Какую пользу или вред приносит людям синий свет? Почему вам нужны очки, блокирующие синий свет.

За последние 15 лет мы стали свидетелями технологической революции в сфере технологий искусственного освещения. В наши дни традиционная лампа накаливания конструкции Эдисона-Лодыгина в домах, общественных местах и в производственных помещениях уступила место обычным и компактным люминесцентным лампам, галогенным и металлогалогенным лампам, многоцветным и люменоформным светодиодам. Во многих странах, в том числе и в России приняты законы, стимулирующие использование современных энергосберегающих источников света, вместо традиционных, потребляющих большие мощности ламп накаливания. Например, Федеральным законом РФ №261 «Об энергосбережении и о повышении энергетической эффективности» с 2009 года был введен запрет на импорт, выпуск и реализацию ламп накаливания мощностью 100 ватт и более, а для муниципальных и государственных предприятий - запрет на закупки любых ламп накаливания для освещения.

Смена элементной базы произошла и во всех видах устройств жидкокристаллическими экранами. На смену подсветке экрана на основе микрофлуоресцентных ламп также пришли твердотельные источники света - светодиоды, которые стали стандартным решением в смартфонах, планшетах, ноутбуках, мониторах и телевизионных панелях. Технологическая революция привела к радикальному изменению нагрузки на глаза: большинство современников читают и смотрят для получения информации не на хорошо освещенную отраженным светом бумагу, а на испускающие свет светодиодные дисплеи.

Рядовые потребители быстро заметили разницу между световой средой, создаваемой традиционными лампами накаливания и высокотехнологичными источниками света,такими как светодиоды. В некоторых случаях пребывание в среде с искусственным освещением на новой технологической основе стало приводить к снижению производительности труда, к повышенной утомляемости и раздражительности, к усталости, нарушениям сна, и заболеваниям глаз и нарушениями зрения. Также стали отмечаться случаи ухудшения состояния людей, страдающих такими хроническими заболеваниями как эпилепсия, мигрень, заболевания сетчатки, хронический актинический дерматит и солнечная крапивница.

Проблема со здоровьем стали возникать из-за того, что светодиоды, как и другие источники света новых поколений были разработаны и стали производиться в то время, когда промышленные стандарты безопасности не были нормой. Проведенные за последнее десятилетие исследования показали, что не все типы и конкретные модели современных высокотехнологичных источников света (светодиоды, люминесцентные лампы) могут быть безопасны для здоровья человека. Формально, с точки зрения существующие стандартов фотобиологической безопасности источников света (Европейские EN 62471,IEC 62471, CIE S009 и российский ГОСТ Р МЭК 62471 «Светобиологическая безопасность ламп и ламповых систем») абсолютное большинство бытовых источников света при условии правильного монтажа и использования относятся к категории «безопасны в использовании» («свободная группа» ГОСТ Р МЭК 62471) и лишь некоторые к категории «незначительный риск». По стандартам безопасности оцениваются следующие риски от воздействия источников света:

1. Опасности ультрафиолетового излучения для глаз и кожи.

2. Опасности излучения диапазона УФ-А для глаз.

3. Опасности излучения синего спектра для сетчатки глаза

4. Тепловой опасности поражения для сетчатки.

5. Инфракрасная опасность для глаз.

Лучистая энергия от источников света может вызвать повреждения тканей организма человека с помощью трех основных механизмов, первые два из которых не зависят от спектрального состава света и характерны для воздействия излучения видимого, инфракрасного и ультрафиолетового спектров:

  • Фотомеханического - при длительном поглощении большого количества энергии, ведущего к повреждению клеток.
  • Фототермического - в результате краткого (100 мс -10 с) поглощения интенсивного света, приводящего к перегреву клеток.
  • Фотохимического - в результате воздействия света определенной длины волны происходят специфические физиологические изменения в клетках, приводящие нарушению их деятельности или гибели. Этот вид повреждений характерен для сетчатки глаза при поглощении света синего спектра с длиной волны в диапазоне 400-490 нм излучаемого светодиодами

Иллюстрация №1. Синий спектр излучения светодиодов - ранее неизвестная и серьезная угроза для здоровья сетчатки глаза человека. (Если вы читаете статью на ЖК мониторе - просто задержите взгляд на картинке ниже и прислушайтесь к своим ощущениям).

В реальной жизни опасности поражения кожи, глаз или сетчатки фотомеханическими и фототермическими механизмами могут возникнуть лишь при нарушении правил безопасности: зрительный контакт с мощным источником света, с малых расстояний или в течение длительного времени. При этом тепловое и мощное световое излучение обычно явно различимо, и человек реагирует на его воздействие охранительными безусловными рефлексами и поведенческими реакциями, прерывающими контакт с источниками повреждающего светового излучения. Накапливаемый эффект теплового излучения на протяжении жизни человека на хрусталик глаза приводит к денатурации белков в его составе, что приводит к пожелтению и помутнению хрусталика - возникновению катаракты. Для профилактики катаракты стоит защищать глаза от воздействия любого яркого света (особенно солнечного), не смотреть на электрическую дугу сварки, огонь в костре, печи или камине.

Значительную опасность для здоровья глаз представляют собой воздействие ультрафиолетовой (люминесцентные и галогенные лампы) и синей части спектра светового излучения светодиодов, которые субъективно в общем спектре светового излучения человеком не воспринимаются, и воздействие которых не может быть контролируемо безусловными или условными рефлексами.

