 мг/кг, в жидкости эпителиальной выстилки - 24,4; 8,4 и 3,5 мг/л . Концентрации моксифлоксацина в слизистой бронхов (5,5 мг/кг после приема 400 мг) были такими же, как после приема 600 мг грепафлоксацина (5,3 мг/кг), превосходили концентрации тровафлоксацина (1,5 мг/кг после приема 200 мг), спарфлоксацина (1,3 мг/кг после приема 400 мг) и были несколько ниже, чем левофлоксацина (8,3 мг/кг) после приема 500 мг .

Таблица 33.
Концентрации моксифлоксацина (мг/л, мг/кг) в различных тканях человека после однократного приема внутрь 400 мг

* - данные через 10ч после применения;
** - концентрации несвязанного препарата;
*** - концентрации через 3 - 36 ч.

Сводные данные по содержанию моксифлоксацина в различных жидкостях и тканях человека представлены в табл. 33.

Проникновение в клетки макроорганизма

Моксифлоксацин хорошо проникает и в больших количествах содержится в клетках макроорганизма. В опытах с полиморфноядерными нейтрофилами человека было показано, что моксифлоксацин быстро проникает внутрь клеток, создавая концентрации почти в 10 раз выше, чем во внеклеточной среде (рис. 11). На проникновение фторхинолона в нейтрофилы влияют температура и рН инкубационной среды, присутствие ингибиторов метаболизма (флуорида натрия, цианида натрия, карбонил-цианид-m-хлорфенилгидразона и 2,4-динитрофенола) и мембранных активаторов; поглощение моксифлоксацина убитыми клетками было таким же, как живыми (табл. 34). После отмывания нейтрофилов от препарата происходит быстрый его выход из клеток (рис. 10). Аналогичные результаты получены с культивируемыми эпителиальными клетками (McCoy) . При терапевтических внеклеточных концентрациях моксифлоксацин показал выраженную внутриклеточную активность в отношении S.aureus в нейтрофилах человека . Моксифлоксацин подавлял внутриклеточное размножение L.maltophila в моноцитах человека линии ТНР-1 и альвеолярных эпителиальных клетках линии А549 в концентрации 0,008 мг/л; ципрофлоксацин ингибировал внутриклеточные легионеллы в указанных клетках в концентрациях 0,016 и 0,064 мг/л соответственно .

Список литературы

МОКСИФЛОКСАЦИН
Новый антимикробный препарат из группы фторхинолонов

| Далее -


Введение

Одним из важнейших доклинических испытаний новых лекарственных веществ является изучение их фармакокинетических свойств. Данные исследования позволяют изучить процессы всасывания, распределения, метаболизма и выведения лекарственных веществ. Знание процессов распределения позволяет выявить органы и ткани, в которые они проникают наиболее интенсивно и/или в которых удерживаются наиболее длительно, что может способствовать более детальному изучению механизмов действия лекарственных веществ .

Целью данного исследования явилось изучение распределения в организме и тканевой биодоступности нового производного ГАМК – цитрокарда, обладающего кардио- и церебропротекторными свойствами . Доклиническое исследование фармакологических свойств и лекарственной безопасности препарата проведено на кафедре фармакологии и биофармации ФУВ и в лаборатории фармакологии сердечно-сосудистых средств ВолгГМУ.

Методы исследования

Эксперименты выполнены на 150 белых беспородных крысах – самцах массой 180-220 г, которые содержались в условиях вивария на стандартной диете с соблюдением всех правил и Международных рекомендаций Европейской конвенции по защите позвоночных животных, используемых при экспериментальных исследованиях (1997 г.).

Для количественного определения соединений нами был разработан метод ВЭЖХ для определения фенибута и его производных. Использовался жидкостной хроматограф Shimadzu (Япония) с диодноматричным детектором и колонкой С18 4,6´100 мм, 5μm. Для приготовления мобильной фазы использовали ацетонитрил (УФ 210) (Россия) и буферную систему, состоящую из однозамещённого фосфата калия 50 mМоль, pH 2.7 (Россия) и натриевой соли гептансульфоновой кислоты (0,12%). Соотношение водной и органической фазы 88:12% v/v. Субстанцию цитрокарда фиксировали при длине волны 205 нм. Чувствительность метода составляет 1 mг/мл. Экстракцию цитрокарда, а также одновременное осаждение белков из биологических проб производили из плазмы крыс 10% ТХУ в соотношении 1:0,5 .

