Линзы. Характеристики и виды линз

Линза является оптической деталью, которая производится из прозрачного материала (оптического стекла или пластмассы) и имеет две преломляющие полированные поверхности (плоские или сферические). Возраст самой старой линзы, найденной археологами в Нимруде, составляет около 3000 лет.

Это говорит о том, что люди с очень древних времен интересовались оптикой и пытались создать с ее помощью различное оснащение, помогающее в повседневной жизни. Римские военные при помощи линз добывали огонь в походных условиях, а император Нерон использовал вогнутый изумруд как средство от своей близорукости.

Со временем оптика тесно интегрировалась в медицину, что позволило создавать такие устройства для коррекции зрения, как окуляры, очки и контактные линзы. Кроме того, сами линзы получили широкое распространение в различной высокоточной технике, которая позволила в корне изменить представления человека об окружающем его мире.

Что такое линза, какие она имеет свойства и особенности?

Любую линзу в разрезе можно представить, как две поставленные друг на друга призмы. В зависимости от того, какой стороной они соприкасаются друг с другом, будет различаться и оптическое действие линзы, а также ее вид (выпуклая или вогнутая).

Рассмотрим, что такое линза, более подробно. К примеру, если взять кусок обычного оконного стекла, грани которого параллельны, мы получим совершенно незначительное искажение видимого изображения. То есть, луч света входящий в стекло преломится, а после прохождения второй грани и попадания в воздух вернет прежнее значение угла с небольшим смещением, которое зависит от толщины стекла. Но если плоскости стекла будут находится под углом относительно друг друга (например, как в призме), то луч, вне зависимости от его угла, после попадания в данное стеклянное тело будет преломлен и выйдет в его основании. Это правило, позволяющее управлять световым потоком, лежит в основе всех линз. Стоит отметить, что все особенности линз и оптических приборов на их основе .

Какие существуют виды линз в физике?

Существует только два основных вида линз: вогнутые и выпуклые, также их называют рассеивающими и собирающими. Они позволяют разделить пучок света или наоборот сконцентрировать его в одной точке на определенном фокусном расстоянии.

Выпуклая линза имеет тонкие края и утолщенный центр, благодаря чему в разрезе
представляется как две соединенные основаниями призмы. Эта ее особенность позволяет собирать все лучи света, попадающие под разными углами, на одну точку в центре. Именно такими приспособлениями пользовались римляне для разжигания огня, поскольку сфокусированные лучи солнечного света позволяли создать на небольшом участке легко воспламеняемого предмета очень высокую температуру.

В каких приборах и для чего используются линзы?

С давних пор люди знали, что такое линза. Данная деталь использовалась в первых очках, которые появились в 1280-х годах в Италии. Позже были созданы подзорные трубы, телескопы, бинокли и многие другие устройства, которые состояли из множества различных линз и позволяли значительно расширить возможности человеческого глаза. На тех же принципах были построены и микроскопы, которые оказали значительное влияние на развитие всей науки в целом.

Первые телевизоры оснащались огромными линзами, которые увеличивали изображение
с миниатюрных экранов и давали возможность более детально рассмотреть картинку. Вся видео- и фототехника, начиная с самых первых устройств, оснащается линзами. Они устанавливаются в объектив для того, чтобы оператор или фотограф мог навести резкость или произвести приближение/отдаление изображения в кадре.

Большинство современных мобильных телефонов имеют камеры с автофокусировкой, в которых используются миниатюрные линзы, позволяющие получать четкие фотографии объектов, находящихся в паре сантиметров или в нескольких километрах от объектива устройства.

Не стоит забывать о современных космических телескопах (таких, как Хаббл) и лабораторных микроскопах, на которых также установлены высокоточные линзы. Данные приборы дают человечеству возможность увидеть то, что ранее было недоступно для нашего зрения. Благодаря им можно более детально изучить окружающий нас мир.