Многие виды искусственных источников света при работе испускают незначительное количество ультрафиолетового излучения: кварцевые галогенные лампы, линейные или компактные флуоресцентные лампы и лампы накаливания. Наибольшее количество ультрафиолетового изучения производят флуоресцентные лампы с одним слоем изоляции рабочей среды (например, линейные лампы дневного света, установленные без поликарбонатных светорассеивателей, либо компактные флуоресцентные лампы без дополнительного пластикового светорассеивателя). Но даже при самом худшем сценарии использования ламп с наибольшей эмиссией ультрафиолетового излучения эритемная доза, получаемая человеком за год, не превышает дозы, получаемой при недельном отпуске летом на Средиземном море. Однако определенную опасность представляют лампы, испускающие ультрафиолетовое излучение поддиапазона УФ-С, которое в природе практически полностью поглощается земной атмосферой и не достигает земной коры. Излучение этого спектра не является естественным для человеческого организма и может представлять определенную опасность, теоретически увеличивая риск развития рака кожи на 10% и более. Также постоянное воздействие ультрафиолетового излучения на человека может представлять опасность при ряде хронических заболеваний (заболевания сетчатки, солнечная крапивница, хронические дерматиты) и приводить к возникновению катаракты (помутнение хрусталика глаза).

Иллюстрация №2. Стандартное повреждающее действие светового излучения на глаза в зависимости от длины волны.


Гораздо большую, но пока еще недостаточно изученную опасность может представлять для здоровья глаз и сетчатки излучение синей части видимого спектра в диапазоне от 400 до 490 нм испускаемого светодиодами белого света.

Иллюстрация №3. Сравнение мощности спектра излучения стандартных светодиодов белого света, флоуресцентных (люминисцентных) ламп и традиционных ламп накаливания.


На иллюстрации выше показано сравнение спектрально состава света от различных источников: светодиодов белого света, флуоресцентных (люминисцентных) ламп и традиционных ламп накаливания. Хотя субъективно свет ото всех источников воспринимается как белый, спектральный состав излучения принципиально разный. Пик синего спектра у светодиодов обусловлен их конструкций: белые светодиоды состоят из диода, испускающего поток синего света, проходящего через поглощающий синий свет желтый люминофор, что создает у человека восприятия света белого цвета. Максимум мощности излучения у светодиодов белого света приходится на синюю часть спектра (400-490 нм). Экспериментальные исследования показывает, что воздействие синего света в диапазоне 400-460 нм является максимально опасным, приводящим к фотохимическому повреждению клеток сетчатки глаза и их гибели. Синее излучение в диапазоне 470-490 нм может быть менее вредным для глаз. Из графиков видно, что и флуоресцентные лампы также испускают свет во вредоносном диапазоне, но интенсивность излучения в 2-3 меньшая, чем у светодиодов белого света.

Со временем люминофор в светодиодах белого света деградирует, и интенсивность излучения в синем спектре увеличивается. Тоже происходит и в электронных гаджетах: чем старее экран или монитор со светодиодной подсветкой, тем интенсивнее в нем излучение синей части спектра. Патологическое воздействие синего спектра на сетчатку глаза усиливается в темное время суток. Более всего подвержены повреждающему воздействию синего спектра дети в возрасте до 10 лет (из-за лучшей проницаемости структур глаза) и пожилые люди старше 60 лет (из-за накопления в клетках сетчатки пигмента липофусцина, активно поглощающего свет синего спектра).

Иллюстрация №4. Сравнение мощности спектра излучения различных искусственных источников света с дневным солнечным светом.


Повреждающее воздействие синей части спектра светового излучения светодиодов реализуется за счет фотохимических механизмов: синий свет вызывает накопление в клетках сетчатки пигмента липофусцина (которого образуется больше с возрастом) в виде гранул. Гранулы липофусцина интенсивно поглощают синий спектр светового излучения, в результате чего образуется много свободных кислородных радикалов (активная форма кислорода), которые, повреждают структуры клеток сетчатки, вызывая их гибель.

Кроме повреждающего действия синий свет длиной волны 460 нм, испускаемый светодиодами белого света и флуоресцентными (люминесцентными) лампами способен влиять на синтез фотопигмента меланопсина, регулирующего циркадные ритмы и механизмы сна за счет подавления активности гормона мелатонина. Синий свет этой длины волны способен при хроническом воздействии сдвигать циркадные ритмы человека, что, с одной стороны, при контролируемом воздействии может быть использовано для лечения нарушений сна, а с другой при бесконтрольной экспозиции, в том числе в ночное время, приводить к сдвигу циркадных ритмов человека, приводящих к нарушениям сна .

Урезанный спектральный состав света от люминесцентных ламп и светодиодов косвенно уменьшает регенеративные способности (способности к восстановлению) тканей глаза. Дело в том, что видимый красный и ближний инфракрасный диапазон (IR-A) естественного солнечного света и ламп накаливания вызывает определенный прогрев тканей, стимулируя кровоснабжение и питание тканей, улучшая производство энергии в клетках. Свет от высокотехнологичных устройств практически лишен этой естественной «лечебной» части спектра.

Опасность синего спектра видимого излучения, испускаемого светодиодами белого света, подтверждена многочисленными экспериментами над животными. Французское Агентство по продовольственной, экологической и профессиональной безопасности и здоровью (ANSES) в 2010 году опубликовало доклад «Светодиодные системы освещения: последствия для здоровья, с которыми стоит считаться» в котором говорится «Синий свет... признан вредным и опасным для сетчатки глаза, за счет вызываемого им клеточного окислительного стресса ». Синий спектр светодиодного света вызывает фотохимическое повреждение глаз, степень которого зависит от накопленной дозы синего света, в результате совокупности интенсивности и освещения и длительности его воздействия. Агентство выделят три основных группы риска: дети, светочувствительные люди и работники, проводящие много времени в условиях искусственного освещения.

Научная комиссия Евросоюза по новым и вновь выявленным рискам для здоровья (SCENIHR) также опубликовала в 2012 году свое мнение по опасности для здоровья светодиодного освещения, подтверждая, что синий спектр светодиодного света вызывает фотохимические повреждения клеток сетчатки глаза как при интенсивном (более 10 Вт/м2) кратковременном воздействии (>1,5 часа), так и при длительном воздействии с низкой интенсивностью.

