Vektorski proizvod tabele vektora. Vektori za lutke

Konačno sam se dočepao ove ogromne i dugo očekivane teme. analitička geometrija. Prvo, malo o ovom dijelu više matematike... Sigurno se sada sjećate školskog kursa geometrije sa brojnim teoremama, njihovim dokazima, crtežima itd. Šta sakriti, nevoljena i često opskurna tema za značajan dio učenika. Analitička geometrija, začudo, može se činiti zanimljivijom i pristupačnijom. Šta znači pridjev „analitički“? Odmah mi padaju na pamet dvije klišeirane matematičke fraze: “metoda grafičkog rješenja” i “metoda analitičkog rješenja”. Grafička metoda, naravno, povezan je sa konstrukcijom grafova i crteža. Analitički isto metoda uključuje rješavanje problema uglavnom kroz algebarske operacije. U tom smislu, algoritam za rješavanje gotovo svih problema analitičke geometrije je jednostavan i transparentan, često je dovoljno pažljivo primijeniti potrebne formule - i odgovor je spreman! Ne, naravno, to nikako nećemo moći bez crteža, a osim toga, radi boljeg razumijevanja gradiva, pokušat ću ih citirati bez potrebe.

Novootvoreni kurs iz geometrije ne pretenduje da je teorijski završen, fokusiran je na rešavanje praktičnih problema. U svoja predavanja ću uključiti samo ono što je, sa moje tačke gledišta, važno u praktičnom smislu. Ako vam je potrebna potpunija pomoć u bilo kojem pododjeljku, preporučujem sljedeću prilično pristupačnu literaturu:

1) Stvar koju, bez šale, poznaje nekoliko generacija: Školski udžbenik iz geometrije, autori - L.S. Atanasyan i kompanija. Ova školska svlačionica već je doživjela 20 (!) reprinta, što, naravno, nije granica.

2) Geometrija u 2 toma. Autori L.S. Atanasyan, Bazylev V.T.. Ovo je literatura za srednju školu, trebat će vam prvi tom. Zadaci koji se rijetko susreću mogu mi ispasti iz vida, a tutorijal će mi biti od neprocjenjive pomoći.

Obje knjige mogu se besplatno preuzeti na internetu. Osim toga, možete koristiti moju arhivu sa gotovim rješenjima koja se nalaze na stranici Preuzmite primjere iz više matematike.

Među alatima, ponovo predlažem svoj razvoj - softverski paket u analitičkoj geometriji, što će uvelike pojednostaviti život i uštedjeti mnogo vremena.

Pretpostavlja se da je čitalac upoznat sa osnovnim geometrijskim pojmovima i figurama: tačka, prava, ravan, trougao, paralelogram, paralelepiped, kocka itd. Preporučljivo je zapamtiti neke teoreme, barem Pitagorinu teoremu, pozdrav ponavljačima)

A sada ćemo razmotriti sekvencijalno: koncept vektora, akcije s vektorima, vektorske koordinate. Preporučujem čitanje dalje najvažniji članak Tačkasti proizvod vektora, i također Vektorski i mješoviti proizvod vektora. Lokalni zadatak - Podjela segmenta u tom pogledu - također neće biti suvišan. Na osnovu gore navedenih informacija, možete savladati jednačina prave u ravni With najjednostavniji primjeri rješenja, što će omogućiti naučiti rješavati zadatke iz geometrije. Sljedeći članci su također korisni: Jednačina ravni u prostoru, Jednačine prave u prostoru, Osnovni zadaci o pravoj liniji i ravni, ostali dijelovi analitičke geometrije. Naravno, standardni zadaci će se razmatrati usput.

Vektorski koncept. Besplatno vektor

Prvo, ponovimo školsku definiciju vektora. Vector pozvao usmjereno segment za koji su naznačeni njegov početak i kraj:

U ovom slučaju, početak segmenta je tačka, a kraj segmenta tačka. Sam vektor je označen sa . Smjer je bitno, ako pomaknete strelicu na drugi kraj segmenta, dobićete vektor, a to je već potpuno drugačiji vektor. Zgodno je poistovjetiti koncept vektora s kretanjem fizičkog tijela: morate se složiti, ulazak na vrata instituta ili napuštanje vrata instituta su potpuno različite stvari.

Pojedine tačke ravni ili prostora pogodno je smatrati tzv nulti vektor. Za takav vektor kraj i početak se poklapaju.

!!! Bilješka: Ovdje i dalje možete pretpostaviti da vektori leže u istoj ravni ili možete pretpostaviti da se nalaze u prostoru - suština predstavljenog materijala vrijedi i za ravan i za prostor.

Oznake: Mnogi su odmah primijetili štap bez strelice u oznaci i rekli, ima i strelica na vrhu! Istina, možete to napisati strelicom: , ali je također moguće unos koji ću koristiti u budućnosti. Zašto? Očigledno, ova navika se razvila iz praktičnih razloga, ispostavilo se da su moji strijelci u školi i na fakultetu bili previše veliki i čupavi. U obrazovnoj literaturi ponekad se uopće ne zamaraju klinastim pismom, već podebljaju slova: , čime se implicira da je riječ o vektoru.

To je bila stilistika, a sada o načinima pisanja vektora:

1) Vektori se mogu pisati sa dva velika latinična slova:
i tako dalje. U ovom slučaju, prvo slovo Nužno označava početnu tačku vektora, a drugo slovo označava krajnju tačku vektora.

2) Vektori se takođe pišu malim latiničnim slovima:
Konkretno, naš vektor se može redizajnirati zbog kratkoće malim latiničnim slovom.

Dužina ili modul vektor različit od nule naziva se dužina segmenta. Dužina nultog vektora je nula. Logično.

Dužina vektora je označena znakom modula: ,

Naučit ćemo kako pronaći dužinu vektora (ili ćemo to ponoviti, ovisno o tome ko) malo kasnije.

Ovo su bile osnovne informacije o vektorima, poznate svim školarcima. U analitičkoj geometriji tzv slobodni vektor.

Jednostavno rečeno - vektor se može nacrtati iz bilo koje tačke:

Navikli smo da takve vektore nazivamo jednakima (definicija jednakih vektora će biti data u nastavku), ali sa čisto matematičke tačke gledišta, oni su ISTI VEKTORI ili slobodni vektor. Zašto besplatno? Jer u toku rješavanja problema možete „prikačiti“ ovaj ili onaj vektor za BILO KOJU tačku ravni ili prostora koja vam je potrebna. Ovo je veoma cool karakteristika! Zamislite vektor proizvoljne dužine i smjera - može se "klonirati" beskonačan broj puta i u bilo kojoj tački u prostoru, zapravo, postoji SVUDA. Postoji jedna studentska izreka: Svakom predavaču je stalo do vektora. Uostalom, nije samo duhovita rima, sve je matematički ispravno - tu se može pričvrstiti i vektor. Ali nemojte žuriti da se radujete, sami studenti često pate =)

dakle, slobodni vektor- Ovo gomila identični usmjereni segmenti. Školska definicija vektora, data na početku pasusa: „usmjereni segment se zove vektor...“ podrazumijeva specifično usmjereni segment uzet iz datog skupa, koji je vezan za određenu tačku u ravni ili prostoru.