Что такое контактная линза и зачем она нужна?

Контактные линзы - это небольшие прозрачные линзы, изготавливаемые из мягких или
жестких материалов, которые предназначены для непосредственного ношения на глазу в целях коррекции зрения. Они были разработаны еще Леонардо Да Винчи в 1508 году, но изготовили их лишь в 1888 году. Изначально линзы производились только из твердых материалов, но со временем были синтезированы новые полимеры, которые позволили создать мягкие линзы, практически не ощутимые при ежедневном использовании.

Если вы хотите приобрести контактные линзы, тогда прочтите статью , чтобы больше узнать о данном приспособлении.

Все знают, что фотографический объектив состоит из оптических элементов. В большинстве фотографических объективов в качестве таких элементов используются линзы. Линзы в фотообъективе располагаются на главной оптической оси, образуя оптическую схему объектива.

Оптическая сферическая линза - это прозрачный однородный элемент, ограниченный двумя сферическими или одной сферической и другой плоской поверхностями.

В современных фотообъективах получили большое распространение, также, асферические линзы, форма поверхности которых отличается от сферы. В этом случае могут быть параболические, цилиндрические, торические, конические и другие криволинейные поверхности, а также поверхности вращения с осью симметрии.

Материалом для изготовления линз могут служить различные сорта оптического стекла, а также прозрачные пластмассы.

Все многообразие сферических линз можно свести к двум основным видам: Собирающие (или положительные, выпуклые) и Рассеивающие (или отрицательные, вогнутые). Собирающие линзы в центре толще, чем по краям, напротив Рассеивающие в центре тоньше, чем по краям.

В собирающих линзах проходящие через нее параллельные лучи фокусируются в одной точке за линзой. В рассеивающих линзах, проходящие через линзу лучи рассеиваются в стороны.


Илл. 1. Собирающая и рассеивающая линзы.

Только положительные линзы могут давать изображения предметов. В оптических системах дающих действительное изображение (в частности объективы) рассеивающие линзы могут быть использованы только вместе с собирательными.

По форме поперечного сечения различают шесть основных типов линз:

  1. двояковыпуклые собирающие линзы;
  2. плоско-выпуклые собирающие линзы;
  3. вогнуто-выпуклые собирающие линзы (мениски);
  4. двояковогнутые рассеивающие линзы;
  5. плоско-вогнутые рассеивающие линзы;
  6. выпукло-вогнутые рассеивающие линзы.

Илл. 2. Шесть типов сферических линз.

Сферические поверхности линзы могут иметь различную кривизну (степень выпуклости/вогнутости) и разную осевую толщину .

Давайте разберемся с этими и некоторыми другими понятиями, подробнее.

Илл. 3. Элементы двояковыпуклой линзы

На иллюстрации 3 можно увидеть схему формирования двояковыпуклой линзы.

  • С1 и С2 - центры ограничивающих линзу сферических поверхностей, они называются центрами кривизны .
  • R1 и R2 - радиусы сферических поверхностей линзы или радиусы кривизны .
  • Прямая соединяющая точки С1 и С2, называется главной оптической осью линзы.
  • Точки пересечения главной оптической оси с поверхностями линзы (A и B) называются вершинами линзы .
  • Расстояние от точки A до точки B называется осевой толщиной линзы .

Если из точки, лежащей на главной оптической оси, направить на линзу параллельный пучок лучей света, то пройдя через нее, они соберутся в точке F , которая, также находится на главной оптической оси. Эта точка называется главным фокусом линзы, а расстояние f от линзы до этой точки - главным фокусным расстоянием.

Илл. 4. Главный фокус, главная фокальная плоскость и фокусное расстояние линзы.

Плоскость MN перпендикулярная главной оптической оси и проходящая через главный фокус, называется главной фокальной плоскостью. Именно здесь располагается светочувствительная матрица или светочувствительная пленка.