Выводы:

  1. Воздействие на организм человека высокотехнологичных источников света до конца не изучено. В настоящее время невозможно сделать окончательных выводов ни о безопасности, но и об опасности воздействия на организм человека источников света, отличных от традиционных ламп накаливания.
  2. В настоящее время невозможно определить стандарты безопасности типов источников света из-за значительного разброса внутренних конструктивных параметров в зависимости от конкретного производителя и конкретной партии товара.
  3. Исходя из спектрального состава излучения, наиболее безопасными для здоровья человека источниками света являются традиционные лампы накаливания и некоторые галогенные лампы. Их рекомендуется использовать в спальнях, в детских и для освещения рабочих мест (особенно мест для работы в темное время суток). От использования светодиодов в местах длительного нахождения людей (особенно в темное время суток) лучше отказаться.
  4. Для снижения эмиссии излучения ультрафиолетового диапазона рекомендуется либо отказаться от использования флуоресцентных (люминесцентных) ламп, либо использовать флуоресцентные лампы с двойной оболочкой и установкой за полимерными светорассеивателями. Нельзя пользоваться люминесцентными лампами на расстоянии ближе, чем 20 см до тела человека. Галогенные лампы также могут быть значительными источниками УФ излучения.
  5. Для снижения возможного повреждения сетчатки излучением синего спектра, испускаемого светодиодами холодного белого света и, в меньшей степени, компактными флуоресцентными лампами следует: использовать для освещения источники света другого типа, либо использовать светодиоды теплого белого света. При работе в ночное время при искусственном освещении светодиодами или флуоресцентными лампами рекомендуется использовать очки, блокирующие синий спектр светового излучения.
  6. При работе с устройствами, имеющие жидкокристаллические экраны со светодиодной подсветкой рекомендуется сокращать время работы с такими устройствами, давать отдых глазам каждые 20 минут работы, прекращать работу как минимум за два часа до сна и избегать работы в ночное время. В настройке цветовой температуры мониторов и экранов следует отдавать предпочтение теплой цветовой гамме. Особенно подвержены воздействию синего спектра дети в возрасте до 10 лет и пожилые люди старше 60 лет. При работе в темное время суток в условиях искусственного освещения рекомендуется носить очки, блокирующие синий спектр светового излучения, особенно. Постоянное ношение очков, блокирующих синий спектр в дневное время может привести к нарушению синтеза гормона меланопсина и последующим нарушениям сна, и другим заболеваниям, связанным с нарушениями циркадных ритмов (в том числе к раку молочной железы, сердечнососудистым и желудочно-кишечным заболеваниям).
  7. При ночном вождении автомобиля рекомендуется носить водительские очки с желтыми светофильтрами для блокировки синего спектра света встречных светодиодных фар и повышения четкости изображения.

Список литературы:

  1. Health Effects of Artificial Light. Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR), 2012.
  2. Systèmes d’éclairage utilisant des diodes électroluminescentes: des effets sanitaires à prendre en compte. ANSES, 2010.
  3. Gianluca T. Effects of blue light on the circadian system and eye physiology Mol Vis. 2016; 22: 61-72.
  4. Lougheed T. Hidden blue hazard? LED lighting and retinal damage in rats. Environ Health Perspect, 2014. Vol.122:A81
  5. Yu-Man Sh. et al. White Light-Emitting Diodes (LEDs) at Domestic Lighting Levels and Retinal Injury in a Rat Model Environ Health Perspect, 2014, Vol.122.

Британская и американская рабочие группы 10 лет назад уже доказали о наличии фото-пигмента в глазу человека. Он сигнализирует организму, наступил день или ночь, лето или зима. Фото-пигмент реагирует, в частности, на синий свет. Синий свет показывает организму как будто это день – нужно бодрствовать.

Повышение и снижение показателей мелатонина регулируется количеством света, который захватывают наши глаза и передают в шишковидную железу (эпифиз). Когда темнеет, выработка мелатонина в эпифизе увеличивается, и нам хочется спать. Яркое освещение тормозит синтез мелатонина, сон как рукой снимает.

Сильнее всего выработка мелатонина подавляется светом с длиной волны 450-480 нанометров, то есть синим светом.

Сравнение с зелёным светом показало, что синий свет сдвигает в сторону дня стрелку биологических часов в среднем на три часа, а зелёный - только на полтора, и эффект синего света держится дольше. Поэтому, синий искусственный свет, охватывающий спектр видимых фиолетовых и собственно синих световых волн, становится угрожающе опасным в ночное время!

Поэтому учёные рекомендуют утром яркое синеватое освещение, чтобы быстрее проснуться, а вечером желательно избегать синей части спектра. Кстати, распространённые сейчас энергосберегающие, а особенно светодиодные лампы испускают очень много синих лучей.
Так получается, что проблемы здоровья человека вступают в этом вопросе в противодействие с энергосберегающими технологиями. Обычные лампы накаливания, которые сейчас повсеместно снимают с производства, выдавали куда меньше света синего спектра, чем люминесцентные или светодиодные нового поколения. И всё же при выборе ламп следует руководствоваться полученными знаниями и предпочесть синему любой другой цвет.

Чем опасно для здоровья ночное освещение?

Многие исследования последних лет находили связь между работой в ночную смену и воздействием искусственного света на возникновение или обострение у наблюдаемых болезней сердца, сахарного диабета, ожирения, а также рака предстательной и молочной железы. Хотя ещё не совсем понятно, отчего это происходит, но учёные считают, что всё дело в подавлении светом гормона мелатонина, который, в свою очередь, влияет на циркадный ритм человека («внутренние часы»).

Исследователи из Гарварда, пытаясь пролить свет на связь циркадного цикла с диабетом и ожирением, провели эксперимент среди 10 участников. Им постоянно смещали с помощью света сроки их циркадного цикла. В результате – уровень сахара в крови значительно возрос, вызвав преддиабетное состояние, а уровень гормона лептина, отвечающего за чувство сытости после еды, напротив, понизился (то есть человек испытывал даже при том, что организм биологически насытился).

