Углеводный обмен в организме человека. Расшифровка анализа углеводного обмена веществ Нарушения гидролиза и всасывания углеводов

Не последнюю роль играют именно углеводы. Люди, которым небезразлично собственное здоровье, знают, что сложные углеводы предпочтительнее простых. И что лучше употреблять еду для более длительного переваривания и подпитки энергией на протяжении дня. Но почему именно так? Чем различаются процессы усвоения медленных и быстрых углеводов? Почему сладости стоит употреблять только для закрытия белкового окна, а мед лучше есть исключительно на ночь? Чтобы ответить на эти вопросы, подробно рассмотрим обмен углеводов в организме человека.

Для чего нужны углеводы

Помимо поддержания оптимального веса, углеводы в организме человека выполняют огромный фронт работы, сбой в которой влечет не только возникновение ожирения, но и массу других проблем.

Основными задачами углеводов является выполнение следующих функций:

  1. Энергетическая — приблизительно 70% калорийности приходится на углеводы. Для того, чтобы реализовался процесс окисления 1 г углеводов организму требуется 4,1 ккал энергии.
  2. Строительная — принимают участие в построении клеточных компонентов.
  3. Резервная — создают депо в мышцах и печени в виде гликогена.
  4. Регуляторная — некоторые гормоны по своей природе являются гликопротеинами. Например, гормоны щитовидной железы и гипофиза — одна структурная часть таких веществ белковая, а другая — углеводная.
  5. Защитная — гетерополисахариды принимают участие в синтезе слизи, которая покрывает слизистые оболочки дыхательных путей, органов пищеварения, мочеполового тракта.
  6. Принимают участие в распознавании клеток.
  7. Входят в состав мембран эритроцитов.
  8. Являются одними из регуляторов свертываемости крови, так как являются частью протромбина и фибриногена, гепарина ( — учебник «Биологическая химия», Северин).

Для нас главными источниками углеводов являются те молекулы, которые мы получаем с продуктами питания: крахмал, сахароза и лактоза.

@ Evgeniya
adobe.stock.com

Этапы расщепления сахаридов

Прежде чем рассматривать особенности биохимических реакций в организме и влияние метаболизма углеводов на спортивные результаты, изучим процесс расщепления сахаридов с их дальнейшим превращением в тот самый , который так отчаянно добывают и тратят спортсмены во время подготовки к соревнованиям.


Этап 1 — предварительное расщепление слюной

В отличие от белков и жиров, углеводы начинают распадаться почти сразу после попадания в полость рта. Дело в том, что большая часть продуктов, поступающих в организм, имеет в своем составе сложные крахмалистые углеводы, которые под воздействием слюны, а именно фермента амилазы, входящей в ее состав, и механического фактора расщепляются на простейшие сахариды.

Этап 2 — влияние желудочной кислоты на дальнейшее расщепление

Здесь вступает в силу желудочная кислота. Она расщепляет сложные сахариды, которые не попали под воздействие слюны. В частности, под действием ферментов лактоза расщепляется до галактозы, которая в последствии превращается в глюкозу.

Этап 3 — всасывание глюкозы в кровь

На этом этапе практически вся ферментированная быстрая глюкоза напрямую всасывается в кровь, минуя процессы ферментации в печени. Уровень энергии резко повышается, а кровь становится более насыщенной.

Этап 4 — насыщение и инсулиновая реакция

Под воздействием глюкозы кровь густеет, что затрудняет её перемещение и транспортировку кислорода. Глюкоза замещает кислород, что вызывает предохранительную реакцию — уменьшение количества углеводов в крови.

В плазму поступает инсулин и глюкагон из поджелудочной железы.

Первый открывает транспортные клетки для перемещения в них сахара, что восстанавливает утраченный баланс веществ. Глюкагон в свою очередь уменьшает синтез глюкозы из гликогена (потребление внутренних источников энергии), а инсулин «дырявит» основные клетки организма и помещает туда глюкозу в виде гликогена или липидов.

Этап 5 — метаболизм углеводов в печени

На пути к полному перевариванию углеводы сталкиваются с главным защитником организма — клетками печени. Именно в этих клетках углеводы под воздействием специальных кислот связываются в простейшие цепочки – гликоген.

Этап 6 — гликоген или жир

Печень способна переработать только определенное количество моносахаридов, находящихся в крови. Возрастающий уровень инсулина заставляет её делать это в кратчайшие сроки. В случае, если печень не успевает перевести глюкозу в гликоген, наступает липидная реакция: вся свободная глюкоза путём её связывания кислотами превращается в простые жиры. Организм делает это с целью оставить запас, однако в виду нашего постоянного питания, «забывает» переварить, и глюкозные цепочки, превращаясь в пластические жировые ткани, транспортируются под кожу.

Этап 7 — вторичное расщепление

В случае, если печень справилась с сахарной нагрузкой и смогла превратить все углеводы в гликоген, последний под воздействием гормона инсулина успевает запастись в мышцах. Далее в условиях недостатка кислорода расщепляется назад до простейшей глюкозы, не возвращаясь в общий кровоток, а сохраняясь в мышцах. Таким образом, минуя печень, гликоген поставляет энергию для конкретных мышечных сокращений, повышая при этом выносливость ( — «Википедия»).

Именно этот процесс зачастую называют «вторым дыханием». Когда у спортсмена большие запасы гликогена и простых висцеральных жиров, превращаться в чистую энергию они будут только в отсутствии кислорода. В свою очередь спирты, содержащиеся в жирных кислотах, простимулируют дополнительное расширение сосудов, что приведет к лучшей восприимчивости клеток к кислороду в условиях его дефицита.

Особенности метаболизма по ГИ

Важно понимать, почему углеводы разделяются на простые и сложные. Все дело в их , который определяет скорость распада. Это, в свою очередь, запускает регуляцию обмена углеводов. Чем проще углевод, тем быстрее он попадет в печень и тем выше вероятность его превращения в жир.

Примерная таблица гликемического индекса с общим составом углеводов в продукте:

Особенности метаболизма по ГН

Однако даже продукты с высоким гликемическим индексом не способны нарушить обмен и функции углеводов так, как это делает . Она определяет, насколько сильно печень загрузится глюкозой при употреблении этого продукта. При достижении определенного порога ГН (порядка 80-100), все калории, поступающие сверх нормы, будут автоматически конвертироваться в триглицериды.

Примерная таблица гликемической нагрузки с общей калорийностью:

Инсулиновая и глюкагоновая реакция

В процессе потребление любого углевода, будь то сахар или сложный крахмал, организм запускает сразу две реакции, интенсивность которых будет зависеть от ранее рассмотренных факторов и в первую очередь, от выброса инсулина.