Фокусное расстояние линзы напрямую зависит от кривизны ее выпуклых поверхностей: чем меньше радиусы кривизны (т.е. чем больше выпуклость) - тем короче фокусное расстояние.

Простые линзы бывают двух различных типов:положительные и отрицательные. Эти два типа известны также как собирательные и рассеивающие, потому что положительные линзы собирают свет и образуют изображение источника, тогда как отрицательные линзы рассеивают свет.

Характеристики простых линз

В зависимости от форм различают собирающие (положительные) и рассеивающие (отрицательные) линзы. К группе собирательных линз обычно относят линзы, у которых середина толще их краёв, а к группе рассеивающих - линзы, края которых толще середины. Следует отметить, что это верно только если показатель преломления у материала линзы больше, чем у окружающей среды. Если показатель преломления линзы меньше, ситуация будет обратной. Например пузырёк воздуха в воде - двояковыпуклая рассеивающая линза.

Линзы характеризуются, как правило, своей оптической силой (измеряется в диоптриях), или фокусным расстоянием.

Для построения оптических приборов с исправленной оптической аберрацией (прежде всего - хроматической, обусловленнойдисперсией света, - ахроматы и апохроматы) важны и иные свойства линз и их материалов, например, коэффициент преломления, коэффициент дисперсии, коэффициент пропускания материала в выбранном оптическом диапазоне.

Иногда линзы/линзовые оптические системы (рефракторы) специально рассчитываются на использование в средах с относительно высоким коэффициентом преломления (см. иммерсионный микроскоп, иммерсионные жидкости).

Виды линз: Собирающие : 1 - двояковыпуклая 2 - плоско-выпуклая 3 - вогнуто-выпуклая (положительный(выпуклый) мениск) Рассеивающие : 4 - двояковогнутая 5 - плоско-вогнутая 6 - выпукло-вогнутая (отрицательный(вогнутый) мениск)

Использование линзы для изменения формы волнового фронта. Здесь плоский волновой фронт становится сферическим при прохождении через линзу

Выпукло-вогнутая линза называется мениском и может быть собирательной (утолщается к середине), рассеивающей (утолщается к краям) или телескопической (фокусное расстояние равно бесконечности). Так, например линзы очков для близоруких - как правило, отрицательные мениски.

Вопреки распространённому заблуждению, оптическая сила мениска с одинаковыми радиусами не равно нулю, а положительна, и зависит от показателя преломления стекла и от толщины линзы. Мениск, центры кривизны поверхностей которого находятся в одной точке называется концентрической линзой (оптическая сила всегда отрицательна).

Отличительным свойством собирательной линзы является способность собирать падающие на её поверхность лучи в одной точке, расположенной по другую сторону линзы.

Основные элементы линзы: NN - оптическая ось - прямая линия, проходящая через центры сферических поверхностей, ограничивающих линзу; O - оптический центр - точка, которая у двояковыпуклых или двояковогнутых (с одинаковыми радиусами поверхностей) линз находится на оптической оси внутри линзы (в её центре). Примечание . Ход лучей показан, как в идеализированной (тонкой) линзе, без указания на преломление на реальной границе раздела сред. Дополнительно показан несколько утрированный образ двояковыпуклой линзы

Если на некотором расстоянии перед собирательной линзой поместить светящуюся точку S, то луч света, направленный по оси, пройдёт через линзу не преломившись, а лучи, проходящие не через центр, будут преломляться в сторону оптической оси и пересекутся на ней в некоторой точке F, которая и будет изображением точки S. Эта точка носит название сопряжённого фокуса, или просто фокуса .

Если на линзу будет падать свет от очень удалённого источника, лучи которого можно представить идущими параллельным пучком, то по выходе из неё лучи преломятся под бо́льшим углом и точка F переместится на оптической оси ближе к линзе. При данных условиях точка пересечения лучей, вышедших из линзы, называется фокусом F’, а расстояние от центра линзы до фокуса - фокусным расстоянием.