Treba napomenuti da je sa stanovišta fizike koncept slobodnog vektora općenito netačan, a bitna je i tačka primjene vektora. Zaista, direktan udarac iste sile u nos ili čelo, dovoljan da razvije moj glupi primjer, povlači različite posljedice. Kako god, neslobodan vektori se takođe nalaze u toku vyshmata (ne idite tamo :)).

Akcije sa vektorima. Kolinearnost vektora

Školski kurs geometrije pokriva niz radnji i pravila s vektorima: sabiranje po pravilu trougla, sabiranje po pravilu paralelograma, pravilo vektorske razlike, množenje vektora brojem, skalarni proizvod vektora itd. Za početak, ponovimo dva pravila koja su posebno relevantna za rješavanje problema analitičke geometrije.

Pravilo za dodavanje vektora pomoću pravila trokuta

Razmotrimo dva proizvoljna ne-nula vektora i :

Morate pronaći zbir ovih vektora. Zbog činjenice da se svi vektori smatraju slobodnim, vektor iz ostavljamo po strani kraj vektor:

Zbir vektora je vektor. Za bolje razumijevanje pravila, preporučljivo je u njega staviti fizičko značenje: neka tijelo putuje duž vektora , a zatim duž vektora . Tada je zbroj vektora vektor rezultujuće putanje sa početkom u tački polaska i krajem u tački dolaska. Slično pravilo je formulirano za zbir bilo kojeg broja vektora. Kako kažu, tijelo može ići svojim putem vrlo nagnuto duž cik-cak, ili možda na autopilotu - duž rezultirajućeg vektora zbira.

Usput, ako se vektor odgodi od počeo vektor, onda dobijamo ekvivalent pravilo paralelograma dodavanje vektora.

Prvo, o kolinearnosti vektora. Dva vektora se nazivaju kolinearno, ako leže na istoj liniji ili na paralelnim linijama. Grubo govoreći, govorimo o paralelnim vektorima. Ali u odnosu na njih uvijek se koristi pridjev „kolinearno“.

Zamislite dva kolinearna vektora. Ako su strelice ovih vektora usmjerene u istom smjeru, onda se takvi vektori nazivaju co-directed. Ako strelice pokazuju u različitim smjerovima, tada će vektori biti suprotnim pravcima.

Oznake: kolinearnost vektora ispisuje se uobičajenim simbolom paralelizma: , dok je detaljizacija moguća: (vektori su kousmjereni) ili (vektori su suprotno usmjereni).

Posao vektor različit od nule na broju je vektor čija je dužina jednaka , a vektori i su kousmjereni na i suprotno usmjereni na .

Pravilo množenja vektora brojem lakše je razumjeti uz pomoć slike:

Pogledajmo to detaljnije:

1) Smjer. Ako je množitelj negativan, onda je vektor mijenja smjer na suprotno.

2) Dužina. Ako je množitelj sadržan unutar ili , tada dužina vektora smanjuje se. Dakle, dužina vektora je polovina dužine vektora. Ako je modul množitelja veći od jedan, tada je dužina vektora povećava na vrijeme.

3) Imajte na umu da svi vektori su kolinearni, dok se jedan vektor izražava kroz drugi, na primjer, . I obrnuto je istina: ako se jedan vektor može izraziti kroz drugi, onda su takvi vektori nužno kolinearni. ovako: ako pomnožimo vektor brojem, dobićemo kolinearno(u odnosu na original) vektor.

4) Vektori su kosmjerni. Vektori i takođe su korežirani. Svaki vektor prve grupe je suprotno usmjeren u odnosu na bilo koji vektor druge grupe.

Koji su vektori jednaki?

Dva vektora su jednaka ako su u istom smjeru i imaju istu dužinu. Imajte na umu da kosmjernost implicira kolinearnost vektora. Definicija bi bila netačna (suvišna) ako bismo rekli: “Dva vektora su jednaka ako su kolinearni, kosmjerni i imaju istu dužinu.”

Sa stanovišta koncepta slobodnog vektora, jednaki vektori su isti vektor, kao što je objašnjeno u prethodnom paragrafu.

Vektorske koordinate na ravni i u prostoru

Prva stvar je razmatranje vektora na ravni. Oslikajmo kartezijanski pravougaoni koordinatni sistem i nacrtajmo ga od početka koordinata single vektori i :

Vektori i ortogonalno. Ortogonalno = okomito. Preporučujem da se polako navikavate na pojmove: umjesto paralelizma i okomitosti koristimo riječi respektivno kolinearnost I ortogonalnost.

Oznaka: Ortogonalnost vektora piše se uobičajenim simbolom okomitosti, na primjer: .

Vektori koji se razmatraju nazivaju se koordinatni vektori ili orts. Ovi vektori se formiraju osnovu na površini. Šta je osnova, mislim da je mnogima intuitivno jasno, detaljnije informacije mogu se naći u članku Linearna (ne)zavisnost vektora. Osnova vektora Jednostavnim riječima, osnova i porijeklo koordinata definiraju cijeli sistem - to je svojevrsni temelj na kojem vrije pun i bogat geometrijski život.

Ponekad se naziva izgrađena osnova ortonormalno osnova ravni: “orto” - jer su koordinatni vektori ortogonalni, pridjev “normaliziran” označava jedinicu, tj. dužine baznih vektora su jednake jedan.

Oznaka: osnova se obično piše u zagradama, unutar kojih u strogom redosledu bazni vektori su navedeni, na primjer: . Koordinatni vektori zabranjeno je preurediti.

Bilo koji ravan vektor jedini način izraženo kao:
, Gdje - brojevi koji se zovu vektorske koordinate u ovoj osnovi. I sam izraz pozvao vektorska dekompozicijapo osnovu .

Poslužena večera:

Počnimo s prvim slovom abecede: . Crtež jasno pokazuje da se pri dekomponovanju vektora u osnovu koriste oni o kojima smo upravo govorili:
1) pravilo za množenje vektora brojem: i ;
2) sabiranje vektora prema pravilu trougla: .

Sada mentalno nacrtajte vektor iz bilo koje druge tačke na ravni. Sasvim je očigledno da će ga njegovo propadanje „nemilosrdno pratiti“. Evo je, sloboda vektora - vektor "nosi sve sa sobom". Ovo svojstvo, naravno, vrijedi za bilo koji vektor. Smiješno je da sami osnovni (slobodni) vektori ne moraju biti iscrtani od početka, na primjer, dolje lijevo, a drugi gore desno, i ništa se neće promijeniti! Istina, ne morate to da radite, jer će i nastavnik pokazati originalnost i izvući vam "kredit" na neočekivanom mjestu.