Оказалось, даже очень тусклый свет от ночника способен разрушить сон и нарушить ход биологических часов! Кроме сердечно-сосудистых заболеваний и сахарного диабета, это приводит к началу депрессии.

Еще, обнаружено, что изменения в сетчатке глаз, по мере старения, могут привести к нарушению циркадных ритмов.

Поэтому проблемы со зрением у пожилых могут стать причиной развития многих хронических заболеваний и состояний, связанных с возрастом.

По мере старения хрусталик глаз приобретает жёлтый оттенок и пропускает меньше лучей. Да и в целом, наши глаза улавливают меньше света, особенно синей части спектра. Глаза 10-летнего ребёнка способны поглощать в 10 раз больше синего света, чем глаза 95-летнего старика. В 45 лет глаза человека поглощают лишь 50% синего спектра света, необходимого для обеспечения циркадных ритмов.

Свет с экрана компьютера мешает спать

Работа и игра на компьютере особенно отрицательно влияет на сон, так как при работе вы сильно сконцентрировались и сидите близко к яркому экрану.

Двух часов чтения с экрана устройства вроде iPad при максимальной яркости достаточно, чтобы подавить нормальную выработку ночного мелатонина.

Многие из нас каждый день по несколько часов проводят за компьютером. При этом не все знают, что правильная настройка дисплея монитора может сделать работу более эффективной и комфортной.

Программа F.lux исправляет это, делая свечение экрана адаптированным к времени суток. Свечение монитора будет плавно меняться от холодного днем к теплому ночью.

«F.lux» в переводе с английского означает течение, постоянное изменение, постоянное движение. Работать за монитором в любое время суток значительно комфортнее.

Легко ли ей пользоваться?
Благодаря низким системным требованиям, «F.lux» будет отлично работать даже на слабых компьютерах. Простая установка не займет много времени. Все, что требуется – это укать Ваше местонахождение на земном шаре. Карты Гугл помогут сделать это менее, чем за минуту. Теперь программа настроена и работает в фоновом режиме, создавая комфорт для Ваших глаз.

«F.lux» полностью бесплатна. Есть версии для Windows, Mac OS и Linux.

Настройки просмотра комментариев

Плоский список - свёрнутый Плоский список - развёрнутый Древовидный - свёрнутый Древовидный - развёрнутый

По дате - сначала новые По дате - сначала старые

Выберите нужный метод показа комментариев и нажмите "Сохранить установки".

В течение последних лет в средствах массовой информации периодически всплывает тематика воздействия синего света на человека и природу. По запросу «синий свет» поисковые системы на первых же нескольких страницах выдают заголовки вроде: «Синий свет мешает спать», «Защита глаз от синего света», «Синие светодиоды вредны для глаз», «Синий свет - опасность современного мира», и даже - «Убийственная способность синего света». Вызывает тревогу, не так ли? Но помимо этого в результатах поиска присутствуют и альтернативные, позитивно-настроенные заголовки: «Лечебные свойства синего света», «Терапия синим светом», «Синий свет бодрит лучше, чем кофе», «Синий свет улучшает мышление и внимание», и, даже, безапелляционно-решительный: «От синего света умнеют». Так есть ли повод для беспокойства или, как часто бывает в СМИ, проблема сильно преувеличена? В этой статье мы попробуем в этом разобраться.

Что же такое «синий свет»?

Видимый свет, который человек воспринимает глазом, это электромагнитное излучение в диапазоне от 380 до 760 нм. Излучение с длиной волны короче, чем 380 нм – ультрафиолетовое (УФ), с длиной волны больше, чем 760 нм – инфракрасное (ИК). Такое излучение человек увидеть не может, но может ощутить его воздействие иначе: инфракрасные лучи мы ощущаем как тепло, а ультрафиолетовые делают нашу кожу загорелой.

Рисунок 1. Виды электромагнитного излучения.

Синим светом принято называть коротковолновый участок видимого диапазона электромагнитного излучения с длинами волн от 380 до 500 нм. (Хотя, строго говоря, сюда входят не только синий, но и фиолетовый, и голубой свет). Чем меньше длина волны, тем более высокой энергией обладает такое излучение и тем больше оно рассеивается. Именно из-за рассеивания коротковолновых лучей, входящих в солнечный спектр, небо имеет сине-голубой цвет - он больше всего рассеивается в атмосфере.

Как человек воспринимает свет?

После того, как свет прошёл через зрачок и попал на сетчатку, он воспринимается особыми клетками – фоторецепторами, которые реагируют на него и через зрительный нерв посылают импульс в мозг. Чуть выше зрительного нерва находится жёлтое пятно (макула) - это место наибольшей концентрации светочувствительных клеток.

Рисунок 2. Устройство человеческого глаза.

Есть два типа фоторецепторов: палочки и колбочки. Палочки отвечают за ночное зрение и работают в условиях низкой освещённости, обладая очень высокой чувствительностью. При этом цветовое восприятие практически отсутствует -«ночью все кошки серы». Колбочки же обеспечивают «дневное зрение» и бывают трёх типов – восприимчивые к синему, красному или зелёному свету.


Рисунок 3. Спектральная чувствительность фоторецепторов дневного и ночного зрения.

Распределение типов колбочек по сетчатке неравномерно: «синие» колбочки находятся ближе к периферии, в то время как «красные» и «зеленые» распределены случайным образом. В результате суммы импульсов от трех видов колбочек человек «видит» определённый цвет. При этом ощущение одного и того же цвета может быть вызвано светом с различным спектральным составом (такое явление называется метамерией). Скажем, и солнечный дневной свет, и свет от люминесцентной или светодиодной лампы мы посчитаем одинаковым - белым. Хотя на самом деле спектр излучения здесь совершенно разный, у солнца - сплошной, а у газоразрядной лампы - линейчатый.