Лучи, падающие на рассеивающую линзу, по выходе из неё будут преломляться в сторону краёв линзы, то есть рассеиваться. Если эти лучи продолжить в обратном направлении так, как показано на рисунке пунктирной линией, то они сойдутся в одной точке F, которая и будет фокусом этой линзы. Этот фокус будет мнимым .

Мнимый фокус рассеивающей линзы

Сказанное о фокусе на оптической оси в равной степени относится и к тем случаям, когда изображение точки находится на наклонной линии, проходящей через центр линзы под углом к оптической оси. Плоскость, перпендикулярная оптической оси, расположенная в фокусе линзы, называется фокальной плоскостью .

Собирательные линзы могут быть направлены к предмету любой стороной, вследствие чего лучи по прохождении через линзу могут собираться как с одной, так и с другой её стороны. Таким образом, линза имеет два фокуса - передний и задний . Расположены они на оптической оси по обе стороны линзы на фокусном расстоянии от главных точек линзы.

а) Типы линз .

Оптические линзы, которые в середине толще, чем на краю, называются собирающими; напротив, если край толще, чем середина, то линзы действуют как

рассеивающие. По форме поперечного сечения различают: двояковыпуклые, плоско-выпуклые, вогнуто-выпуклые собирающие линзы; двояковогнутые, плоско-вогнутые, выпукло-вогнутые рассеивающие линзы.

Тонкие линзы в первом приближении можно рассматривать как две сложенные тонкие призмы (рис.217, 218). Ход лучей можно проследить на шайбе Гартля.

Собирающая линза концентрирует параллельные лучи в одной точке за линзой, в фокусе (рис.219)

Рассеивающая линза превращает параллельный пучок лучей в расходящийся пучок, который кажется выходящим из фокуса (рис.220).

ЛИНЗА

(нем. Linse, от лат. lens - чечевица), прозрачное тело, ограниченное двумя поверхностями, преломляющими световые лучи, способное формировать оптич. изображения предметов, светящихся собственным или отражённым светом. Л. явл. одним из осн. элементов оптич. систем. Наиболее употребительны Л., обе поверхности к-рых обладают общей осью симметрии, а из них - Л. со сферич. поверхностями, изготовление к-рых наиболее просто. Менее распространены Л. с двумя взаимно перпендикулярными плоскостями симметрии; их поверхности цилиндрич. или тороидальные. Таковы Л. в очках, предписываемых при астигматизме глаза, Л. для анаморфотных насадок и т. д.

Материалом для Л. обычно служит оптич. и органич. стекло. Спец. Л., предназначенные для работы в УФ области спектра, изготовляют из кристаллов кварца, флюорита, фтористого лития и др., в ИК - из особых сортов стекла, кремния, германия, флюорита, фтористого лития, йодистого цезия и др.

Описывая оптич. св-ва осесимметричной Л., чаще всего рассматривают лучи, падающие на неё под малым углом к оси, т. н. параксиальный пучок лучен.

Действие Л. на эти лучи определяется положением её кардинальных точек - т. н, главных точек Н и Н", в к-рых пересекаются с осью главные плоскости Л., а также переднего и заднего главных фокусов F и F" (рис. 1). Отрезки HF=f и H"F"=f наз. фокусными расстояниями Л. (если среды, с к-рыми граничит Л., обладают одинаковыми показателями преломления, всегда f=f"); точки пересечения О и О" поверхностей Л. с осью наз. её вершинами, а расстояния между вершинами - толщиной Л. d.