Vektori ilustruju tačno pravilo za množenje vektora brojem, vektor je kosmeran sa baznim vektorom, vektor je usmeren suprotno od baznog vektora. Za ove vektore, jedna od koordinata je jednaka nuli, možete je pažljivo napisati ovako:


A osnovni vektori su, inače, ovakvi: (u stvari, oni se izražavaju kroz sebe).

I na kraju: , . Usput, šta je vektorsko oduzimanje i zašto nisam govorio o pravilu oduzimanja? Negdje u linearnoj algebri, ne sjećam se gdje, primijetio sam da je oduzimanje poseban slučaj sabiranja. Dakle, proširenja vektora “de” i “e” lako se zapisuju kao zbir: , . Preuredite pojmove i vidite na crtežu kako dobro staro dobro sabiranje vektora prema pravilu trougla funkcionira u ovim situacijama.

Razmatrana dekompozicija forme ponekad se naziva vektorska dekompozicija u ort sistemu(tj. u sistemu jediničnih vektora). Ali ovo nije jedini način za pisanje vektora, uobičajena je sljedeća opcija:

Ili sa znakom jednakosti:

Sami bazni vektori su zapisani na sljedeći način: i

To jest, koordinate vektora su naznačene u zagradama. U praktičnim problemima koriste se sve tri opcije notacije.

Dvoumio sam se da li da govorim, ali ipak ću reći: vektorske koordinate se ne mogu preurediti. Strogo na prvom mjestu zapisujemo koordinate koje odgovaraju jediničnom vektoru, strogo na drugom mestu zapisujemo koordinatu koja odgovara jediničnom vektoru. Zaista, i dva su različita vektora.

Odredili smo koordinate u avionu. Pogledajmo sada vektore u trodimenzionalnom prostoru, ovdje je gotovo sve isto! Samo će dodati još jednu koordinatu. Teško je napraviti trodimenzionalne crteže, pa ću se ograničiti na jedan vektor, koji ću zbog jednostavnosti ostaviti po strani od porijekla:

Bilo koji 3D vektor prostora jedini način proširiti preko ortonormalne osnove:
, gdje su koordinate vektora (broja) u ovoj bazi.

Primjer sa slike: . Pogledajmo kako funkcionišu vektorska pravila. Prvo, množenje vektora brojem: (crvena strelica), (zelena strelica) i (strelica maline). Drugo, evo primjera dodavanja nekoliko, u ovom slučaju tri, vektora: . Vektor zbroja počinje na početnoj tački polaska (početak vektora) i završava na konačnoj tački dolaska (kraj vektora).

Svi vektori trodimenzionalnog prostora su, naravno, takođe slobodni, pokušajte da mentalno odvojite vektor iz bilo koje druge tačke i shvatićete da će njegova dekompozicija „ostati s njim“.

Slično kao i ravno kućište, osim pisanja verzije sa zagradama se široko koriste: bilo .

Ako jedan (ili dva) koordinatni vektor nedostaje u ekspanziji, tada se na njihovo mjesto stavljaju nule. primjeri:
vektor (pažljivo ) – pišimo ;
vektor (pažljivo ) – pišimo ;
vektor (pažljivo ) – pišemo.

Osnovni vektori se pišu na sljedeći način:

Ovo je, možda, svo minimalno teorijsko znanje potrebno za rješavanje problema analitičke geometrije. Možda postoji mnogo pojmova i definicija, pa preporučujem da čajnici ponovo pročitaju i shvate ove informacije. I svakom čitaocu će biti korisno da se s vremena na vrijeme osvrne na osnovnu lekciju kako bi bolje usvojio materijal. Kolinearnost, ortogonalnost, ortonormalna osnova, vektorska dekompozicija - ovi i drugi koncepti će se često koristiti u budućnosti. Napominjem da materijali na sajtu nisu dovoljni za polaganje teorijskog testa ili kolokvijuma iz geometrije, budući da pažljivo šifriram sve teoreme (i bez dokaza) - na štetu naučnog stila prezentacije, ali plus za vaše razumijevanje predmet. Da biste dobili detaljne teorijske informacije, naklonite se profesoru Atanasyanu.

I prelazimo na praktični dio:

Najjednostavniji problemi analitičke geometrije.
Akcije sa vektorima u koordinatama

Veoma je preporučljivo naučiti kako rješavati zadatke koji će se razmatrati potpuno automatski, te formule zapamtiti, ne morate ga čak ni namjerno pamtiti, oni će ga sami zapamtiti =) Ovo je vrlo važno, jer se ostali problemi analitičke geometrije baziraju na najjednostavnijim elementarnim primjerima, pa će biti neugodno trošiti dodatno vrijeme na jedući pijune . Nema potrebe da zakopčavate gornje dugmad na majici; mnoge stvari su vam poznate iz škole.

Prezentacija materijala će se odvijati paralelno - i za avion i za svemir. Iz razloga što sve formule... videćete sami.

Kako pronaći vektor iz dvije tačke?

Ako su date dvije tačke ravni i, tada vektor ima sljedeće koordinate:

Ako su date dvije tačke u prostoru i, tada vektor ima sljedeće koordinate:

To je, iz koordinata kraja vektora morate oduzeti odgovarajuće koordinate početak vektora.

vježba: Za iste tačke zapišite formule za pronalaženje koordinata vektora. Formule na kraju lekcije.

Primjer 1

S obzirom na dvije točke ravnine i . Pronađite vektorske koordinate

Rješenje: prema odgovarajućoj formuli:

Alternativno, može se koristiti sljedeći unos:

Ovo će odlučiti esteti:

Lično sam navikao na prvu verziju snimka.

odgovor:

Prema uslovu, nije bilo potrebno konstruisati crtež (što je tipično za probleme analitičke geometrije), ali da bih razjasnio neke tačke za lutke, neću biti lijen:

Definitivno treba da razumete razlika između koordinata tačke i vektorskih koordinata:

Koordinate tačaka– to su obične koordinate u pravougaonom koordinatnom sistemu. Mislim da svi znaju crtati tačke na koordinatnoj ravni od 5.-6. razreda. Svaka tačka ima striktno mjesto u ravni i ne može se nigdje pomjeriti.

Koordinate vektora– to je njegovo proširenje po osnovu, u ovom slučaju. Svaki vektor je slobodan, pa ga, ako je potrebno, možemo lako udaljiti od neke druge tačke u ravni. Zanimljivo je da za vektore uopšte ne morate da gradite ose ili pravougaoni koordinatni sistem;

Čini se da su zapisi o koordinatama tačaka i koordinatama vektora slični: , i značenje koordinata apsolutno drugačije, i trebali biste biti svjesni ove razlike. Ova razlika se, naravno, odnosi i na prostor.