Важно понимать, что инсулин всегда выбрасывается в кровь импульсами. А это значит, что один сладкий пирожок для организма так же опасен, как 5 сладких пирожков. Инсулин регулирует густоту крови. Это необходимо, чтобы все клетки получали достаточное количество энергии, не работая в гипер- или гипо- режиме. Но самое главное, от густоты крови зависит скорость её движения, нагрузка на сердечную мышцу и возможность транспортировки кислорода.

Выброс инсулина – это естественная реакция. Инсулин дырявит все клетки в организме, способные воспринимать дополнительную энергию, и запирает её в них. В случае, если печень справилась с нагрузкой, в клетки помещается гликоген, если печень не справилась, то в те же клетки попадают жирные кислоты.

Таким образом, регуляция углеводного обмена происходит исключительно благодаря выбросам инсулина. Если его недостаточно (не хронически, а одноразово), у человека может возникнуть сахарное похмелье — состояние, при котором организм требует дополнительной жидкости для увеличения объемов крови, и разжижения её всеми доступными средствами.

Последующее распределение энергии

Последующее распределение энергии углеводов происходит в зависимости от типа сложения, и тренированности организма:

  1. У нетренированного человека с медленным обменом веществ. Гликогеновые клетки при снижении уровня глюкагона возвращаются в печень, где перерабатываются в триглицериды.
  2. У спортсмена. Гликогеновые клетки под воздействием инсулина массово запираются в мышцах, давая запас энергии для следующих упражнений.
  3. У неспортсмена с быстрым обменом веществ. Гликоген возвращается в печень, транспортируясь назад до уровня глюкозы, после чего насыщает кровь до пограничного уровня. Этим он провоцирует состояние истощения, так как несмотря на достаточное питание энергетическими ресурсами, клетки не имеют соответствующего количества кислорода.

Итог

Энергетический обмен — процесс, в котором участвуют углеводы. Важно понимать, что даже в отсутствии прямых сахаров, организм все равно будет расщеплять ткани до простейшей глюкозы, что приведет к уменьшению мышечной ткани или жировой прослойки (в зависимости от типа стрессовой ситуации).

Углеводы или глюциды, также как и жиры и белки, являются основными органическими соединениями нашего тела. Поэтому, если вы хотите изучить вопрос углеводного обмена в организме человека, рекомендуем сначала ознакомиться с химией органических соединений. Если же вы хотите знать, что такое углеводный обмен, и как он происходит в организме человека, не внедряясь в подробности, то наша статья для вас. Мы постараемся в более простой форме рассказать об углеводном обмене в нашем организме.

Углеводы это обширная группа веществ, которая в основном состоит из водорода, кислорода и углерода. Некоторые сложные углеводы также имеют в своем составе серу и азот.

Все живые организме на нашей планете состоят из углеводов. Растения состоят из них практически на 80 %, животные и человек содержат в себе намного меньше углеводов. Углеводы, главным образом, содержаться в печени (5-10%), мышцах (1-3%), головном мозге (меньше 0,2%).

Углеводы нам нужны в качестве источника энергии. При окислении всего 1 грамма углеводов, мы получаем 4,1 ккал энергии. Кроме того, некоторые сложные углеводы являются запасными питательными веществами, а клетчатка, хитин и гиалуроновая кислота придают тканям прочность. Углеводы также являются одним из строительных материалов более сложных молекул, таких как , нуклеиновая кислота, гликолипиды и т.д. Без участия углеводов невозможно окисление белков и жиров.

Виды углеводов

В зависимости от того, насколько углевод способен разлагаться на более простые углеводы с помощью гидролиза (т.е. расщепление с участием воды), их классифицируют на моносахариды, олигосахариды и полисахариды. Моносахариды не гидролизуются и считаются простыми углеводами, состоящими из 1 частицы сахара. Это, например, глюкоза или фруктоза. Олигосахариды гидролизуются с образованием небольшого числа моносахаридов, а полисахариды гидролизуются на множество (сотни, тысячи) моносахаридов.

Глюкоза не переваривается и в неизменном виде всасывается в кровь из кишечника.

Из класса олигосахаридов выделяют дисахариды – это, например, тростниковый или свекличный сахар (сахароза), молочный сахар (лактоза).

К полисахаридам относятся углеводы, которые состоят из множества моносахаридов. Это, например, крахмал, гликоген, клетчатка. В отличие от моно и дисахаридов, которые усваиваются в кишечнике практически сразу, полисахариды перевариваются продолжительное время, поэтому их называют тяжелыми или сложными. Их расщепление занимает продолжительное время, что позволяет поддерживать уровень сахара в крови в стабильном положении, без инсулиновых скачков, которые вызывают простые углеводы.

Основное переваривание углеводов происходит в соке тонких кишок.

Запас углеводов в виде гликогена в мышцах совсем маленький – около 0,1% от веса самой мышцы. А так как мышцы не могут работать без углеводов, они нуждаются в регулярной их доставке через кровь. В крови углеводы находятся в виде глюкозы, содержание которой составляет от 0,07 до 0,1%. Основные запасы углеводов в виде гликогена содержатся в печени. У человека весом в 70 кг где-то 200 гр(!) углеводов в печени. И когда мышцы «съедают» всю глюкозу из крови, в нее снова поступает глюкоза из печени (предварительно гликоген в печени расщепляется на глюкозу). Запасы в печени не вечные, поэтому необходимо восполнять ее с пищей. Если с пищей не поступают углеводы, то печень образует гликоген из жиров и белков.

Когда человек занимается физической работой, мышцы истощают все запасы глюкозы и возникает состояние, которое называется гипогликемией – в результате нарушается работа и самих мышц и еще нервных клеток. Именно поэтому важно соблюдать правильный рацион питания, в особенно питания до и после тренировки.

Регуляция углеводного обмена в организме

Как следует из вышесказанного, весь углеводный обмен сводится к уровню сахар в крови. Уровень сахара в крови зависит от того, сколько глюкозы поступает в кровь и сколько глюкозы удаляется из нее. От этого соотношения зависит весь углеводный обмен. Сахар в кровь поступает из печени и кишечника. Печень расщепляет гликоген до глюкозы только в том случае, если уровень сахара в крови падает. Эти процессы регулируются гормонами.

Уменьшение уровня сахара в крови сопровождается выделение гормона адреналина – он активизирует ферменты печени, которые отвечают за поступление глюкозы в кровь.

Углеводный обмен регулируется также двумя гормонами поджелудочной железы – инсулином и глюкагоном. Инсулин отвечает за транспорт глюкозы из крови в ткани. А глюкагон отвечает за расщепление глюкагона в печени на глюкозу. Т.е. глюкагон повышает уровень сахара в крови, а инсулин снижает. Их действие взаимосвязано.