Распределение соединений в организме крыс изучали в органах потенциального действия: сердце и мозг; в тканях с сильной васкуляризацией – лёгких и селезёнке; с умеренной васкуляризацией – мышце (musculus quadriceps femoris) и слабой васкуляризацией – сальнике, а также в органах, обеспечивающих элиминацию – печени и почках. Из органов готовили 20% гомогенаты в дистиллированной воде.

Цитрокард вводили крысам внутривенно и перорально в терапевтической дозе 50 мг/кг. Забор проб крови и органов при внутривенном введении производили через 5, 10, 20, 40 минут и через 1, 2, 4, 8 и 12 часов, а при пероральном введении – через 15, 30 минут и через 1, 2, 4, 8 и 12 часов после введения.

Для оценки интенсивности проникновения препарата в ткани использовался показатель тканевой доступности (ft), определяемый отношением значения AUC (площади под фармакокинетической кривой) в ткани к соответствующей величине AUC в крови. Также оценивали кажущийся коэффициент распределения (Kd) препарата между кровью и тканью, определяемый отношением соответствующих концентраций в один и тот же момент времени на конечных (моноэкспоненциальных) участках кривых.

Расчёты производили немодельным методом, статистическую обработку осуществляли в программе Excel.

Результаты исследования

В результате проведённого исследования были получены усреднённые фармакокинетические профили зависимости концентрации соединения в плазме крови крыс от времени. Как видно из представленных данных, максимальная концентрация цитрокарда (134,01 мкг/мл) наблюдается на пятой минуте после введения. Затем происходит быстрое снижение концентрации и через 12 часов исследования содержание соединения в плазме становится ниже порога определения. Снижение носит биэкспоненциальный характер, предполагая быструю первую фазу распределения, сменяющуюся более медленной фазой элиминации. За два часа исследования концентрация цитрокарда снижается почти в 10 раз (на второй час определяется 14,8 мкг/мл плазмы крови). Это свидетельствует о том, что цитрокард подвергается интенсивной элиминации в организме крыс.

Основные фармакокинетические параметры (табл. 1) показывают низкие значения периода полувыведения (Т1/2 = 1,85 часа) и среднего времени удерживания в организме одной молекулы препарата (MRT = 2,36 часа). Среднее по скорости снижение концентрации цитрокарда в плазме крови обуславливает малую величину площади под фармакокинетической кривой (AUC = 134,018 мкг*час/мл). Величина стационарного объёма распределения (Vss) равна 0,88 л/кг, показатель незначительно превышает объём экстрацеллюлярной жидкости в организме крысы, что свидетельствует о низкой способности препарата распределяться и накапливаться в тканях. С этим, по-видимому, связано низкое значение показателя системного клиренса (Сl = 0,37 л/час*кг), несмотря на выраженность процессов элиминации соединения.

При пероральном введении цитрокард обнаруживается в органах и тканях через 15 минут после введения, достигая максимума через 2 часа и через 12 часов уровень концентрации опускается до порога определения данного лекарственного вещества. Фармакокинетические параметры представлены в табл. 1.

Таблица 1. Фармакокинетические параметры соединения цитрокард в плазме крови крыс при внутривенном и пероральном введении в дозе 50 мг/кг

При пероральном введении цитрокарда картина распределения становится иная. Значительно увеличивается период полувыведения и объём распределения изучаемого вещества.

В сердце, органе потенциального действия при внутривенном введения, соединение обнаруживается в максимальной концентрации (24,69 мкг/г) через 5 минут после введения, в течение 20 минут показатель удерживается на этом же уровне, а затем незначительно снижается к 40 минутам, определяясь до 8 часа. Фармакокинетический профиль цитрокарда в сердце совпадает с таковым в плазме крови. Тканевая доступность составляет 0,671; коэффициент распределения – 1 (табл. 2). При пероральном введении тканевая биодоступность возрастает на 30% и составляет 0,978, коэффициент распределения остаётся на том же уровне как и при внутривенном введении (табл. 3).

Препарат в невысоких концентрациях проникает через гематоэнцефалический барьер в головной мозг. Максимальное количество (6,31 мкг/г) цитрокарда в мозге определяется на пятой минуте и сохраняется выше порога определения в течение 4 часов. Тканевая доступность составляет 0,089; коэффициент распределения – 0,134. При пероральном введении уровень цитрокарда в мозге находится ниже порога определения табл. 2 и 3).