Dame i gospodo, napunimo ruke:

Primjer 2

a) Dani su bodovi i. Pronađite vektore i .
b) Daju se bodovi i . Pronađite vektore i .
c) Dani su bodovi i. Pronađite vektore i .
d) Daju se bodovi. Pronađite vektore .

Možda je to dovoljno. Ovo su primjeri da sami odlučite, trudite se da ih ne zanemarite, isplatit će vam se ;-). Nema potrebe za pravljenjem crteža. Rješenja i odgovori na kraju lekcije.

Šta je važno pri rješavanju zadataka analitičke geometrije? Važno je da budete IZUZETNO PAŽLJIVI da ne napravite majstorsku grešku „dva plus dva je nula“. Izvinjavam se odmah ako sam negde pogresio =)

Kako pronaći dužinu segmenta?

Dužina, kao što je već napomenuto, označena je znakom modula.

Ako su date dvije točke ravnine i , tada se dužina segmenta može izračunati pomoću formule

Ako su date dvije točke u prostoru i, tada se dužina segmenta može izračunati pomoću formule

Bilješka: Formule će ostati ispravne ako se zamijene odgovarajuće koordinate: i , ali prva opcija je standardnija

Primjer 3

Rješenje: prema odgovarajućoj formuli:

odgovor:

Radi jasnoće, napraviću crtež

Segment linije - ovo nije vektor, i, naravno, ne možete ga nigdje pomjeriti. Osim toga, ako crtate u mjerilu: 1 jedinica. = 1 cm (dve ćelije sveske), onda se dobijeni odgovor može proveriti običnim lenjirom direktnim merenjem dužine segmenta.

Da, rješenje je kratko, ali ima još nekoliko važnih tačaka koje bih želio pojasniti:

Prvo, u odgovoru stavljamo dimenziju: „jedinice“. Uslov ne kaže ŠTA je, milimetri, centimetri, metri ili kilometri. Stoga bi matematički ispravno rješenje bila opća formulacija: “jedinice” – skraćeno kao “jedinice”.

Drugo, ponovimo školsko gradivo koje je korisno ne samo za razmatrani zadatak:

obratite pažnju na važna tehnikauklanjanje množitelja ispod korijena. Kao rezultat proračuna, imamo rezultat i dobar matematički stil uključuje uklanjanje faktora ispod korijena (ako je moguće). Proces detaljnije izgleda ovako: . Naravno, ostaviti odgovor kakav jeste ne bi bila greška – ali bi to svakako bio nedostatak i težak argument za prepirku od strane nastavnika.

Evo i drugih uobičajenih slučajeva:

Često korijen proizvodi prilično veliki broj, na primjer . Šta učiniti u takvim slučajevima? Pomoću kalkulatora provjeravamo da li je broj djeljiv sa 4: . Da, bilo je potpuno podijeljeno, dakle: . Ili se broj može ponovo podijeliti sa 4? . ovako: . Zadnja cifra broja je neparna, tako da dijeljenje sa 4 po treći put očigledno neće raditi. Pokušajmo podijeliti sa devet: . Kao rezultat:
Spreman.

zaključak: ako ispod korijena dobijemo broj koji se ne može izdvojiti kao cjelina, onda pokušavamo ukloniti faktor ispod korijena - pomoću kalkulatora provjeravamo da li je broj djeljiv sa: 4, 9, 16, 25, 36, 49, itd.

Prilikom rješavanja raznih problema često se susreću s korijenima, uvijek se pokušavaju izvući faktori ispod korijena kako bi se izbjegla niža ocjena i nepotrebni problemi sa finaliziranjem vaših rješenja na osnovu komentara nastavnika.

Ponovimo i kvadratne korijene i druge potencije:

Pravila za rad sa stepenima u opštem obliku mogu se naći u školskom udžbeniku algebre, ali mislim da je iz datih primera već sve ili skoro sve jasno.

Zadatak za samostalno rješenje sa segmentom u prostoru:

Primjer 4

Poeni i su dati. Pronađite dužinu segmenta.

Rješenje i odgovor nalaze se na kraju lekcije.

Kako pronaći dužinu vektora?

Ako je dat ravan vektor, tada se njegova dužina izračunava po formuli.

Ako je dat vektor prostora, onda se njegova dužina izračunava po formuli .

Definicija Uređena kolekcija (x 1 , x 2 , ... , x n) n realnih brojeva naziva se n-dimenzionalni vektor, i brojevi x i (i = ) - komponente, ili koordinate,

Primjer. Ako, na primjer, određeni pogon automobila mora proizvesti 50 automobila, 100 kamiona, 10 autobusa, 50 kompleta rezervnih dijelova za automobile i 150 kompleta za kamione i autobuse po smjeni, onda se proizvodni program ovog pogona može napisati kao vektor (50, 100, 10, 50, 150), sa pet komponenti.

Notacija. Vektori su označeni podebljanim malim slovima ili slovima sa trakom ili strelicom na vrhu, npr. a ili. Dva vektora se nazivaju jednaka, ako imaju isti broj komponenti i njihove odgovarajuće komponente su jednake.

Vektorske komponente se ne mogu zamijeniti, na primjer, (3, 2, 5, 0, 1) i (2, 3, 5, 0, 1) različiti vektori.
Operacije na vektorima. Posao x= (x 1 , x 2 , ... ,x n) realnim brojemλ zove se vektorλ x= (λ x 1, λ x 2, ..., λ x n).

Iznosx= (x 1 , x 2 , ... ,x n) i y= (y 1 , y 2 , ... ,y n) naziva se vektor x+y= (x 1 + y 1 , x 2 + y 2 , ... , x n + + y n).

Vektorski prostor. N -dimenzionalni vektorski prostor R n je definiran kao skup svih n-dimenzionalnih vektora za koje su definirane operacije množenja realnim brojevima i sabiranja.

Ekonomska ilustracija. Ekonomska ilustracija n-dimenzionalnog vektorskog prostora: prostor robe (robe). Ispod robe razumećemo neku robu ili uslugu koja je puštena u prodaju u određeno vreme na određenom mestu. Pretpostavimo da postoji konačan broj n dostupnih dobara; Količine svakog od njih koje je kupio potrošač karakteriše skup robe

x= (x 1 , x 2 , ..., x n),

gdje x i označava količinu i-te robe koju je kupio potrošač. Pretpostavit ćemo da sva dobra imaju svojstvo proizvoljne djeljivosti, tako da se može kupiti bilo koja nenegativna količina svakog od njih. Tada su svi mogući skupovi dobara vektori prostora roba C = ( x= (x 1 , x 2 , ... , x n) x i ≥ 0, i = ).