В чём же особенность восприятия именно синего света?

1.В первую очередь, из всего видимого спектра именно синий свет несёт наибольшую долю ответственности за фотохимические повреждения сетчатки глаза. Исследования, проводимые на животных и на клеточных культурах, показали, что облучение синим светом приводит к разрушению пигментного слоя и фоторецепторов сетчатки. Синий свет вызывает фотохимическую реакцию, продуцирующую свободные радикалы, которые оказывают повреждающее воздействие на фоторецепторы - колбочки и палочки. Образующиеся вследствие фотохимической реакции продукты метаболизма не могут быть нормально утилизированы эпителием сетчатки, они накапливаются и вызывают ее дегенерацию. С уменьшением длины волны излучения степень повреждений возрастает. Было доказано, что изменение тканей после длительного воздействия яркого синего света аналогично такому, какое связывают с симптомами возрастной дегенерации макулы. Стоит отметить, что с возрастом хрусталик человеческого глаза желтеет и меньше пропускает синий свет.
Таким образом, в группе риска, подверженной наиболее сильному повреждающему действию, оказываются:
дети и подростки (глаза десятилетнего ребёнка поглощают в 10 раз больше синего света, чем глаза 95-летнего старика);
люди с интраокулярными линзами (искусственным хрусталиком);
люди с высокой светочувствительностью, проводящие много времени в условиях яркого освещения с большим количеством синей составляющей в спектре (синий свет также излучают и мониторы компьютеров, экраны смартфонов и электронные дисплеи различных приборов).

2. Помимо риска повреждения сетчатки существует и ещё одна особенность синего света: в 1991 году были открыты особые светочувствительные ганглионарные (или «ганглиозные») клетки типа ipRGC (intrinsically photosensitive retinal ganglion cells). Эти клетки реагируют именно на коротковолновую, синюю часть видимого спектра с длиной волны от 450 до 480 нм. Таким образом, в сетчатке глаза существует третий тип фоторецептора, но импульсы от ганглионарных клеток не участвуют в восприятии цветовой картинки. Они выполняют другие очень важные задачи: отвечают за своевременное изменение размера зрачка (сужение/расширение) и управляют циркадными ритмами человека. Циркадные ритмы – это наши «внутренние часы», колебания интенсивности различных биологических процессов в организме, связанные со сменой дня и ночи.


Рисунок 4. Клетки сетчатки.

Главную роль в регуляции суточных ритмов играет гормон мелатонин. Он вырабатывается эпифизом только в темноте, поэтому его также называют «гормоном сна». А синий свет (цвет неба ясным днём) вызывает реакцию ганглионарных клеток, заставляя их блокировать выработку мелатонина, в результате человек чувствует себя бодрым и не хочет спать. Многочисленные исследования показали, что люди, подвергаемые облучению синим светом, показывают большую способность к концентрации внимания и быстрее принимают сложные решения, давая большее число правильных ответов в единицу времени. Доказано, что бодрящий эффект синего света превосходит даже действие кофе - известного способа привести себя в рабочее состояние рано утром. Известно об эффективности светотерапии в лечении таких заболеваний, как: сезонное аффективное расстройство («зимняя депрессия»), гериартрические расстройства сна, нарушение ритма сон-пробуждение у страдающих болезнью Альцгеймера и синдромом дефицита внимания и гиперактивностью.
Контроль секреции мелатонина - ключевой фактор в регуляции здоровья и циркадных ритмов человека. В ряде работпоказано, что люди, подвергающиеся воздействию светаночью (в особенностисинего света), имеют низкий уровень мелатонина иповышенную частоту развития различных заболеваний и расстройств, включаянарушения сна, психическиеболезни, неврологические болезни (болезнь Альцгеймера), сердечнососудистые заболевания, мигрень, ожирение, диабет, а также некоторые виды онкологических заболеваний, включая рак груди и простаты.

Отметим, что светодиодное освещение подавляет выработку мелатонина в пять раз эффективнее, чем освещение светильниками с натриевыми лампами при том же выходном световом потоке.

В спектре каких современных источников света присутствует синий свет?

В первую очередь, конечно же, синий свет присутствует в солнечном излучении. Утром и днём – в наибольшем количестве, вечером – в минимальном. Созерцание заходящего солнца совсем не вредно для глаз, а вот взглянув вверх в дневное время можно получить повреждение сетчатки. Но, как было упомянуто выше, для правильной работы организма человеку необходимо получать свою «порцию» уличного света, и для этого каждый день хотя бы 30 минут проводить вне помещения. Некоторые производители ламп даже специально добавляют синюю составляющую в свои источники света, позиционируя их как оптимальный аналог дневному солнечному свету (full-spectrumlamps).


Рисунок 5. Примерные спектры излучения солнца, лампы накаливания, люминесцентной лампы.


Рисунок 6. Примерные спектры излучения натриевой лампы низкого давления, натриевой лампы высокого давления, металлогалогенной лампы.


Рисунок 7. Примерные спектры излучения галогенной лампы накаливания, холодно-белого светодиода и тёпло-белого светодиода.

Лампы накаливания и галогенные лампы содержат очень мало синего в спектре, это можно заметить и визуально - их свет тёплый, желтоватого оттенка. Люминесцентные лампы обладают линейчатым спектром, в котором присутствует узкий пик в синем диапазоне. В излучении натриевых ламп высокого давления синяя составляющая практически полностью отсутствует, есть только пик в голубой области, ближе к зелёному. Белые светодиоды, в настоящее время производимые чаще всего по технологии «синий излучающий кристалл + люминофор», разумеется, имеют один из максимумов излучения в синей зоне – это излучение собственно кристалла. Его величина относительно второго, люминофорного пика тем больше, чем холоднее цветовая температура.

Каков опыт использования в уличном освещении белых светодиодов с высоким содержанием синего света в спектре?