Разумеется, если уровень сахара в крови завышен, а печень и мышцы насыщены гликогеном, то «ненужный» материал инсулин отправляет в жировое депо – т.е. откладывает глюкозу в виде жира.

Не последнюю роль играют именно углеводы. Люди, которым небезразлично собственное здоровье, знают, что сложные углеводы предпочтительнее простых. И что лучше употреблять еду для более длительного переваривания и подпитки энергией на протяжении дня. Но почему именно так? Чем различаются процессы усвоения медленных и быстрых углеводов? Почему сладости стоит употреблять только для закрытия белкового окна, а мед лучше есть исключительно на ночь? Чтобы ответить на эти вопросы, подробно рассмотрим обмен углеводов в организме человека.

Для чего нужны углеводы

Помимо поддержания оптимального веса, углеводы в организме человека выполняют огромный фронт работы, сбой в которой влечет не только возникновение ожирения, но и массу других проблем.

Основными задачами углеводов является выполнение следующих функций:

  1. Энергетическая — приблизительно 70% калорийности приходится на углеводы. Для того, чтобы реализовался процесс окисления 1 г углеводов организму требуется 4,1 ккал энергии.
  2. Строительная — принимают участие в построении клеточных компонентов.
  3. Резервная — создают депо в мышцах и печени в виде гликогена.
  4. Регуляторная — некоторые гормоны по своей природе являются гликопротеинами. Например, гормоны щитовидной железы и гипофиза — одна структурная часть таких веществ белковая, а другая — углеводная.
  5. Защитная — гетерополисахариды принимают участие в синтезе слизи, которая покрывает слизистые оболочки дыхательных путей, органов пищеварения, мочеполового тракта.
  6. Принимают участие в распознавании клеток.
  7. Входят в состав мембран эритроцитов.
  8. Являются одними из регуляторов свертываемости крови, так как являются частью протромбина и фибриногена, гепарина ( — учебник «Биологическая химия», Северин).

Для нас главными источниками углеводов являются те молекулы, которые мы получаем с продуктами питания: крахмал, сахароза и лактоза.

@ Evgeniya
adobe.stock.com

Этапы расщепления сахаридов

Прежде чем рассматривать особенности биохимических реакций в организме и влияние метаболизма углеводов на спортивные результаты, изучим процесс расщепления сахаридов с их дальнейшим превращением в тот самый , который так отчаянно добывают и тратят спортсмены во время подготовки к соревнованиям.


Этап 1 — предварительное расщепление слюной

В отличие от белков и жиров, углеводы начинают распадаться почти сразу после попадания в полость рта. Дело в том, что большая часть продуктов, поступающих в организм, имеет в своем составе сложные крахмалистые углеводы, которые под воздействием слюны, а именно фермента амилазы, входящей в ее состав, и механического фактора расщепляются на простейшие сахариды.

Этап 2 — влияние желудочной кислоты на дальнейшее расщепление

Здесь вступает в силу желудочная кислота. Она расщепляет сложные сахариды, которые не попали под воздействие слюны. В частности, под действием ферментов лактоза расщепляется до галактозы, которая в последствии превращается в глюкозу.

Этап 3 — всасывание глюкозы в кровь

На этом этапе практически вся ферментированная быстрая глюкоза напрямую всасывается в кровь, минуя процессы ферментации в печени. Уровень энергии резко повышается, а кровь становится более насыщенной.

Этап 4 — насыщение и инсулиновая реакция

Под воздействием глюкозы кровь густеет, что затрудняет её перемещение и транспортировку кислорода. Глюкоза замещает кислород, что вызывает предохранительную реакцию — уменьшение количества углеводов в крови.

В плазму поступает инсулин и глюкагон из поджелудочной железы.

Первый открывает транспортные клетки для перемещения в них сахара, что восстанавливает утраченный баланс веществ. Глюкагон в свою очередь уменьшает синтез глюкозы из гликогена (потребление внутренних источников энергии), а инсулин «дырявит» основные клетки организма и помещает туда глюкозу в виде гликогена или липидов.

Этап 5 — метаболизм углеводов в печени

На пути к полному перевариванию углеводы сталкиваются с главным защитником организма — клетками печени. Именно в этих клетках углеводы под воздействием специальных кислот связываются в простейшие цепочки – гликоген.

Этап 6 — гликоген или жир

Печень способна переработать только определенное количество моносахаридов, находящихся в крови. Возрастающий уровень инсулина заставляет её делать это в кратчайшие сроки. В случае, если печень не успевает перевести глюкозу в гликоген, наступает липидная реакция: вся свободная глюкоза путём её связывания кислотами превращается в простые жиры. Организм делает это с целью оставить запас, однако в виду нашего постоянного питания, «забывает» переварить, и глюкозные цепочки, превращаясь в пластические жировые ткани, транспортируются под кожу.

Этап 7 — вторичное расщепление

В случае, если печень справилась с сахарной нагрузкой и смогла превратить все углеводы в гликоген, последний под воздействием гормона инсулина успевает запастись в мышцах. Далее в условиях недостатка кислорода расщепляется назад до простейшей глюкозы, не возвращаясь в общий кровоток, а сохраняясь в мышцах. Таким образом, минуя печень, гликоген поставляет энергию для конкретных мышечных сокращений, повышая при этом выносливость ( — «Википедия»).

Именно этот процесс зачастую называют «вторым дыханием». Когда у спортсмена большие запасы гликогена и простых висцеральных жиров, превращаться в чистую энергию они будут только в отсутствии кислорода. В свою очередь спирты, содержащиеся в жирных кислотах, простимулируют дополнительное расширение сосудов, что приведет к лучшей восприимчивости клеток к кислороду в условиях его дефицита.

Особенности метаболизма по ГИ

Важно понимать, почему углеводы разделяются на простые и сложные. Все дело в их , который определяет скорость распада. Это, в свою очередь, запускает регуляцию обмена углеводов. Чем проще углевод, тем быстрее он попадет в печень и тем выше вероятность его превращения в жир.

Примерная таблица гликемического индекса с общим составом углеводов в продукте:

Особенности метаболизма по ГН

Однако даже продукты с высоким гликемическим индексом не способны нарушить обмен и функции углеводов так, как это делает . Она определяет, насколько сильно печень загрузится глюкозой при употреблении этого продукта. При достижении определенного порога ГН (порядка 80-100), все калории, поступающие сверх нормы, будут автоматически конвертироваться в триглицериды.

Примерная таблица гликемической нагрузки с общей калорийностью:

Инсулиновая и глюкагоновая реакция

В процессе потребление любого углевода, будь то сахар или сложный крахмал, организм запускает сразу две реакции, интенсивность которых будет зависеть от ранее рассмотренных факторов и в первую очередь, от выброса инсулина.