Linearna nezavisnost. Sistem e 1 , e 2 , ... , e m n-dimenzionalni vektori se nazivaju linearno zavisna, ako postoje takvi brojeviλ 1 , λ 2 , ... , λ m , od kojih je barem jedan različit od nule, tako da je jednakostλ 1 e 1 + λ 2 e 2 +... + λ m e m = 0; inače, ovaj sistem vektora se naziva linearno nezavisna, odnosno navedena jednakost je moguća samo u slučaju kada su svi . Geometrijsko značenje linearne zavisnosti vektora u R 3, interpretirani kao usmjereni segmenti, objašnjavaju sljedeće teoreme.

Teorema 1. Sistem koji se sastoji od jednog vektora je linearno zavisan ako i samo ako je ovaj vektor nula.

Teorema 2. Da bi dva vektora bila linearno zavisna, potrebno je i dovoljno da budu kolinearni (paralelni).

Teorema 3 . Da bi tri vektora bila linearno zavisna, potrebno je i dovoljno da budu koplanarni (leže u istoj ravni).

Lijeve i desne trojke vektora. Trojka nekoplanarnih vektora a, b, c pozvao u pravu, ako posmatrač iz njihovog zajedničkog porekla zaobiđe krajeve vektora a, b, c u datom redoslijedu se pojavljuje u smjeru kazaljke na satu. Inače a, b, c -lijevo tri. Zovu se sve desne (ili lijeve) trojke vektora isto orijentisan.

Osnova i koordinate. Trojka e 1, e 2 , e 3 nekoplanarna vektora u R 3 se zove osnovu, i sami vektori e 1, e 2 , e 3 - osnovni. Bilo koji vektor a mogu se jedinstveno proširiti u bazne vektore, odnosno predstaviti u obliku

A= x 1 e 1+x2 e 2 + x 3 e 3, (1.1)

pozivaju se brojevi x 1 , x 2 , x 3 u ekspanziji (1.1). koordinatea u osnovi e 1, e 2 , e 3 i označeni su a(x 1, x 2, x 3).

Ortonormalna osnova. Ako vektori e 1, e 2 , e 3 su u paru okomite i dužina svakog od njih jednaka je jedan, tada se naziva baza ortonormalno, a koordinate x 1 , x 2 , x 3 - pravougaona. Bazni vektori ortonormalne baze će biti označeni sa i, j, k.

Pretpostavićemo to u svemiru R 3 je odabran pravi sistem kartezijanskih pravokutnih koordinata (0, i, j, k}.

Vector artwork. Vector artwork A na vektor b zove se vektor c, što je određeno sljedeća tri uslova:

1. Dužina vektora c brojčano jednak površini paralelograma izgrađenog na vektorima a I b, tj.
c
= |a||b| grijeh( a^b).

2. Vektor c okomito na svaki od vektora a I b.

3. Vektori a, b I c, uzeti navedenim redoslijedom, čine desnu trojku.

Za unakrsni proizvod c uvodi se oznaka c =[ab] ili
c = a × b.

Ako vektori a I b su kolinearni, onda sin( a^b) = 0 i [ ab] = 0, posebno [ aa] = 0. Vektorski produkti jediničnih vektora: [ ij]=k, [jk] = i, [ki]=j.

Ako vektori a I b navedeno u osnovi i, j, k koordinate a(a 1, a 2, a 3), b(b 1, b 2, b 3), onda


Mješoviti posao. Ako je vektorski proizvod dva vektora A I b skalarno pomnoženo trećim vektorom c, onda se takav proizvod tri vektora naziva mješoviti rad i označen je simbolom a b c.

Ako vektori a, b I c u osnovi i, j, k date njihovim koordinatama
a(a 1, a 2, a 3), b(b 1, b 2, b 3), c(c 1, c 2, c 3), onda

.

Mješoviti proizvod ima jednostavnu geometrijsku interpretaciju - to je skalar, jednak po apsolutnoj vrijednosti volumenu paralelepipeda izgrađenog na tri data vektora.

Ako vektori formiraju desnu trojku, tada je njihov mješoviti proizvod pozitivan broj jednak naznačenom volumenu; ako je trojka a, b, c - lijevo, onda a b c<0 и V = - a b c, dakle V =|a b c|.

Pretpostavlja se da su koordinate vektora na koje se susrećemo u problemima iz prvog poglavlja date u odnosu na desnu ortonormalnu osnovu. Jedinični vektor kosmjeran s vektorom A, označeno simbolom A O. Simbol r=OM označeno radijus vektorom tačke M, simbolima a, AB ili|a|, | AB|moduli vektora su označeni A I AB.

Primjer 1.2. Pronađite ugao između vektora a= 2m+4n I b= m-n, Gdje m I n- jedinični vektori i ugao između m I n jednako 120 o.

Rješenje. Imamo: cos φ = ab/ab ab =(2m+4n) (m-n) = 2m 2 - 4n 2 +2mn=
= 2 - 4+2cos120 o = - 2 + 2(-0,5) = -3; a = ; a 2 = (2m+4n) (2m+4n) =
= 4m 2 +16mn+16n 2 = 4+16(-0,5)+16=12, što znači a = . b = ; b 2 =
= (m-n
)(m-n) = m 2 -2mn+n 2 = 1-2(-0,5)+1 = 3, što znači b = . Konačno imamo: cos
φ = = -1/2, φ = 120 o.

Primjer 1.3.Poznavanje vektora AB(-3,-2.6) i B.C.(-2,4,4),izračunaj dužinu visine AD trougla ABC.

Rješenje. Označavajući površinu trokuta ABC sa S, dobijamo:
S = 1/2 pne. Onda
AD=2S/BC, BC= = = 6,
S = 1/2| AB ×AC|. AC=AB+BC, što znači vektor A.C. ima koordinate
.
.

Primjer 1.4 . Data su dva vektora a(11,10,2) i b(4,0,3). Pronađite jedinični vektor c, ortogonalno na vektore a I b i usmjerena tako da uređena trojka vektora a, b, c bio u pravu.

Rješenje.Označimo koordinate vektora c s obzirom na datu desnu ortonormiranu bazu u terminima x, y, z.

Zbog ca, cb, To ca= 0,cb= 0. Prema uslovima zadatka, potrebno je da je c = 1 i a b c >0.

Imamo sistem jednačina za pronalaženje x,y,z: 11x +10y + 2z = 0, 4x+3z=0, x 2 + y 2 + z 2 = 0.

Iz prve i druge jednačine sistema dobijamo z = -4/3 x, y = -5/6 x. Zamjenom y i z u treću jednačinu imamo: x 2 = 36/125, odakle
x =± . Koristeći uslov a b c > 0, dobijamo nejednakost

Uzimajući u obzir izraze za z i y, rezultujuću nejednakost prepisujemo u obliku: 625/6 x > 0, što implicira da je x>0. Dakle, x = , y = - , z =- .

7.1. Definicija unakrsnog proizvoda

Tri nekoplanarna vektora a, b i c, uzeta navedenim redoslijedom, formiraju desnoruki triplet ako se od kraja trećeg vektora c vidi najkraći zaokret od prvog vektora a do drugog vektora b do biti u smjeru suprotnom od kazaljke na satu, a ljevoruka trojka ako je u smjeru kazaljke na satu (vidi sliku . 16).