Холодно-белые светодиоды (с Тцв от 4000 до 6500 К) более популярны в уличном освещении чем тёпло-белые, так как имеют больший световой поток при той же потребляемой мощности, а значит более эффективны и быстрее окупаются. Когда светодиодные светильники стали выпускаться в промышленных масштабах и цены на них снизились, стало экономически выгодно повсеместно их внедрять: во многих городах Европы, в США и в России были утверждены программы по замене светильников с ртутными и натриевыми лампами на современные светодиоды. В частности, в США установлено уже более 5.7 миллионов уличных светодиодных светильников и прожекторов, и их количество продолжает расти.

Однако, с открытием особенностей синего света помимо эффективного энергосбережения обнаружились и другие стороны холодно-белого светодиодного освещения. К примеру, в 2014 году в городе Дэвис, Северная Калифорния был принят план по замене 2600 шт. уличных 90 Вт натриевых светильников светодиодными. Предварительно были испытаны две модели светильника: со световым потоком 2115 лм (Тцв=4000 К) и с потоком 2326 лм (Тцв=5700 К). По результатам испытаний было решено выбрать вариант с Тцв 4000 К. Через пять месяцев после установки приборов в городской совет начали поступать отзывы местных жителей. В большинстве своём, они были негативными: люди сообщали что «свет слишком яркий», «слишком резкий» и «слишком блёский». Уже установленные светильники пришлось заменить на аналогичные, но с более тёплой цветовой температурой 2700 К.


Рисунок 8. Светодиодное освещение на улицах Бостона. (Фото: Боб О`Коннор).

Аналогичные проблемы возникли и у жителей Нью-Йорка, Сиэтла, Филадельфии, Хьюстона. Свет белых светодиодов визуально совсем не похож на свет уже ставших привычными натриевых ламп. Раздражающей «блёскости» холодно-белых светодиодовесть научное объяснение: дело в том, что глаз человека фокусирует лучи с различной длинойволны в различных фокальных плоскостях - на сетчатке, либо перед ней, либо за ней.


Рисунок 9. Различия в фокусировке света разных цветов.

Синий свет, как самый коротковолновый, фокусируется перед сетчаткой, а на самой сетчатке вместо точки (исходного объекта) получается пятно (размытое, нерезкое изображение). Большая степень размытости изображения означает снижение контрастности и четкости, снижение остроты зрения. А вот если убрать синий свет, а оставить только жёлто-зелёную и красную часть излучения, то картинка для глаза станет намного более чёткой, и разглядывать отдельные объекты будет легче. Например, снайперы и спортсмены для того, чтобы чётко видеть окружающие объекты, а значит быстрее и лучше ориентироваться в обстановке,используют очки с покрытиями, отфильтровывающими синий свет.


Рисунок 10. Работа фильтра, повышающего контрастность. Слева – через очки с фильтрующим покрытием, справа – без очков.

Ещё один аспект проблемы касается не людей, но представителей фауны: рассеянный в ночном небе синий свет создаёт избыточную яркость, что влияет на некоторые виды ночных животных и насекомых. В нескольких штатах США, в частности во Флориде пришлось законодательно утвердить перечень типов источников света, допустимых к использованию на прибрежных территориях. Морские черепахи, дезориентированные городским освещением, вместо того, чтобы ползти к морю (синий отражённый свет которого и должен их привлекать), направляются в сторону автомобильных дорог. Поэтому на побережьях рекомендовано использовать натриевые лампы либо янтарные светодиоды.

Что предпринимается в мире сейчас для решения проблемы синего света?

Обобщив накопленный опыт применения светодиодных источников света, в июне 2016 года Американская Медицинская Ассоциация (АМА) выпустила Руководство по повышению безопасности уличного освещения. Рекомендации, приведённые в нём, призваны помочь в выборе наиболее безопасных для здоровья людей (и окружающей среды) световых приборов. АМА полагает, что излучение светодиодов с большим содержанием синего света создаёт для водителей условия повышенной блёскости, что дискомфортно для глаз, снижает остроту зрения и может привести к аварийным ситуациям. А в случае использования в освещении дворов и придомовых территорий такие источники света могут быть причиной проблем со сном ночью, избыточной сонливости днём, как следствие - сниженной активности и даже ожирения.
Чтобы минимизировать негативные эффекты, АМА рекомендует:
использовать для освещения населённых пунктов светодиодные светильники с наименее возможным содержанием синего света (с Тцв не выше 3000К);
диммировать источники света в часы сниженной загрузки улиц;
использовать ограничители и защитные решётки, чтобы уменьшить количество искусственного света, попадающего в окружающую среду.
Приняв к сведению этот документ, в дополнение к просьбам горожан (150 обращений за прошедший год), Городской Совет Нью-Йорка постановил использовать светодиодные светильники более «тёплого» цвета, а также в отдельных районах уменьшить мощность световых точек.


Рисунок 11. Светодиодные светильники в Куинсе. (Фото:Сэм Ходжсон)

В Сан-Франциско также сделали выбор в пользу светодиодов с низкой цветовой температурой: в 2017 году 18500 уличных светильников с натриевыми лампами будет заменено на светодиодные модели с тёпло-белой цветовой температурой. На городском сайте можно увидеть подробную карту планируемой модернизации.


Рисунок 12. Онлайн-карта Сан-Франциско. Жёлтая точка – планируется к замене на светодиодный светильник, зелёная – уже заменён.