В селезёнке и лёгких отмечается сходная тенденция при обоих путях введения. Тканевая доступность составляет 0,75 для лёгких и 1,09 для селезёнки; коэффициент распределения – 1,097 и 1,493, соответственно при внутривенном введении (табл. 2). Тканевая биодоступность при пероральном сведении у этих органов одинаковая (1,35 и 1,37), коэффициент распределения составляет 0,759 для селезёнки и 0,885 для лёгких (табл. 3).

В мышечной ткани цитрокард определяется на уровне органов с высокой степенью васкуляризации при обоих путях введения. Максимальная концентрация (58,1 мкг/г) наблюдается на 10 минуте, тканевая доступность составляет 1,143 коэффициент распределения – 1,755 при внутривенном введении (табл. 2) и при пероральном введении тканевая доступность – 0,943, коэффициент распределения – 0,677 (табл. 3).

В сальнике цитрокард обнаруживается в достаточно высоких концентрациях при внутривенном введении (52,7 мкг/г) и в очень невысоких при пероральном введении (6 мкг/г). Тканевая доступность равна 0,43 при внутривенном введении и 0,86 при пероральном; коэффициент распределения – 0,664 и 0,621, соответственно (табл. 2 и 3).

Тканевая доступность цитрокарда для печени и почек составляет 1,341 и 4,053, коэффициент распределения – 1,041 и 4,486, соответственно (табл. 2). Данные значения фактически не отличаются от таковых при пероральном введении (табл. 3), что свидетельствует о наличии высоких концентраций препарата в органах элиминации. Снижение количества вещества в печени и почках происходит аналогично таковому в плазме крови.

Таблица 2. Фармакокинетические параметры распределения соединения цитрокард в органах и тканях при внутривенном введении крысам в дозе 50 мг/кг

Таблица 3. Фармакокинетические параметры распределения соединения цитрокард в органах и тканях при пероральном введении крысам в дозе 50 мг/кг

Таким образом , распределение цитрокарда по органам и тканям осуществляется по следующей схеме: наибольшее содержание отмечается в почках, как при пероральном, так и при внутривенном введении. Это подтверждается и высокими значениями почечного клиренса, который составляет при внутривенном введении 80%, а при пероральном введении 60% от тотального клиренса. Цитрокард хорошо распределяется и в органы с высокой степенью васкуляризации, где его тканевая доступность выше единицы. Содержание цитрокарда в сердце сопоставимо с его содержанием в крови, при этом тканевая биодоступность для сердца выше приблизительно в 1,5 раза при пероральном введении, по сравнению с внутривенным. Содержание цитрокарда в сальнике также зависит от пути введения. При пероральном введении тканевая биодоступность в 2 раза выше, чем при внутривенном, и составляет 86 и 43% от содержания его в крови, соответственно. Наименьшее содержание цитрокарда отмечается в мозге. Тканевая биодоступность при внутривенном введении составляет 8,9% от его содержания в кровотоке. При пероральном введении концентрации соединения в мозге ниже порога определения. Тогда как у аналога цитрокарда – фенибута концентрации в мозге при внутривенном введении составляет 9%, при пероральном – 100% .

Основные выводы

  1. В результате проведённых исследований установлено, что распределение цитрокарда в органы и ткани носит неоднородный характер. Наибольшую тропность изучаемое соединение имеет к органам с высокой степенью васкуляризации и органам элиминации.
  2. В мозге крыс соединение определяется в низких концентрациях, что, скорее всего, связанно с транспортом через гематоэнцефалический барьер и не связано с липофильностью цитрокарда и высокой степенью васкуляризации мозга.