Vektorski proizvod vektora a i vektora b naziva se vektor c, koji:

1. Okomito na vektore a i b, tj. c ^ a i c ^ b ;

2. Ima dužinu numerički jednaku površini paralelograma konstruiranog na vektorima a ib kao na bočnim stranama (vidi sliku 17), tj.

3. Vektori a, b i c formiraju desnu trojku.

Unakrsni proizvod se označava a x b ili [a,b]. Sljedeće relacije između jediničnih vektora i direktno slijede iz definicije vektorskog proizvoda, j I k(vidi sliku 18):

i x j = k, j x k = i, k x i = j.
Dokažimo, na primjer, to i xj =k.

1) k ^ i, k ^ j;

2) |k |=1, ali | i x j| = |i | |J | sin(90°)=1;

3) vektori i, j i k formiraju desnu trojku (vidi sliku 16).

7.2. Svojstva unakrsnog proizvoda

1. Prilikom preraspoređivanja faktora vektorski proizvod mijenja predznak, tj. i xb =(b xa) (vidi sliku 19).

Vektori a xb i b xa su kolinearni, imaju iste module (površina paralelograma ostaje nepromijenjena), ali su suprotno usmjereni (trojke a, b, a xb i a, b, b x a suprotne orijentacije). To je axb = -(b xa).

2. Vektorski proizvod ima svojstvo kombinovanja u odnosu na skalarni faktor, tj. l (a xb) = (l a) x b = a x (l b).

Neka je l >0. Vektor l (a xb) je okomit na vektore a i b. Vektor ( l sjekira b je također okomita na vektore a i b(vektori a, l ali leže u istoj ravni). To znači da su vektori l(a xb) i ( l sjekira b kolinearno. Očigledno je da im se pravci poklapaju. Imaju istu dužinu:

Zbog toga l(a xb)= l a xb. Dokazuje se na sličan način za l<0.

3. Dva različita od nule vektora a i b su kolinearni ako i samo ako je njihov vektorski proizvod jednak nultom vektoru, tj. a ||b<=>i xb =0.

Konkretno, i *i =j *j =k *k =0 .

4. Vektorski proizvod ima svojstvo distribucije:

(a+b) xc = a xc + b xs.

Prihvatićemo bez dokaza.

7.3. Izražavanje unakrsnog proizvoda u koordinatama

Koristićemo tablicu unakrsnog proizvoda vektora i, j i k:

ako se smjer najkraće staze od prvog do drugog vektora poklapa sa smjerom strelice, tada je proizvod jednak trećem vektoru, ako se ne poklapa, treći vektor se uzima sa predznakom minus.

Neka su data dva vektora a =a x i +a y j+a z k i b =b x i+b y j+b z k. Nađimo vektorski proizvod ovih vektora množeći ih kao polinome (prema svojstvima vektorskog proizvoda):



Rezultirajuća formula može se napisati još kraće:

pošto desna strana jednakosti (7.1) odgovara proširenju determinante trećeg reda u smislu elemenata prvog reda Jednakost (7.2) je lako zapamtiti.

7.4. Neke primjene unakrsnog proizvoda

Uspostavljanje kolinearnosti vektora

Pronalaženje površine paralelograma i trougla

Prema definiciji vektorskog proizvoda vektora A i b |a xb | =|a | * |b |sin g, tj. S parovi = |a x b |. I, prema tome, D S =1/2|a x b |.

Određivanje momenta sile oko tačke

Neka sila deluje u tački A F =AB pusti to O- neka tačka u prostoru (vidi sliku 20).

Iz fizike je poznato da moment sile F u odnosu na tačku O zove se vektor M, koji prolazi kroz tačku O i:

1) okomito na ravan koja prolazi kroz tačke O, A, B;

2) brojčano jednak proizvodu sile po kraku

3) formira desnu trojku sa vektorima OA i A B.

Dakle, M = OA x F.

Pronalaženje linearne brzine rotacije

Brzina v tačka M krutog tijela koje rotira ugaonom brzinom w oko fiksne ose, određena je Eulerovom formulom v =w xr, gdje je r =OM, gdje je O neka fiksna tačka ose (vidi sliku 21).

U ovoj lekciji ćemo pogledati još dvije operacije s vektorima: vektorski proizvod vektora I mješoviti proizvod vektora (odmah link za one kojima treba). U redu je, ponekad se desi da za potpunu sreću, pored skalarni proizvod vektora , potrebno je sve više i više. Ovo je vektorska ovisnost. Može se činiti da ulazimo u džunglu analitičke geometrije. Ovo je pogrešno. U ovom dijelu više matematike općenito ima malo drva, osim možda dovoljno za Pinokija. Zapravo, materijal je vrlo uobičajen i jednostavan - jedva komplikovaniji od istog skalarni proizvod , bit će čak i manje tipičnih zadataka. Glavna stvar u analitičkoj geometriji, u što će se mnogi uvjeriti ili su se već uvjerili, je NE PRAVITI GREŠKE U PRORAČUNIMA. Ponovite kao čaroliju i bit ćete sretni =)

Ako vektori svjetlucaju negdje daleko, kao munja na horizontu, nema veze, počnite s lekcijom Vektori za lutke obnoviti ili ponovo steći osnovno znanje o vektorima. Pripremljeniji čitaoci mogu selektivno upoznati informacije Pokušao sam prikupiti što potpuniju zbirku primjera koji se često nalaze u praktičnom radu

Šta će vas odmah usrećiti? Kad sam bio mali, znao sam žonglirati sa dvije ili čak tri lopte. Dobro je ispalo. Sada nećete morati uopšte da žonglirate, pošto ćemo razmotriti samo prostorni vektori, a ravni vektori sa dvije koordinate će biti izostavljeni. Zašto? Tako su se ove radnje rodile - vektor i mješoviti proizvod vektora su definirani i rade u trodimenzionalnom prostoru. Već je lakše!

Ova operacija, baš kao i skalarni proizvod, uključuje dva vektora. Neka ovo budu neprolazna slova.

Sama akcija označeno sa na sledeći način: . Postoje i druge opcije, ali ja sam navikao da vektorski proizvod vektora označavam na ovaj način, u uglastim zagradama sa krstom.

I to odmah pitanje: ako je unutra skalarni proizvod vektora dva vektora su uključena, a ovdje se dva vektora također množe koja je razlika? Očigledna razlika je, prije svega, u REZULTATU:

Rezultat skalarnog proizvoda vektora je BROJ:

Rezultat unakrsnog proizvoda vektora je VEKTOR: , odnosno množimo vektore i ponovo dobijamo vektor. Zatvoren klub. Zapravo, odatle potiče i naziv operacije. U različitoj obrazovnoj literaturi, oznake se također mogu razlikovati.