Производители световых приборов и компонентов не оставляют без отклика проблему синего света. Например, один из крупнейших производителей светодиодов компания Cree запустила в производство тёпло-белые светодиоды (Тцв=3000К) с таким же световым потоком, как и у холодно-белых светодиодов (Тцв=4000К). Технология состоит в добавлении к стандартному люминофорному холодно-белому светодиоду красного светодиода с высокой световой отдачей. Таким образом, в одном источнике света сочетаются комфортная для человека цветовая температура (как у натриевых ламп) с высокой световой отдачей и большим сроком службы. При этом количество синего света снижено с 30% (светодиоды 4000К) до 20% (3000К).
В ответ на пресс-релиз АМА, Департамент Энергетики США выпустил ответное послание , в котором напомнил, что проблема синего света касается не только светодиодов, но и других источников света. И не только их. Помимо воздействия от осветительных приборов человек испытывает влияние синего света и от многочисленной электроники. Экран монитора, телевизор, дисплей смартфона, электронная книга с подсветкой, панель управления автомагнитолой, индикаторные светодиоды бытовой техники - всё это синий свет. А что касается светодиодов, то эта технология благодаря своей гибкости и многовариантности как никакая другая позволяет добиться наилучших результатов в городском освещении, минимизировав негативные стороны. Светодиоды отлично диммируются, их световой поток регулируется от 0 до 100%. Может быть получено практически любое светораспределение, благодаря широкому разнообразию линз и отражателей. Комбинирование светоизлучающих кристаллов разных цветов с различными же люминофорами позволяет достигнуть нужного спектрального состава.
Несмотря на отдельные негативные моменты, люди в большинстве довольны светодиодным освещением и поддерживают модернизацию в этой области, ведь белые светодиоды продолжают оставаться самым энергоэффективным источником света и на сегодняшний день уже помогли сохранить немалые деньги. Проведя замену 150 тыс. городских светильников на светодиодные, Лос-Анджелес экономит в год 8 млн. долларов. Аналогичные меры в Нью-Йорке по замене 250 тыс. светильников сохранили городскому бюджету 6 млн. долларов по расходу электроэнергии и ещё 8 млн. долларов с обслуживания световых точек.


Рисунок 13. Замена натриевых ламп светодиодами. Лос-Анджелес, Хувер-стрит.

А что происходит в России?

На данный момент в Москве самая крупная система наружного освещения в мире. Это более 570 тысяч приборов, около 370 тысяч опор наружного освещения. Количество световых точек продолжает расти: только в 2012-2013 гг. в столице осветили порядка 14 тыс. дворов. Столичное правительство выделило в 2012–2016 гг. более 64 млрд руб. (в том числе более 15 млрд руб. – в 2016 г.) на подпрограмму «Развитие единой светоцветовой среды» городской коммунальной программы.
Летом 2016 года на Московском урбанистическом форуме руководитель Департамента топливно-энергетического хозяйства города Москвы Павел Ливинский рассказал о недавно принятом новом стандарте благоустройства.


Рисунок 14. Дискуссия «Функции света. Как освещение может преобразить жизнь города?» в рамках Московского урбанистического форума.

Стандарт будет применяться на улицах, во дворах и общественных пространствах Москвы. Он увязывает разнообразные варианты городских осветительных установок в единую концепцию, а так же в нём прописаны технические характеристики световых приборов, обеспечивающие максимальные энергоэффективность и качество освещения. В этом документе среди основных рекомендаций по источникам света указаны:
использование светодиодных и металлогалогенных ламп;
цветовая температура освещения – 2700-2800 градусов по Кельвину (К);
индекс цветопередачи Ra 80 и более. На пешеходных улицах и в зонах уличного фронта и общественного обслуживания индекс цветопередачи R9 (насыщенный красный) должен составлять >70;
класс бликования световых приборов G4 и выше.
Ливинский подчеркнул, что тёпло-белая цветовая гамма выбрана для городского освещения именно из соображений безопасности для зрения.

Заключение.

Синий свет присутствует в излучении многих источников света: солнце, люминесцентные лампы, ртутные лампы, металлогалогенные лампы, светодиоды. Чем выше цветовая температура - тем больше синего в спектре.

Результаты многочисленных исследований о вреде синего света на данный момент можно свести к следующему:

1. Неправильное использование источников света, имеющих в спектре синюю составляющую, людьми из групп риска по зрению теоретически может привести к ухудшению состояния сетчатки: нельзя смотреть прямо на источник света в течение длительного времени, стоит позаботиться о том, чтобы свет «не бил в глаза».

2. Вред для глаз здорового человека от регулярного пребывания в местах с искусственным освещением в нормальных условиях маловероятен.

3. Независимо от вида источников света, регулярное пребывание ночью на территории с искусственным освещением в течение длительного времени (например, работа в ночную смену либо вождение автотранспорта в тёмное время суток) может быть связано с нарушениями сна, пищеварения и психологическими проблемами.

Чтобы свести к минимуму влияние особенностей синего света, при проектировании установок наружного освещения следует: выбирать источники света тёпло-белого оттенка (с цветовой температурой от 2700 до 3000 К); выбирать светильники с наименьшей блёскостью; располагать их таким образом, чтобы максимальный процент светового потока попадал на освещаемую поверхность, а не в окружающее пространство.

При соблюдении этих условий будет обеспечен необходимый уровень освещённости с максимальным комфортом для зрения человека.

Технический консультант ООО «БЛ Трейд», Елена Ошуркова

Список литературы:

1. Artificial Lighting and the Blue Light Hazard, by Dan Roberts, Founding Director Macular Degeneration Support. Originally published on MDSupport, updated October 3, 2011.
2. Восприятие света как стимула незрительных реакций человека, Г.К. Брейнард, И. Провенсио, Светотехника№1, 2008.
3. Опасность синего света. HoyaVisionCare, Нидерланды. Вестник оптометрии №4, 2016.
4. Оценка влияния синего света на сон и бодрствование пожилых людей, Д. Скен, Университет Суррея, Великобритания, Светотехника №4, 2009.
5. Светотехника завтра: что самое «жгучее»? В. Ван Боммель, Нидерланды, Светотехника №3, 2010.
6. Влияние новых светотехнических приборов на здоровье и безопасность людей, Д.Х. Слайни, Светотехника№3, 2010.
7. Потенциальная опасность освещения светодиодами для глаз детей и подростков, П.П. Зак, М.А. Островский, Светотехника №3, 2012.
8. Спектры излучения светодиодов и спектр для подавления секреции мелатонина, Бижак Г., Кобав М.Б., Светотехника№3, 2012.
9. Retinal damage induced by commercial Light Emitting Diodes (LED), ImeneJaadane, Pierre Boulenguez, et al.
10. Davis, CA LED street retrofit, volt.org
11. LED Streetlights Are Giving Neighborhoods the Blues, Jeff Hecht,22 sent. 2016, spectrum.ieee.org
12. New York’s LED Streetlights: A Crime Deterrent to Some, a Nuisance to Others, Matt A.V. Chaban, July 11, 2016, nytimes.com
13. Doctors issue warning about LED streetlights, Richard G. Stevens, June 21, 2016 edition.cnn.com
23. Архитектурная подсветка помогает продавать недвижимость в Москве, Марина Дыкина, 19 сентября 2016,