Если направления фокусного расстояния совпадают с направлением лучей света, то его считают положительным, так, напр., на рис. 1 лучи проходят через Л. направо и так же ориентирован отрезок Н"F". Поэтому здесь f">0, а f

Л. изменяют направления падающих на неё лучей. Если Л. преобразует параллельный пучок в сходящийся, её называют собирающей; если параллельный пучок превращается в расходящийся, Л. называют рассеивающей. В главном фокусе F" собирающей Л. пересекаются лучи, к-рые до преломления были параллельны её оси. Для такой Л. f" всегда положительно. В рассеивающей Л. F" - точка пересечения не самих лучей, а их воображаемых продолжений в сторону, противоположную направлению распространения света. Поэтому для них всегда f"

Мерой преломляющего действия Л. служит её Ф - величина, обратная фокусному расстоянию (Ф=1/f") и измеряемая в диоптриях (м-1). У собирающих Л. Ф>0, поэтому их ещё именуют положительными, рассеивающие Л. (Ф фокусное расстояние равно бесконечности). Они не собирают и не рассеивают лучей, но создают аберрации (см. АБЕРРАЦИИ ОПТИЧЕСКИХ СИСТЕМ) и применяются в зеркально-линзовых (а иногда и в линзовых) объективах как компенсаторы аберраций.

Все параметры, определяющие оптич. св-ва Л., ограниченной сферич. поверхностями, могут быть выражены через радиусы кривизны r1 и r2 её поверхностей, толщину Л. по оси d и n её материала. Напр., оптич. и фокусное расстояние Л. задаются соотношением (верным лишь для параксиальных лучей) :

Радиусы r1 и r2 считаются положительными, если направление от вершин Л. до центра соответствующей поверхности совпадает с направлением лучей (на рис. 1 r1=OF">0, r2=O"F

Первые три - положительны, последние три - отрицательны. Л. наз. тонкой, если её толщина d мала по сравнению с r1 и r2. Достаточно точное выражение для оптич. силы такой Л. получают и без учёта второго члена в (1).

Положение гл. плоскостей Л. относительно её вершин (расстояния ОН и О"Н") тоже можно определить, зная r1, r2, n и d. Расстояние между главными плоскостями мало зависит от формы и оптич. силы Л. и приблизительно равно d(n-1)/n. В случае тонкой Л. это расстояние мало и практически можно считать, что главные плоскости совпадают.

Когда положение кардинальных точек известно, положение оптич. изображения точки, даваемого Л. (рис. 1), определяется ф-лами:

где V - линейное увеличение Л. (см. УВЕЛИЧЕНИЕ ОПТИЧЕСКОЕ); l и l" - расстояния от точки и её изображения до оси (положительные, если они расположены выше оси); х - расстояние от переднего фокуса до точки; х" - расстояние от заднего фокуса до изображения. Если t и t" - расстояния от главных точек до плоскостей и изображения соответственно, то

т. к. x=t-f, x"=t"-f")

f"/t"+f/t=1 или 1/t"-1/t=1/f". (3)

В тонких Л. t и t" можно отсчитывать от соответствующих поверхностей Л.

Физический энциклопедический словарь. - М.: Советская энциклопедия . . 1983 .

ЛИНЗА

(нем. Linse, от лат. lens - чечевица) - простейший оптич. элемент, изготавливаемый из прозрачного материала, ограниченный двумя преломляющими поверхностями, имеющими общую ось либо две взаимно перпендикулярные плоскости симметрии. При изготовлении Л. для видимой области применяют оптическое стекло или органическое стекло (массовое тиражирование непрецизионных деталей), в УФ-диапазоне - , флюорит и др., в ИК-диапазоне - спец. сорта стёкол, германий, ряд солей и т. д.

Рабочие поверхности Л. обычно имеют сферич. форму, реже - цилиндрическую, тороидальную, конусообразную или с заданными небольшими отступлениями от сферы (асферическую). Л. со сферич. поверхностями наиб. просты в изготовлении и являются осн. элементами большинства оптич. систем.