Литература

  1. Каркищенко Н.Н., Хоронько В.В., Сергеева С.А., Каркищенко В.Н. Фармакокинетика. Феникс, Ростов-на-Дону; 2001.
  2. Жердев В.П., Бойко С.С., Месонжник Н.В., Апполонова С.А. Экспериментальная фармакокинетика препарата дилепт. Экспериментальная и клиническая фармакология. 2009. Т.72, №3, С. 16-21.
  3. Спасов А.А., Смирнова Л.А., Иёжица И.Н. и др. Фармакокинетика производных бензимидазола. Вопросы медицинской химии. 2002. Т. 48, №3, С. 233-258.
  4. Бойко С.С., Колыванов Г.Б., Жердев В.П. и др. Экспериментальное исследование фармакокинетики триптофансодержащего дипептида ГБ-115. Бюллетень экспериментальной биологии и медицины. 2007. Т. 144, №9, С. 285-287.
  5. Бастрыгин Д.В., Виглинская А.О., Колыванов Г.Б. и др. Фармакокинетика соединения М-11 у крыс. Экспериментальная и клиническая фармакология. 2010. Т. 74, №7, С. 22-26.
  6. Тюренков И.Н., Перфилова В.Н., Бородкина Л.Е., Гречко О.Ю., Ковтун В.В. Кардио- и церебропротекторное действие новых структурных аналогов ГАМК. Вестник Волгоградской медицинской академии. 2000, №6, С. 52-56.
  7. Перфилова В.Н., Тюренков И.Н., Писарев В.Б. и др. Морфофункциональная оценка кардиопротекторного действия производных ГАМК в условиях хронической алкогольной интоксикации. Бюлл. ВНЦ РАМН и АВО. 2008, №1, С. 16-21.
  8. Бородкина Л.Е., Воронков А.В., Багметов М.Н. и др. Влияние новых производных фенибута на мнестическую функцию и ориентировочно-исследовательское поведение животных в условиях хронической алкоголизации. Вестник Волгоградской медицинской академии. 200, №39. С. 46-49.
  9. Тюренков И.Н., Перфилова В.Н, Смирнова Л.А. и др. Разработка хроматографического метода количественного определения фенибута в биологических пробах. Химико-фармацевтический журнал. 2010. Т. 44, № 12, С. 68-70.
  10. Тюренков И.Н., Перфилова В.Н., Смирнова Л.А. и др. Фармакокинетические свойства фенибута при внутривенном и пероральном введении. Вопросы биологической, медицинской и фармацевтической химии. 2010. №9, С. 22-25.
Фармакология как наука (в частности это каса­ется клинической фармакологии) включает в себя два важнейших раздела: фармакодинамику и фарма-кокннетику. Если фармакодинамика занимается изу­чением биологического и терапевтического действия различных лекарственных средств на организм, то основной задачей фармакокинетики является изучение абсорбции, распределения, метаболизма и экскреции (выведения) медицинских препаратов. Таким образом, можно сказать, что фармакодинамика изучает отно­шение «лекарство - человек», а Фармакокинетика, [нэ] -и; ж. Раздел фармакологии, изучающий всасывание, распределение, превращения и выведение из организма лекарственных веществ.

" data-tipmaxwidth="500" data-tiptheme="tipthemeflatdarklight" data-tipdelayclose="1000" data-tipeventout="mouseout" data-tipmouseleave="false" class="jqeasytooltip jqeasytooltip14" id="jqeasytooltip14" title="Фармакокинетика">фармакокинетика - «человек - лекарство». Итак, фармакокинетика - это один из главных разделов клинической фармаколо­гии, предметом изучения которого являются процессы распределения, всасывания, связывания с орга­низма, биотрансформации и выведения лекарственных препаратов.

Для описания процессов, которые происходят с фар­макологическими препаратами, после того, как они введены в организм, принят целый ряд специальных параметров:

1) константа (постоянная) скорости абсорбции (К а) - это показатель, который характеризует скорость поступления лекарственного вещества из места введения в кровь ;

2) константа скорости элиминации (K et) - отражает скорость исчезновения конкретного препарата из организма посредством его биотрансформации и экскреции;

3) константа скорости экскреции (К ех) - это пока­затель, который определяет скорость выведения фармакологического препарата с выделениями (мочой, калом, слюной), а также другими путями;

4) период полувыведения (7/2) - это то время, кото­рое необходимо для снижения уменьшения концен­трации вещества в крови пациента в 2 раза; данный показатель напрямую зависит от упомянутой кон­станты скорости элиминации (Ti/2 = 0,693/K e i);

5) период полуабсорбции (Ti/ 2 a) - это время, которое требуется для всасывания 1 /2 дозы определенного фармакологического препарата из места введе­ния в кровь; данный показатель пропорционален константе скорости абсорбции (П/2а = 0,6Q3/K a);