Важно понимать, что инсулин всегда выбрасывается в кровь импульсами. А это значит, что один сладкий пирожок для организма так же опасен, как 5 сладких пирожков. Инсулин регулирует густоту крови. Это необходимо, чтобы все клетки получали достаточное количество энергии, не работая в гипер- или гипо- режиме. Но самое главное, от густоты крови зависит скорость её движения, нагрузка на сердечную мышцу и возможность транспортировки кислорода.

Выброс инсулина – это естественная реакция. Инсулин дырявит все клетки в организме, способные воспринимать дополнительную энергию, и запирает её в них. В случае, если печень справилась с нагрузкой, в клетки помещается гликоген, если печень не справилась, то в те же клетки попадают жирные кислоты.

Таким образом, регуляция углеводного обмена происходит исключительно благодаря выбросам инсулина. Если его недостаточно (не хронически, а одноразово), у человека может возникнуть сахарное похмелье — состояние, при котором организм требует дополнительной жидкости для увеличения объемов крови, и разжижения её всеми доступными средствами.

Последующее распределение энергии

Последующее распределение энергии углеводов происходит в зависимости от типа сложения, и тренированности организма:

  1. У нетренированного человека с медленным обменом веществ. Гликогеновые клетки при снижении уровня глюкагона возвращаются в печень, где перерабатываются в триглицериды.
  2. У спортсмена. Гликогеновые клетки под воздействием инсулина массово запираются в мышцах, давая запас энергии для следующих упражнений.
  3. У неспортсмена с быстрым обменом веществ. Гликоген возвращается в печень, транспортируясь назад до уровня глюкозы, после чего насыщает кровь до пограничного уровня. Этим он провоцирует состояние истощения, так как несмотря на достаточное питание энергетическими ресурсами, клетки не имеют соответствующего количества кислорода.

Итог

Энергетический обмен — процесс, в котором участвуют углеводы. Важно понимать, что даже в отсутствии прямых сахаров, организм все равно будет расщеплять ткани до простейшей глюкозы, что приведет к уменьшению мышечной ткани или жировой прослойки (в зависимости от типа стрессовой ситуации).

Углеводный обмен

совокупность процессов превращения моносахаридов и их производных, а также гомополисахаридов, гетерополисахаридов и различных углеводсодержащих биополимеров (гликоконъюгатов) в организме человека и животных. В результате У. о. происходит снабжение организма энергией (см. Обмен веществ и энергии), осуществляются процессы передачи биологической информации и межмолекулярные взаимодействия, обеспечиваются резервные, структурные, защитные и другие функции углеводов. Углеводные компоненты многих веществ, например гормонов (Гормоны), ферментов (Ферменты), транспортных гликопротеинов, являются маркерами этих веществ, благодаря которым их «узнают» специфические рецепторы плазматических и внутриклеточных мембран.

Синтез и превращения глюкозы в организме . Один из наиболее важных углеводов - Глюкоза - является не только основным источником энергии, но и предшественником пентоз, уроновых кислот и фосфорных эфиров гексоз. Глюкоза образуется из гликогена и углеводов пищи - сахарозы, лактозы, крахмала, декстринов. Кроме того, глюкоза синтезируется в организме из различных неуглеводных предшественников (рис. 1). Этот процесс носит название глюконеогенеза и играет важную роль в поддержании Гомеостаза. В процессе глюконеогенеза участвует множество ферментов и ферментных систем, локализованных в различных клеточных органеллах. Глюконеогенез происходит главным образом в печени и почках.

Существуют два пути расщепления глюкозы в организме: Гликолиз (фосфоролитический путь, путь Эмбдена - Мейергофа - Парнаса) и пентозофосфатный путь (пентозный путь, гексозомонофосфатный шунт). Схематически пентозофосфатный путь выглядит так: глюкозо-6-фосфат > 6-фосфатглюконолактон > рибулозо-5-фосфат > рибозо-5-фосфат. В ходе пентозофосфатного пути происходит последовательное отщепление от углеродной цепи сахара по одному атому углерода в виде СО 2 . В то время как гликолиз играет важную роль не только в энергетическом обмене, но и в образовании промежуточных продуктов синтеза липидов (Липиды), пентозофосфатный путь приводит к образованию рибозы и дезоксирибозы, необходимых для синтеза нуклеиновых кислот (Нуклеиновые кислоты) (ряда коферментов (Коферменты).

Синтез и распад гликогена . В синтезе гликогена - главного резервного полисахарида человека и высших животных - участвуют два фермента: гликогенсинтетаза (уридиндифосфат (УДФ) глюкоза: гликоген-4-глюкозилтрансфераза), катализирующая образование полисахаридных цепей, и ветвящий фермент, образующий в молекулах гликогена так называемые связи ветвлении. Для синтеза гликогена необходимы так называемые затравки. Их роль могут выполнять либо глюкозиды с различной степенью полимеризации, либо белковые предшественники, к которым при участии особого фермента глюкопротеинсинтетазы присоединяются глюкозные остатки уридиндифосфатглюкозы (УДФ-глюкозы).

Распад гликогена осуществляется фосфоролитическим (гликогенолиз) или гидролитическим путями. Гликогенолиз представляет собой каскадный процесс, в котором участвует ряд ферментов фосфорилазной системы - протеинкиназа, киназа фосфорилазы b, фосфорилаза b, фосфорилаза а, амило-1,6-глюкозидаза, глюкозо-6-фосфатаза. В печени в результате гликогенолиза образуется глюкоза из глюкозо-6-фосфата благодаря действию на него глюкозо-6-фосфатазы, отсутствующей в мышцах, где превращения глюкозо-6-фосфата приводят к образованию молочной кислоты (лактата). Гидролитический (амилолитический) распад гликогена (рис. 2) обусловлен действием ряда ферментов, называемых амилазами (Амилазы) (-глюкозидазами). Известны -, - и -амилазы. -Глюкозидазы в зависимости от локализации в клетке делят на кислые (лизосомные) и нейтральные.

Синтез и распад углеводсодержащих соединений . Синтез сложных сахаров и их производных происходит с помощью специфических гликозилтрансфераз, катализирующих перенос моносахаридов от доноров - различных гликозилнуклеотидов или липидных переносчиков к субстратам-акцепторам, которыми могут быть углеводный остаток, полипептид или липид в зависимости от специфичности трансфераз. Нуклеотидным остатком является обычно дифосфонуклеозид.

В организме человека и животных много ферментов, ответственных за превращение одних углеводов в другие, как в процессах гликолиза и глюконеогенеза, так и в отдельных звеньях пентозофосфатного пути.