В параксиальном приближении (углы между лучами и оптич. осью столь малы, что можно заменить sinи на свойства Л. со сферич. поверхностями могут быть однозначно охарактеризованы положением главных плоскостей и оптической силой Ф, представляющей собой выражаемую в диоптриях величину, обратную фокусному расстоянию (в м). Связь этих характеристик с геом. параметрами Л. ясны из рис., в к-ром для наглядности углы наклона лучей изображены преувеличенно большими. Расстояния от первой по ходу лучей поверхности линзы до первой гл. плоскости Я и от второй поверхности до второй гл. плоскости H " равны соответственно

S 1, 2

Фокусное расстояние от H до переднего фокуса (F)f = -1/Ф, от до заднего фокуса I оптич. сила Л., являющаяся мерой её преломляющего действия, равна

Здесь п - показатель преломления вещества Л. (или отношение этого показателя к показателю преломления окружающей среды, если последний 1), d - измеренная вдоль оси толщина Л., r 1 и r 2 - радиусы кривизны её поверхностей (считаются положительными, если центры кривизны расположены дальше по ходу лучей; так, у изображённой на рис. двояковыпуклой Л. r 1 >0, r 2 <0), расстояния отсчитываются вдоль направления распространения света.

Способ построения и расчёта траекторий проходящих через Л. меридиональных (лежащих в осевой плоскости) лучей с использованием гл. плоскостей ясен из рис. После прохождения Л. кажется исходящим из точки на удалённой от оси на то же расстояние h, что и точка пересечения исходного луча с Я. Угол между лучом и осью изменяется на Для нахождения траектории произвольного немеридионального луча последний проецируется на две взаимно перпендикулярные осевые плоскости. Каждая проекция является по существу меридиональным лучом и ведёт себя указанным выше образом.

Положение даваемого Л. изображения точки определяется ф-лами

где l и - расстояния от гл. плоскостей до плоскостей предмета и изображения соответственно (рис.), b и - расстояния точки и её изображения от оси (отсчитываемые вверх).


Если Л. наз. положительной или собирающей, при - отрицательной или рассеивающей; линзы с Ф=0 наз. афокальными и используются гл. обр. для исправления аберраций др. оптич. элементов. Положительные Л. дают действительные изображения всех действительных объектов, находящихся до переднего фокуса (на рис.- левее F), и всех мнимых объектов, находящихся за Л. Рассеивающие Л. дают расположенное между Л. и передним фокусом прямое, мнимое, уменьшенное изображение действит. объектов.

Расстояние между гл. плоскостями Л. почти не зависит от её оптич. силы и формы и примерно равно d (1-1/n ). Когда пренебрежимо мало по сравнению с Л. наз. тонкой. У тонких Л. знак оптич. силы Ф совпадает со знаком разности 1/r 1 -1/r 2 ; при этом толщина собирающих Л. по мере удаления от оси уменьшается, а рассеивающих - возрастает. Обе гл. плоскости тонких Л. можно считать совпадающими с плоскостью Л. и отсчитывать введённые выше расстояния /,l, прямо от последней. Чёткой границы между толстыми Л. (когда нельзя пренебречь) и тонкими не существует - всё зависит от конкретных применений.

Для преобразования высококогерентных световых пучков (обычно лазерного происхождения) используются преим. тонкие Л. Их часто наз. квадратичными фазовыми корректорами: при прохождении когерентного пучка через тонкую Л. к распределению фазы по его сечению добавляется величина где k = - волновой вектор, = ( п- 1) - вносимая Л. дополнит. , являющаяся квадратичной ф-цией удаления r от оси. Распределение комплексной амплитуды поля в фокальной плоскости Л. с точностью до фазового множителя является фурье-образом распределения амплитуды поля перед Л., вычисленным для пространственных частот (х, у - поперечные координаты на фокальной плоскости). Распределение интенсивности в той же плоскости подобно угл. распределению излучения с коэф. Поэтому Л. широко применяются в системах пространственной фильтрации излучения, обычно представляющих собой комбинацию Л. с установленными в их фокальных плоскостях диафрагмами, растрами, и в устройствах для измерения угл. излучения.