Definicija unakrsnog proizvoda

Prvo će biti definicija sa slikom, zatim komentari.

Definicija: Vektorski proizvod nekolinearno vektori, uzeti ovim redoslijedom, pod nazivom VEKTOR, dužinašto je brojčano jednaka površini paralelograma, izgrađen na ovim vektorima; vektor ortogonalno na vektore, i usmjeren je tako da osnova ima pravu orijentaciju:

Hajde da raščlanimo definiciju, ovdje ima puno zanimljivih stvari!

Dakle, mogu se istaći sljedeće važne tačke:

1) Originalni vektori, označeni crvenim strelicama, po definiciji nije kolinearno. Bilo bi prikladno razmotriti slučaj kolinearnih vektora malo kasnije.

2) Vektori su uzeti po strogo definisanom redosledu: – "a" se množi sa "biti", a ne "biti" sa "a". Rezultat množenja vektora je VEKTOR, koji je označen plavom bojom. Ako se vektori pomnože obrnutim redosledom, dobijamo vektor jednake dužine i suprotnog smera (boja maline). Odnosno, jednakost je tačna .

3) Hajde da se sada upoznamo sa geometrijskim značenjem vektorskog proizvoda. Ovo je veoma važna tačka! DUŽINA plavog vektora (a samim tim i grimiznoga vektora) je numerički jednaka POVRŠINI paralelograma izgrađenog na vektorima. Na slici je ovaj paralelogram obojen crnom bojom.

Bilješka : crtež je shematski i, naravno, nazivna dužina vektorskog proizvoda nije jednaka površini paralelograma.

Prisjetimo se jedne od geometrijskih formula: Površina paralelograma jednaka je umnošku susjednih stranica i sinusa ugla između njih. Stoga, na osnovu navedenog, vrijedi formula za izračunavanje DUŽINE vektorskog proizvoda:

Naglašavam da se formula radi o DUŽINI vektora, a ne o samom vektoru. Šta je praktično značenje? A značenje je da se u problemima analitičke geometrije površina paralelograma često nalazi kroz koncept vektorskog proizvoda:

Hajde da dobijemo drugu važnu formulu. Dijagonala paralelograma (crvena tačkasta linija) dijeli ga na dva jednaka trougla. Stoga se površina trokuta izgrađenog na vektorima (crveno sjenčanje) može pronaći pomoću formule:

4) Jednako važna činjenica je da je vektor ortogonan na vektore, tj . Naravno, suprotno usmjereni vektor (strijela maline) je također ortogonan na originalne vektore.

5) Vektor je usmjeren tako da osnovu Ima u pravu orijentacija. U lekciji o prelazak na novu osnovu Govorio sam dovoljno detaljno o tome orijentacija u ravni, a sada ćemo shvatiti šta je prostorna orijentacija. Objasniću na prstima desna ruka. Mentalno kombinujte kažiprst sa vektorom i srednji prst sa vektorom. Domali prst i mali prst pritisnite ga na dlan. Kao rezultat thumb– vektorski proizvod će tražiti gore. Ovo je desno orijentisana osnova (to je ova na slici). Sada promijenite vektore ( kažiprst i srednji prst) na nekim mjestima, kao rezultat toga, palac će se okrenuti, a vektorski proizvod će već gledati prema dolje. Ovo je takođe prava orijentisana osnova. Možda imate pitanje: koja osnova ima lijevu orijentaciju? „Dodeli“ istim prstima lijeva ruka vektora, te dobijemo lijevu osnovu i lijevu orijentaciju prostora (u ovom slučaju, palac će biti lociran u smjeru donjeg vektora). Slikovito rečeno, ove baze „uvijaju“ ili usmjeravaju prostor u različitim smjerovima. I ovaj koncept ne treba smatrati nečim nategnutim ili apstraktnim - na primjer, orijentaciju prostora mijenja najobičnije ogledalo, a ako "izvučete reflektirani predmet iz ogledala", onda u općenitom slučaju to neće biti moguće kombinovati sa "originalom". Usput, držite tri prsta uz ogledalo i analizirajte odraz ;-)

...kako je dobro to što sada znaš desno i lijevo orijentisan baze, jer su izjave nekih predavača o promjeni orijentacije zastrašujuće =)

Unakrsni proizvod kolinearnih vektora

Definicija je detaljno razmotrena, ostaje da se otkrije šta se dešava kada su vektori kolinearni. Ako su vektori kolinearni, onda se mogu postaviti na jednu ravnu liniju i naš paralelogram se također "preklapa" u jednu pravu liniju. Područje takvog, kako kažu matematičari, degenerisati paralelogram je jednak nuli. Isto proizlazi iz formule - sinus od nule ili 180 stepeni jednak je nuli, što znači da je površina nula

Dakle, ako , onda . Strogo govoreći, sam vektorski proizvod je jednak nultom vektoru, ali u praksi se to često zanemaruje i pišu da je jednostavno jednak nuli.

Poseban slučaj je unakrsni proizvod vektora sa samim sobom:

Koristeći vektorski proizvod, možete provjeriti kolinearnost trodimenzionalnih vektora, a mi ćemo, između ostalog, analizirati i ovaj problem.

Za rješavanje praktičnih primjera možda će vam trebati trigonometrijska tabela da se iz njega pronađu vrijednosti sinusa.

Pa, zapalimo vatru:

Primjer 1

a) Pronađite dužinu vektorskog proizvoda vektora if

b) Nađite površinu paralelograma izgrađenog na vektorima ako

Rješenje: Ne, ovo nije greška u kucanju, namerno sam napravio iste početne podatke u klauzulama. Jer će dizajn rješenja biti drugačiji!

a) Prema uslovu, morate pronaći dužina vektor (unakrsni proizvod). Prema odgovarajućoj formuli:

Odgovori:

Ako su vas pitali o dužini, onda u odgovoru navodimo dimenziju - jedinice.

b) U skladu sa uslovom, morate pronaći kvadrat paralelogram izgrađen na vektorima. Površina ovog paralelograma je numerički jednaka dužini vektorskog proizvoda:

Odgovori:

Napominjemo da se u odgovoru uopće ne govori o vektorskom proizvodu; područje figure, prema tome, dimenzija je kvadratna jedinica.

Uvek gledamo ŠTA treba da nađemo prema uslovu i na osnovu toga formulišemo jasno odgovori. Možda se čini kao bukvalnost, ali među nastavnicima ima dosta literalista, a zadatak ima dobre šanse da bude vraćen na doradu. Iako ovo nije posebno nategnuta zafrkancija – ako je odgovor netačan, onda se stiče utisak da osoba ne razumije jednostavne stvari i/ili da nije shvatila suštinu zadatka. Ovu tačku uvijek treba držati pod kontrolom prilikom rješavanja bilo kojeg zadatka iz više matematike, ali i iz drugih predmeta.