Ферментативное расщепление углеводсодержащих соединений происходит в основном гидролитическим путем с помощью гликозидаз, отщепляющих углеводные остатки (экзогликозидазы) или олигосахаридные фрагменты (эндогликозидазы) от соответствующих гликоконъюгатов. Гликозидазы являются чрезвычайно специфическими ферментами. В зависимости от природы моносахарида, конфигурации его молекулы (их D или L-изомеров) и типа гидролизуемой связи (? или) различают -D-маннозидазы, -L-фукозидазы, -D-галактозидазы и т.д. Гликозидазы локализованы в различных клеточных органеллах; многие из них локализованы в лизосомах. Лизосомные (кислые) гликозидазы отличаются от нейтральных не только локализацией в клетках, оптимальным для их действия значением рН и молекулярной массой, но и электрофоретической подвижностью и рядом других физико-химических свойств.

Гликозидазы играют важную роль в различных биологических процессах; они могут, например, оказывать влияние на специфический рост трансформированных клеток, на взаимодействие клеток с вирусами и др.

Имеются данные о возможности неферментативного гликозилирования белков in vivo, например гемоглобина, белков хрусталика, коллагена. Есть сведения, что неферментативное гликозилирование (гликирование) играет важную патогенетическую роль при некоторых заболеваниях (сахарном диабете, галактоземии и др.).

Транспорт углеводов . Переваривание углеводов начинается в ротовой полости при участии гидролитических ферментов слюны (Слюна). Гидролиз ферментами слюны продолжается в желудке (сбраживание углеводов пищевого комка предотвращается соляной кислотой желудочного сока). В двенадцатиперстной кишке полисахариды пищи (крахмал, гликоген и др.) и сахара (олиго- и дисахариды) расщепляются при участии -глюкозидаз и других гликозидаз сока поджелудочной железы до моносахаридов, которые всасываются в тонкой кишке в кровь. Скорость всасывания углеводов различна, быстрее всасываются глюкоза и галактоза, медленнее - фруктоза, манноза и другие сахара.

Транспорт углеводов через эпителиальные клетки кишечника и поступление в клетки периферических тканей осуществляются с помощью особых транспортных систем, функция которых заключается и переносе молекул сахаров через клеточные мембраны. Существуют особые белки-переносчики - пермеазы (транслоказы), специфические по отношению к сахарам и их производным. Транспорт углеводов может быть пассивным и активным. При пассивном транспорте перенос углеводов осуществляется по направлению градиента концентрации, так что равновесие достигается тогда, когда концентрации сахара в межклеточном веществе или межклеточной жидкости и внутри клеток выравниваются. Пассивный транспорт сахаров характерен для эритроцитов человека. При активном транспорте углеводы могут накапливаться в клетках и концентрация их внутри клеток становится выше, чем в окружающей клетки жидкости. Предполагают, что активное поглощение сахаров клетками отличается от пассивного тем, что последнее является Na + -независимым процессом. В организме человека и животных активный транспорт углеводов происходит главным образом в клетках эпителия слизистой оболочки кишечника и в извитых канальцах (проксимальных отделах нефрона) почек.

Регуляция углеводного обмена осуществляется при участии очень сложных механизмов, которые могут оказывать влияние на индуцирование или подавление синтеза различных ферментов У. о. либо способствовать активации или торможению их действия. Инсулин, Катехоламины, глюкагон, соматотропный и стероидные гормоны оказывают различное, но очень выраженное влияние на разные процессы углеводного обмена. Так, например, инсулин способствует накоплению в печени и мышцах гликогена, активируя фермент гликогенсинтетазу, и подавляет гликогенолиз и глюконеогенез. Антагонист инсулина - глюкагон стимулирует гликогенолиз. Адреналин, стимулируя действие аденилатциклазы, оказывает влияние на весь каскад реакций фосфоролиза. Гонадотропные гормоны активируют гликогенолиз в плаценте. Глюкокортикоидные гормоны стимулируют процесс глюконеогенеза. Соматотропный гормон оказывает влияние на активность ферментов пентозофосфатного пути и снижает утилизацию глюкозы периферическими тканями. В регуляции глюконеогенеза принимают участие ацетил-КоА и восстановленный никотинамидадениндинуклеотид. Повышение содержания жирных кислот в плазме крови тормозит активность ключевых ферментов гликолиза. В регуляции ферментативных реакций У. о. важную цель играют ионы Са 2+ , непосредственно или при участии гормонов, часто в связи с особым Са 2+ -связывающим белком - калмодулином. В регуляции активности многих ферментов большое значение имеют процессы их фосфорилирования - дефосфорилирования. В организме существует прямая связь между У. о. и обменом белков (см. Азотистый обмен), липидов (см. Жировой обмен) и минеральных веществ (см. Минеральный обмен).

Патология углеводного обмена. Увеличение содержания глюкозы в крови - гипергликемия может происходить вследствие чрезмерно интенсивного глюконеогенеза либо в результате понижения способности утилизации глюкозы тканями, например при нарушении процессов ее транспорта через клеточные мембраны. Понижение содержания глюкозы в крови - гипогликемия - может являться симптомом различных болезней и патологических состояний, причем особенно уязвимым в этом отношении является мозг: следствием гипогликемии могут быть необратимые нарушения его функций.

Генетически обусловленные дефекты ферментов У. о. являются причиной многих наследственных болезней (Наследственные болезни). Примером генетически обусловленного наследственного нарушения обмена моносахаридов может служить Галактоземия, развивающаяся в результате дефекта синтеза фермента галактозо-1-фосфатуридилтрансферазы. Признаки галактоземии отмечают также при генетическом дефекте УДФ-глюкоза-4-эпимеразы. Характерными признаками галактоземии являются гипогликемия, галактозурия, появление и накопление в крови наряду с галактозой галактозо-1-фосфата, а также снижение массы тела, жировая дистрофия и цирроз печени, желтуха, катаракта, развивающаяся в раннем возрасте, задержка психомоторного развития. При тяжелой форме галактоземии дети часто погибают ни первом году жизни вследствие нарушений функций печени или пониженной сопротивляемости инфекциям.

Примером наследственной непереносимости моносахаридов является непереносимость фруктозы, которая вызывается генетическим дефектом фруктозофосфатальдолазы и в ряде случаев - снижением активности Фруктоза-1,6-дифосфат-альдолазы. Болезнь характеризуется поражениями печени и почек. Для клинической картины характерны судороги, частая рвота, иногда коматозное состояние. Симптомы заболевания появляются в первые месяцы жизни при переводе детей на смешанное или искусственное питание. Нагрузка фруктозой вызывает резкую гипогликемию.