6) кажущаяся начальная концентрация (Со) - это концентрация вещества, которая могла быть до­стигнута "(в плазме крови) при внутривенном пути введения и моментальном распределении препарата по различным тканям и органам;

7) равновесная концентрация (C S 3) - данный показатель отражает концентрацию вещества, которая устанавливается в плазме крови при условии его поступления в организм с определенной скоростью. Если осуществляется прерывистое введение (или же прием) фармакологического препарата через одинаковые отрезки времени и в одинаковых
дозах, то принято выделять максимальную равновесную концентрацию (C asm ax) и минимальную равновесную концентрацию (C ssmin);

8) объем распределения препарата (Vd) определяет степень захвата определенного вещества различ­ными тканями организма из плазмы крови. V d (Yd = D/Co) - это некий условный объем жид­кости, который необходим для растворения всей поступившей в организм дозы фармакологического препарата (D) для достижения концентрации, рав­ной (Со), т. е. кажущейся начальной концентрации в сыворотке крови;

9) общий клиренс препарата (Ck) - это показатель, который характеризует скорость полного освобож­дения организма от определенного медицинского препарата. Принято рассматривать почечный кли­ренс (С1 Г) и внепочечный клиренс (С1 ег). Эти два показателя отражают выведение фармако­логического препарата, соответственно, с мочой и прочими путями (главным образом, с желчью). Таким образом, общий клиренс представляет собой сумму почечного и внепочечного клиренсов;

10) площадь под кривой «концентрация - время» (AUC) - это площадь условной фигуры, которая при построении ограничена фармакокинетической кривой и осями координат (AUC = Со/К е {). Ве­личина (AUC) непосредственно связана с такими фармакокинетическими параметрами, как объем распределения и общий клиренс препарата. При линейности кинетики определенного вещества в ор­ганизме данная величина (AUС) пропорциональна общему количеству (дозе) препарата, которое поступило в кровеносную систему. Нередко опре­деляют площадь фигуры под отдельной частью кривой (от нулевой отметки до определенного времени t); данный параметр принято обозначать как AUCu так, к примеру, AUC 4 - площадь под кривой от 0 до 4 ч;

11) абсолютная биодоступность (/) - под этим терми­ном подразумевается некоторая часть от общего объема (дозы) вещества (в %), которая попадает в системный кровоток при внесосудистом введении; данная величина равна отношению AUC после введения определенным методом к AUC после введения в вену;

12) относительная биодоступность - это параметр, который необходим для сравнения биодоступности двух различных препаратов (лекарственных форм), предназначенных для внесосудистого введения. Относительная биодоступность равна отношению (AUC/AUC) j (£>/£>");

13) общая биодоступность - это часть принятой внутрь дозы фармакологического препарата, кото­рая попала в системный кровоток в неизмененном виде, а также в виде различных метаболитов. В данном случае, имеются в виду

AUC - аббревиатура от англоязычного A rea U nder the C urve (площадь под кривой). В медицинской и фармацевтической обычно используется без перевода.

AUC в фармакокинетике
AUC - фармакокинетический параметр, характеризующий суммарную концентрацию лекарственного препарата в плазме крови в течение всего времени наблюдения. Математически определяется как интеграл от 0 до ∞ функции концентрации препарата (фармакокинетической кривой) в плазме крови от времени и равен площади фигуры, ограниченной фармакокинетической кривой и осями координат. Параметр AUC связан с другими фармакокинетическими параметрами - объемом распределения, общим клиренсом. При линейности кинетики препарата в организме величина AUC пропорциональна общему количеству (дозе) препарата, попавшего в системный кровоток.

Ниже дан пример графиков зависимости AUC эзомепразола и омепразола от дозы (по Лапиной Т.Л., 2002) .

AUC T - площадь под частью фармакокинетической кривой, от начала исследования (t = 0) до некоторого времени t = T (обычно заданное в часах). Например, AUC24 равен площади под фармакокинетической кривой в течение первых 24-х часов исследования.

AUC в исследовании кислотности органов желудочно-кишечного тракта
AUC или просто AUC («интегральная кислотность») - широко используемое в зарубежных работах обозначение показателя, применяемого для оценки кислотоподавляющих свойств лекарственных препаратов и равного площади под заданным участком рН-метрической кривой. В отечественной литературе этот показатель называется «площадь ощелачивания» (
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.