Gdje je nestalo veliko slovo “en”? U principu je moglo biti dodatno priloženo rješenju, ali da bih skratio unos nisam to uradio. Nadam se da svi to razumiju i da je to oznaka za istu stvar.

Popularan primjer za DIY rješenje:

Primjer 2

Pronađite površinu trokuta izgrađenog na vektorima if

Formula za pronalaženje površine trokuta kroz vektorski proizvod data je u komentarima na definiciju. Rješenje i odgovor nalaze se na kraju lekcije.

U praksi, zadatak je zaista vrlo čest, trouglovi vas općenito mogu mučiti.

Za rješavanje ostalih problema trebat će nam:

Svojstva vektorskog proizvoda vektora

Već smo razmotrili neka svojstva vektorskog proizvoda, međutim, uključit ću ih u ovu listu.

Za proizvoljne vektore i proizvoljan broj, sljedeća svojstva su tačna:

1) U drugim izvorima informacija ova stavka se obično ne ističe u svojstvima, ali je u praktičnom smislu veoma važna. Neka bude.

2) – o imovini se također govori gore, ponekad se naziva antikomutativnost. Drugim riječima, redoslijed vektora je bitan.

3) – asocijativni ili asocijativni zakoni o vektorskim proizvodima. Konstante se mogu lako premjestiti izvan vektorskog proizvoda. Zaista, šta da rade tamo?

4) – distribucija ili distributivni zakoni o vektorskim proizvodima. Nema problema ni sa otvaranjem zagrada.

Da demonstriramo, pogledajmo kratak primjer:

Primjer 3

Pronađite ako

Rješenje: Uvjet opet zahtijeva pronalaženje dužine vektorskog proizvoda. Oslikajmo našu minijaturu:

(1) Prema asocijativnim zakonima, konstante uzimamo izvan opsega vektorskog proizvoda.

(2) Konstantu pomjerimo izvan modula, a modul „pojede“ znak minus. Dužina ne može biti negativna.

(3) Ostalo je jasno.

Odgovori:

Vrijeme je da dodate još drva na vatru:

Primjer 4

Izračunajte površinu trokuta izgrađenog na vektorima if

Rješenje: Pronađite površinu trokuta koristeći formulu . Kvaka je u tome što su vektori “tse” i “de” sami predstavljeni kao sume vektora. Algoritam ovdje je standardan i pomalo podsjeća na primjere br. 3 i 4 iz lekcije Tačkasti proizvod vektora . Radi jasnoće, podijelit ćemo rješenje u tri faze:

1) U prvom koraku izražavamo vektorski proizvod kroz vektorski proizvod, zapravo, izrazimo vektor u terminima vektora. Još nema riječi o dužini!

(1) Zamijenite izraze vektora.

(2) Koristeći distributivne zakone, otvaramo zagrade prema pravilu množenja polinoma.

(3) Koristeći asocijativne zakone, pomjeramo sve konstante izvan vektorskih proizvoda. Uz malo iskustva, korak 2 i 3 se mogu izvoditi istovremeno.

(4) Prvi i posljednji član su jednaki nuli (nulti vektor) zbog svojstva nice. U drugom terminu koristimo svojstvo antikomutativnosti vektorskog proizvoda:

(5) Predstavljamo slične pojmove.

Kao rezultat toga, pokazalo se da je vektor izražen kroz vektor, što je i bilo potrebno da se postigne:

2) U drugom koraku nalazimo dužinu vektorskog proizvoda koji nam je potreban. Ova radnja je slična primjeru 3:

3) Pronađite površinu traženog trokuta:

Faze 2-3 rješenja su se mogle napisati u jednom redu.

Odgovori:

Razmatrani problem je prilično čest u testovima, evo primjera za samostalno rješavanje:

Primjer 5

Pronađite ako

Kratko rješenje i odgovor na kraju lekcije. Da vidimo koliko ste bili pažljivi kada ste proučavali prethodne primjere ;-)

Unakrsni proizvod vektora u koordinatama

, specificirano na ortonormalnoj osnovi, izraženo formulom:

Formula je zaista jednostavna: u gornji red determinante upisujemo koordinatne vektore, u drugi i treći red "stavljamo" koordinate vektora i stavljamo u strogom redu– prvo koordinate vektora “ve”, a zatim koordinate “double-ve” vektora. Ako se vektori trebaju pomnožiti drugim redoslijedom, tada treba zamijeniti redove:

Primjer 10

Provjerite jesu li sljedeći prostorni vektori kolinearni:
A)
b)

Rješenje: Provjera se temelji na jednoj od izjava u ovoj lekciji: ako su vektori kolinearni, onda je njihov vektorski proizvod jednak nuli (nulti vektor): .

a) Pronađite vektorski proizvod:

Dakle, vektori nisu kolinearni.

b) Pronađite vektorski proizvod:

Odgovori: a) nije kolinearno, b)

Ovdje su, možda, sve osnovne informacije o vektorskom proizvodu vektora.

Ovaj odjeljak neće biti jako velik, jer postoji nekoliko problema gdje se koristi mješoviti proizvod vektora. Zapravo, sve će ovisiti o definiciji, geometrijskom značenju i nekoliko radnih formula.

Mješoviti proizvod vektora je proizvod tri vektora:

Tako su se postrojili kao voz i jedva čekaju da budu identifikovani.

Prvo, opet, definicija i slika:

Definicija: Mješoviti rad nekoplanarni vektori, uzeti ovim redoslijedom, zvao zapremina paralelepipeda, izgrađen na ovim vektorima, opremljen znakom “+” ako je osnova desna i znakom “–” ako je osnova lijeva.

Hajde da crtamo. Linije koje su nama nevidljive iscrtane su isprekidanim linijama:

Uronimo u definiciju:

2) Vektori su uzeti određenim redosledom, odnosno preuređivanje vektora u proizvodu, kao što možete pretpostaviti, ne nastaje bez posljedica.

3) Prije nego što komentiram geometrijsko značenje, primijetit ću očiglednu činjenicu: mješoviti proizvod vektora je BROJ: . U obrazovnoj literaturi dizajn može biti malo drugačiji, ja sam navikao označavati mješoviti proizvod sa , a rezultat proračuna slovom “pe”.

A-prioritet mješoviti proizvod je zapremina paralelepipeda, izgrađen na vektorima (figura je nacrtana crvenim vektorima i crnim linijama). To jest, broj je jednak zapremini datog paralelepipeda.

Bilješka : Crtež je šematski.

4) Nemojmo opet brinuti o konceptu orijentacije osnove i prostora. Značenje završnog dijela je da se volumenu može dodati znak minus. Jednostavnim riječima, mješoviti proizvod može biti negativan: .

Izravno iz definicije slijedi formula za izračunavanje volumena paralelepipeda izgrađenog na vektorima.

Ako pronađete grešku, odaberite dio teksta i pritisnite Ctrl+Enter.