Заболевания, вызванные дефектами в обмене олигосахаридов, в основном заключаются в нарушении расщепления и всасывания углеводов пищи, что происходит главным образом в тонкой кишке. Мальтоза и низкомолекулярные декстрины, образовавшиеся из крахмала и гликогена пищи под действием -амилазы слюны и сока поджелудочной железы, лактоза молока и сахароза расщепляются дисахаридазами (мальтазой, лактазой и сахаразой) до соответствующих моносахаридов в основном в микроворсинках слизистой оболочки тонкой кишки, а затем, если процесс транспорта моносахаридов не нарушен, происходит их всасывание. Отсутствие или снижение активности дисахаридаз к слизистой оболочке тонкой кишки служит главной причиной непереносимости соответствующих дисахаридов, что часто приводит к поражению печени и почек, является причиной диареи, метеоризма (см. Мальабсорбции синдром). Особенно тяжелыми симптомами характеризуется наследственная непереносимость лактозы, обнаруживающаяся обычно с самого рождения ребенка. Для диагностики непереносимости сахаров применяют обычно нагрузочные пробы с введением натощак per os углевода, непереносимость которого подозревают. Более точный диагноз может быть поставлен путем биопсии слизистой оболочки кишечника и определения в полученном материале активности дисахаридаз. Лечение состоит в исключении из пищи продуктов, содержащих соответствующий дисахарид. Больший эффект наблюдают, однако, при назначении ферментных препаратов, что позволяет таким больным употреблять обычную пищу. Например, в случае недостаточности лактазы, содержащий ее ферментный препарат, желательно добавлять в молоко перед употреблением его в пищу. Правильный диагноз заболеваний, вызванных недостаточностью дисахаридаз, крайне важен. Наиболее частой диагностической ошибкой в этих случаях являются установление ложного диагноза дизентерии, других кишечных инфекций, и лечение антибиотиками, приводящее к быстрому ухудшению состояния больных детей и тяжелым последствиям.

Заболевания, вызванные нарушением обмена гликогена, составляют группу наследственных энзимопатий, объединенных под названием гликогенозов (Гликогенозы). Гликогенозы характеризуются избыточным накоплением гликогена в клетках, которое может также сопровождаться изменением структуры молекул этого полисахарида. Гликогенозы относят к так называемым болезням накопления. Гликогенозы (гликогенная болезнь) наследуются по аутосомно-рецессивному или сцепленному с полом типу. Почти полное отсутствие в клетках гликогена отмечают при агликогенозе, причиной которого является полное отсутствие или сниженная активность гликогенсинтетазы печени.

Заболевания, вызванные нарушением обмена различных гликоконъюгатов, в большинстве случаев являются следствием врожденных нарушений распада гликолипидов, гликопротеинов или гликозаминогликанов (мукополисахаридов) в различных органах. Они также являются болезнями накопления. В зависимости от того, какое соединение аномально накапливается в организме, различают гликолипидозы, гликопротеиноды, мукополисахаридозы. Многие лизосомные гликозидазы, дефект которых лежит в основе наследственных нарушений углеводного обмена, существуют в виде различных форм, так называемых множественных форм, или изоферментов. Заболевание может быть вызвано дефектом какого-либо одного изофермента. Так, например. болезнь Тея - Сакса - следствие дефекта формы AN-ацетилгексозаминидазы (гексозаминидазы А), в то время как дефект форм А и В этого фермента приводит к болезни Сандхоффа.

Большинство болезней накопления протекает крайне тяжело, многие из них пока неизлечимы. Клиническая картина при различных болезнях накопления может быть сходной, и, напротив, одно и то же заболевание может проявляться по-разному у разных больных. Поэтому необходимо в каждом случае устанавливать ферментный дефект, выявляемый большей частью в лейкоцитах и фибробластах кожи больных. В качестве субстратов применяют гликоконьюгаты или различные синтетические гликозиды. При различных мукополисахаридозах (Мукополисахаридозы), а также при некоторых других болезнях накопления (например, при маннозидозе) выводятся с мочой в значительных количествах различающиеся по структуре олигосахариды. Выделение этих соединений из мочи и их идентификацию проводят с целью диагностики болезней накопления. Определение активности фермента в культивируемых клетках, выделенных из амниотической жидкости, получаемой при амниоцентезе при подозрении на болезнь накопления, позволяет ставить пренатальный диагноз.

При некоторых заболеваниях серьезные нарушения У. о. возникают вторично. Примером такого заболевания является Диабет сахарный, обусловленный либо поражением -клеток островков поджелудочной железы, либо дефектами в структуре самого инсулина или его рецепторов на мембранах клеток инсулинчувствительных тканей. Алиментарные гипергликемия и гиперинсулинемия ведут к развитию ожирения, что увеличивает липолиз и использование неэтерифицированных жирных кислот (НЭЖК) в качестве энергетического субстрата. Это ухудшает утилизацию глюкозы в мышечной ткани и стимулирует глюконеогенез. В свою очередь, избыток в крови НЭЖК и инсулина ведет к увеличению синтеза в печени триглицеридов (см. Жиры) и Холестерины и, соответственно, к увеличению концентрации в крови липопротеинов (Липопротеины) очень низкой и низкой плотности. Одной из причин, способствующих развитию таких тяжелых осложнений при диабете, как катаракта, нефропатия, англопатия и гипоксия тканей, является неферментативное гликозилирование белков.

Особенности углеводного обмена у детей. Состояние У. о. у детей в норме определяется зрелостью эндокринных механизмов регуляции и функций других систем и органов. В поддержании гомеостаза плода важную роль играет поступление к нему глюкозы через плаценту. Количество глюкозы, поступающей через плаценту к плоду, непостоянно, т.к. ее концентрация в крови матери может неоднократно меняться в течение дня. Изменение соотношения инсулин/глюкоза у плода может вызвать у него острые или длительные нарушения обмена веществ. В последнюю треть внутриутробного периода у плода значительно увеличиваются запасы гликогена в печени и мышцах, в этот период глюкогенолиз и глюконеогенез уже имеют для плода существенное значение и как источник глюкозы.

Особенностью У. о. у плода и новорожденного является высокая активность процессов гликолиза, позволяющая лучше адаптироваться к условиям гипоксии. Интенсивность гликолиза у новорожденных на 30-35% выше, чем у взрослых; в первые месяцы после рождения она постепенно снижается. О высокой интенсивности гликолиза у новорожденных свидетельствуют высокое содержание лактата в крови и моче и более высокая, чем у взрослых, активность лактатдегидрогеназы (Лактатдегидрогеназа) в крови. Значительная часть глюкозы у плода окисляется по пентозофосфатному пути.