Л. обладают всеми аберрациями, присущими цент-риров. оптич. системам (см. Аберрации оптических систем ). Проблема аберраций особенно важна при использовании широкополосных и обладающих большими угл. апертурами световых пучков обычных (некогерентных) источников. Сферич. и хроматич. аберрации, а также могут быть в значит. степени исправлены путём комбинирования двух Л. разл. формы и из материалов с разл. дисперсией. Такие двухлинзовые системы широко используются в качестве объективов для зрительных труб и т. п. Иногда сферич. аберрации уничтожаются с помощью Л. с асферической, в частности параболоидальной, формой поверхности.

Для коррекции разл. дефектов глаза применяются Л. не только со сферическими, но также с цилиндрич. и торич. поверхностями. Цилиндрич. Л. сравнительно часто используются в тех случаях, когда изображение точечного источника должно быть "растянуто" в полосу или линию (напр., в спектральных приборах).

Лит.: Борн М., Вольф Э., Основы оптики, пер. с англ., 2 изд., М., 1973; Гудмен Д ж., Введение в Фурье-оптику, пер. с англ.. М.. 1970. Ю. А . Ананьев.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .

Наиболее важное применение преломления света – это использование линз, которые обычно делают из стекла. На рисунке вы видите поперечные разрезы различных линз. Линзой называют прозрачное тело, ограниченное сферическими или плоско-сферическими поверхностями. Всякая линза, которая в средней части тоньше, чем по краям, в вакууме или газе будет рассеивающей линзой. И наоборот: всякая линза, которая в средней части толще, чем по краям, будет собирающей линзой.

Для пояснений обратимся к чертежам. Слева показано, что лучи, идущие параллельно главной оптической оси собирающей линзы, после неё «сходятся», проходя через точку F – действительный главный фокус собирающей линзы. Справа показано прохождение лучей света через рассеивающую линзу параллельно её главной оптической оси. Лучи после линзы «расходятся» и кажутся исходящими из точки F’, называемой мнимым главным фокусом рассеивающей линзы. Он не действительный, а мнимый потому, что через него лучи света не проходят: там пересекаются лишь их воображаемые (мнимые) продолжения.

В школьной физике изучаются только так называемые тонкие линзы, которые вне зависимости от их симметричности «в разрезе» всегда имеют два главных фокуса, расположенные на равных расстояних от линзы. Если лучи направлять под углом к главной оптической оси, то мы обнаружим множество других фокусов у собирающей и/или рассеивающей линзы. Эти, побочные фокусы , будут находиться в стороне от главной оптической оси, но по-прежнему попарно на равных расстояниях от линзы.

Линзой можно не только собирать или рассеивать лучи. При помощи линз можно получать увеличенные и уменьшенные изображения предметов. Например, благодаря собирающей линзе на экране получается увеличенное и перевёрнутое изображение золотой статуэтки (см. рисунок).

Опыты показывают: отчётливое изображение возникает, если предмет, линза и экран расположены на определённых расстояниях друг от друга. В зависимости от них изображения могут быть перевёрнутыми или прямыми, увеличенными или уменьшенными, действительными или мнимыми.

Ситуация, когда расстояние d от предмета до линзы больше её фокусного расстояния F, но меньше двойного фокусного расстояния 2F, описана во второй строке таблицы. Именно это мы и наблюдаем со статуэткой: её изображение действительное, перевёрнутое и увеличенное.

Если изображение действительное, его можно спроецировать на экран. При этом изображение будет видно из любого места комнаты, из которого виден экран. Если изображение мнимое, то его нельзя спроецировать на экран, а можно лишь увидеть глазом, располагая его определённым образом по отношению к линзе (нужно смотреть «в неё»).

Опыты показывают, что рассеивающие линзы дают уменьшенное прямое мнимое изображение при любом расстоянии от предмета до линзы.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.