Родовой стресс, изменение температуры окружающей среды, появление самостоятельного дыхания у новорожденных, возрастание мышечной активности и усиление деятельности мозга увеличивают расход энергии во время родов и в первые дни жизни, приводя к быстрому снижению содержания глюкозы в крови. Через 4-6 ч после рождения ее содержание снижается до минимума (2,2-3,3 ммоль/л ), оставаясь на таком уровне в течение последующих 3-4 дней. Повышенное потребление глюкозы тканями у новорожденных и период голодания после родов приводят к усилению гликогенолиза и использованию резервного гликогена и жира. Запас гликогена в печени у новорожденного в первые 6 ч жизни резко (примерно в 10 раз) сокращается, особенно при асфиксии (Асфиксия) и голодании. Содержание глюкозы в крови достигает возрастной нормы у доношенных новорожденных к 10-14-му дню жизни, а у недоношенных детей устанавливается лишь к 1-2-му месяцу жизни. В кишечнике новорожденных ферментативный гидролиз лактозы (основного углевода пищи в этот период) несколько снижен и увеличивается в грудном возрасте. Обмен галактозы у новорожденных интенсивнее, чем у взрослых.

Нарушения У. о. у детей при различных соматических заболеваниях носят вторичный характер и связаны с влиянием основного патологического процесса на этот вид обмена. Лабильность механизмов регуляции углеводного и жирового обмена в раннем детском возрасте создает предпосылки для возникновения гипо- и гипергликемических состояний, ацетонемической рвоты. Так, например, нарушения У. о. при пневмонии у детей раннего возраста проявляются повышением в крови натощак концентраций глюкозы и лактата в зависимости от степени дыхательной недостаточности. Непереносимость углеводов выявляется при ожирении и обусловливается изменением секреции инсулина. У детей с кишечными синдромами часто выявляют нарушение расщепления и всасывания углеводов, при целиакии (см. Глютеновая болезнь) отмечают уплощение гликемической кривой после нагрузки крахмалом, дисахаридами и моносахаридами, а у детей раннею возраста с острыми энтероколитами и соледефицитным состоянием при обезвоживании наблюдают склонность к гипогликемии.

В крови детей старшего возраста в норме отсутствуют галактоза, пентозы и дисахариды, у детей грудного возраста они могут появляться в крови после приема пищи, богатой этими углеводами, а также при генетически обусловленных аномалиях обмена соответствующих углеводов или углеводсодержащих соединений; в подавляющем большинстве случаев симптомы таких заболеваний проявляются у детей в раннем возрасте.

Для ранней диагностики наследственных и приобретенных нарушений У. о. у детей применяют этапную систему обследования с использованием генеалогического метода (см. Медицинская генетика), различных скрининг-тестов (см. Скрининг), а также углубленных биохимических исследований. На первом этапе обследования проводят определение в моче глюкозы, фруктозы, сахарозы, лактозы качественными и полуколичественными методами, проверяют значение рН кала (Кала-азар). При получении результатов, заставляющих подозревать патологии) У. о., переходят ко второму этапу обследования: определению содержания глюкозы в моче и крови натощак количественными методами, построению гликемических и глюкозурических кривых, исследованию гликемических кривых после дифференцированных сахарных нагрузок, определению содержания глюкозы в крови после введения адреналина, глюкагона, лейцина, бутамида, кортизона, инсулина; в части случаев осуществляют прямое определение активности дисахаридаз в слизистой оболочки двенадцатиперстной и тонкой кишок и хроматографическую идентификацию углеводов крови и мочи. Для выявления нарушений переваривания и всасывания углеводов после установления значения рН кала определяют толерантность к моно- и дисахаридам с обязательным измерением содержания сахаров в кале и их хроматографической идентификацией до и после нагрузочных проб с углеводами При подозрении на энзимопатию (см. Ферментопатии) в крови и тканях определяют активность ферментов У. о., дефект синтеза (или снижение активности) которых подозревают клиницисты.

Для коррекции нарушенного У. о. при тенденции к гипергликемии применяют диетотерапию с ограничением жиров и углеводов. При необходимости назначают инсулин или другие гипогликемизирующие препараты; средства, способствующие повышению содержания глюкозы в крови, отменяют. При гипогликемии показана диета, богатая углеводами и белками.

Во время приступов гипогликемии вводят глюкозу, глюкагон, адреналин. При непереносимости отдельных углеводов назначают индивидуальную диету с исключением соответствующих сахаров из пищи больных. В случаях нарушений У. о., носящих вторичный характер, необходимо лечение основного заболевания.

Профилактика выраженных нарушений У. о. у детей заключается в их своевременном обнаружении. При вероятности наследственной патологии У. о. рекомендуется Медико-генетическое консультирование. Выраженное неблагоприятное влияние декомпенсации сахарного диабета у беременных женщин на У. о. у плода и новорожденного диктует необходимость тщательной компенсации заболевания у матери на всем протяжении беременности и родов.

Библиогр.: Видершайн Г.Я. Биохимические основы гликозидозов, М., 1980; Гормональная регуляция функций детского организма в норме и патологии, под ред. М.Я. Студеникина и др., с. 33, М., 1978; Комаров Ф.И., Коровкин Б.Ф. и Меньшиков В.В. Биохимические исследования в клинике, с. 407, Л., 1981; Мецлер Д. Биохимия, пер. с англ., т. 2, М., 1980; Николаев А.Я. Биологическая химия, М., 1989; Розенфельд Е.Л. и Попова И.А. Врожденные нарушения обмена гликогена, М., 1989; Справочник по функциональной диагностике в педиатрии, под ред. Ю.Е. Вельтищева и Н.С. Кисляк, с. 107, М., 1979.

Энциклопедический словарь медицинских терминов М. СЭ-1982-84, ПМП: БРЭ-94 г., ММЭ: МЭ.91-96 г.

Продолжая рассматривать тонкую настройку нашего организма путем изменения основ плана питания, нужно рассматривать все типы . И сегодня мы рассмотрим один из самых важных элементов в питании. Как наш организм проводит обмен углеводов, и как правильно питаться так, чтобы это пошло на пользу вашим спортивным целям и достижениям, а вовсе не наоборот?

Общие сведения

Регуляция углеводного обмена – одна из самых сложных структур в нашем организме. Организм работает на углеводах, как на основном источнике для топлива. Происходит наладка системы, которая позволяет употреблять углеводы, как приоритетный источник питания, с максимальной энергетической эффективностью.

Наш организм потребляет энергию исключительно из углеводов. И только в том случае, если энергии недостаточно, он будет перенастраивать , или использовать в качестве источника топлива белковую ткань.

Этапы углеводного обмена

Основные этапы обмена углеводов делятся на 3 основные группы:

  1. Преобразование углеводов в энергию.
  2. Инсулиновая реакция.
  3. Использование энергии и выведения продуктов жизнедеятельности.

Первый этап – ферментация углеводов

В отличие от жировой ткани, или белковых продуктов, преобразование и разложение углеводов на простейшие моносахариды, происходят уже на этапе пережевывания. Под воздействием слюны, любой сложный углевод трансформируется в простейшую молекулу десктрозы.

Для того чтобы не быть голословными, предлагаем провести эксперимент. Возьмите кусочек несладкого хлеба и начните его долго жевать. На определенном этапе вы почувствуете сладкий вкус. Это означает, что гликемический индекс хлеба под воздействием слюны вырос и стал даже выше, чем у сахара. Далее, все, что не было измельчено, переваривается уже в желудке. Для этого используется желудочный сок, который с разной скорость расщепляет те или иные структуры до уровня простейшей глюкозы. Декстроза же напрямую отправляется в кровеносную систему.

Второй этап – распределение полученной энергии в печени

Практически вся поступающая пища проходит этап инфильтрации кровью в печени. Они попадают в кровеносную систему именно из клеток печени. Там, под воздействием гормонов, начинается глюкагоновая реакция и дозировка насыщения углеводами транспортный клеток в кровеносной системе.

Третий этап – это переход всего сахара в кровь

Печень способна обрабатывать только 50-60 грамм чистой глюкозы за определенное время, сахар практически в неизменном виде попадает в кровь. Далее он начинает циркуляцию по всем органам, наполняя их энергией для нормального функционирования. В условиях большого потребления карбогидратов с высоким гликемическим индексом происходят следующие изменения:

  • Клетки сахара замещают кислородные клетки. Это начинает вызывать кислородное голодание тканей и понижение активности.
  • При определенном насыщении, кровь сгущается. Это затрудняет её перемещение по сосудам, увеличивает нагрузку на сердечную мышцу, и как следствие ухудшает функционирование организма в целом.

Четвертый этап – инсулиновая реакция

Он является адаптационной реакцией нашего организма на чрезмерное насыщение сахаром крови. Для того чтобы этого не происходило, при определенном пороге в кровь начинает впрыскиваться инсулин. Этот гормон является основным регулятором уровня сахара в крови, и при его недостатке у людей развивается сахарный диабет.

Инсулин связывает клетки глюкозы, превращая их в гликоген. – это несколько молекул сахара, связанных между собой. Они являются внутренним источником питания для всех тканей. В отличие от сахара, они не связывают воду, а, значит, могут свободно перемещаться, не вызывая гипоксию или сгущение крови.

Чтобы гликоген не закупоривал транспортные каналы в организме, инсулин открывает клеточную структуру внутренних тканей, и все углеводы полностью запираются в этих клетках.

Для связывания молекул сахара в гликоген задействуется печень, скорость переработки которой ограничена. Если углеводов чрезмерно много – запускается резервный способ преобразования. В кровь впрыскиваются алкалоиды, которые связывают углеводы и превращают их в липиды, которые откладываются под кожей.

Пятый этап – вторичное использование накопленных запасов

В организме у атлетов имеются специальные гликогеновые депо, которые человек может использовать в качестве источника резервного «быстрого питания». Под воздействием кислорода и увеличившихся нагрузок, организм может проводить аэробный гликолиз из клеток, находящихся в гликогеновом депо.

Вторичное разложение углеводов происходит без инсулина, так как организм в состоянии самостоятельно регулировать уровень того, сколько молекул гликогена ему нужно разложить для получения оптимального количества энергии.

Последний этап – выведение продуктов жизнедеятельности

Так как сахар в процессе использования его организмом подвергается химическим реакциям с выделением тепловой и механической энергии, на выходе остается продукт жизнедеятельности, который по своему составу наиболее приближен к чистому углю. Он связывается с остальными продуктами жизнедеятельности человека, и выводиться из кровеносной системы сначала в желудочно-кишечный тракт, где пройдя полное преобразование выводиться через прямую кишку наружу.

Отличия метаболизма глюкозы от фруктозы

Метаболизм фруктозы, которая имеет отличную от глюкозы структуры, проходит несколько иначе, поэтому нужно учитывать следующие факторы:

  • Фруктоза – единственный доступный источник быстрых углеводов для людей, страдающих от сахарного диабета.
  • фруктов ниже, чем у любого другого продукта. Например, арбуз – один из самых сладких и больших фруктов, обладает гликемической нагрузкой порядка 2. А это значит, что на килограмм арбуза, приходиться всего 20 грамм фруктозы. Чтобы достичь оптимальной дозировки, при которой он будете превращен в жировую ткань необходимо съесть порядка 2.5 килограмм этого сладкого фрукта.
  • На вкус фруктоза слаще сахара, а, значит, используя сахарозаменители на её основе, можно потреблять меньше углеводов в целом.

А теперь рассмотрим, чем отличается метаболизм углеводов до фруктозы и глюкозы соответственно.

Метаболизм глюкозы Метаболизм фруктозы
Происходит абсорбирование части поступающего сахара в клетках печени. Практически не абсорбируется в печени.
Активирует инсулиновую реакцию. .В процессе метаболизма выделяются алкалоиды, отравляющие организм.
Активирует глюкагоновую реакцию. Не участвуют в переходе источников питания на внешний сахар.
Является предпочтительным источником энергии для организма. Переходят в жировую ткань без участия инсулина.
Участвует в создании клеток гликогена. Не могут участвовать в создании гликогеновых запасов из-за более сложной структуры и завершенной формы моносахарида.
Низкая чувствительность и возможность превращения в триглицериды. Высокая вероятность превращения в жировую ткань при относительно небольшом потреблении.

Функции углеводов

Рассматривая основы обмена углеводов, упомянем основные функции сахара в нашем организме.

  1. Энергетическая функция. Углеводы являются предпочтительным энергетическим источником в виду их структуры.
  2. Открывающая функция. Углевод вызывает инсулин, и может открыть клетки без их разрушения для проникновения других нутриентов. Именно поэтому гейнеры более популярны в сравнении с чистыми протеиновыми коктейлями.
  3. Запасающая функция. Организм использует их и накапливает их на случай экстренной стрессовой ситуации. Ему не нужны транспортные белки, а, значит, окислить молекулу у него получается значительно быстрее.
  4. Улучшение работы мозговых клеток. Мозговая жидкость может работать только в том случае, если в крови находится достаточно количество сахара. Попробуйте начать учить что-то на голодный желудок, и вы поймете, что все ваши мысли заняты едой, а вовсе не учебой или развитием.

Итог

Зная особенности обмена и основные функции углеводов в нашем организме, трудно переоценивать их важность. Чтобы успешно худеть или набирать мышечную массу, нужно соблюдать правильный энергетический баланс. И помните, если вы ограничиваете углеводы в своем питании, создавая , организм в первую очередь начнет есть мышцы, а вовсе не жировые отложения. Если хотите узнать об этом подобнее, узнайте об особенностях метаболизма жиров.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.