1. Почему синий свет? Светодиодная эпидемия.

2. Особенности восприятия синего света.

3. Отрицательное действие синего свет.

4. Положительное действие синего света.

Рис. 2. Спектральный состав излучения электронных приборов (а) и источников освещения (б) :

1 – Galaxy S; 2 – iPad; 3 – компьютер; 4 – дисплей с электронно- лучевой трубкой; 5 – свето­диодные энергосберегающие лампы; 6 – люминесцентные лампы; 7 – лампы накаливания


Распространенность синего света велика. Это связано с распространением диодов. В спектре света любого светодиода очень выражен синий свет. Даже в белых оттенках всегда присутствуют синие линии в спектре. Светодиоды окружают нас везде: в промышленном освещении, светодиодных индикаторах, экранах и др. Вот что рассказал нам один из владельцев USB-концентратора с синим светодиодным индикатором: «Каждый раз, когда это устройство попадало в поле зрения, у меня возникало такое ощущение, что в глаз впивается острая игла. Это происходило даже в тех случаях, когда устройство располагалось сбоку, а исходящий от него синий свет воспринимался исключительно периферийным зрением. В конце концов мне это надоело, и я закрасил злополучный светодиод черной краской». Многие дизайнеры и конструкторы просто одержимы идеей удиви ть прогрессивное человечество завораживающим синим свечением. По данным опросов, многих покупателей электронных устройств яркие синие светодиоды настолько раздражают, что люди предпочитают заклеивать их или даже обрезать идущие к ним провода.

Особенности восприятия.

1. Эффект Пуркинье

Синий свет кажется более ярким в условиях слабой освещенности — например ночью или в затемненном помещении. Это явление называется эффектом Пуркинье и происходит вследствие того, что палочки (чувствительные элементы сетчатки глаза, воспринимающие слабый свет в монохроматическом режиме) наиболее чувствительны к излучению сине-зеленой части видимого спектра. На практике это приводит к тому, что синие индикаторы или эффектная подсветка устройства (например, телевизора) нормально воспринимается при ярком освещении — например когда мы выбираем подходящую модель в демонстрационном зале супермаркета. Однако тот же индикатор в полутемном помещении будет гораздо сильнее отвлекать от изображения на экране, вызывая сильное раздражение.

Эффект Пуркинье проявляется и в том случае, когда источник света находится в зоне периферийного зрения. В условиях средней и слабой освещенности наше периферийное зрение наиболее чувствительно к оттенкам синего и зеленого цветов. С точки зрения физиологии это имеет вполне логичное объяснение: дело в том, что на периферийных участках сетчатки сосредоточено гораздо больше палочек, чем в центре. Таким образом, синий свет способен оказывать отвлекающее воздействие даже в том случае, если взгляд в данный момент не сфокусирован на его источнике.

Таким образом, наличие синих светодиодов на панелях мониторов, телевизоров и других устройств, которые используются в затемненных помещениях, является серьезным конструктивным недостатком. Однако из года в год разработчики большинства компаний повторяют эту ошибку.

2. Особенность фокусировки в синем

Глаз современного человека может различать наиболее тонкие детали в зеленой и красной частях видимого спектра. Но мы при всем желании не способны столь же четко различать объекты синего цвета. Наши глаза просто не могут нормально сфокусироваться на синих объектах. Фактически человек видит не сам объект, а лишь размытый ореол яркого синего света. Это объясняется тем, что длина волны синего света меньше, чем у зеленого (под который «оптимизированы» наши глаза). Вследствие рефракции, наблюдающейся при прохождении через стекловидное тело глаза, проецируемый на сетчатку свет разлагается на спектральные составляющие, которые из-за разницы в длине волны фокусируются в различных точках.

Поскольку наилучшим образом глаз фокусируется на зеленой составляющей части видимого спектра, синяя оказывается сфокусированной не на сетчатке, а на некотором расстоянии перед ней — в результате мы воспринимаем синие объекты несколько размытыми (нечеткими). Кроме того, из-за меньшей длины волны синий свет в большей степени подвержен рассеянию при прохождении через стекловидное тело, что также способствует возникновению ореолов вокруг синих объектов.

Чтобы рассмотреть детали объекта, освещенного исключительно синим светом, придется сильно напрягать глазные мышцы. При выполнении подобных «упражнений» на протяжении длительного времени возникает сильная головная боль. В этом может убедиться на собственном опыте любой обладатель мобильного телефона, оснащенного клавиатурой с синей подсветкой. В темноте различить символы на клавишах такого аппарата значительно сложнее, чем на трубках, оснащенных зеленой или желтой подсветкой.

Медики установили, что центральная область сетчатки глаза имеет пониженную чувствительность к синей части спектра. Как полагают ученые, таким образом природа сделала наше зрение более острым. Кстати, об этом свойстве зрения осведомлены охотники и профессиональные военные: например, для повышения остроты зрения в дневное время снайперы иногда надевают очки с желтыми стеклами, отфильтровывающими синюю составляющую.

3. Стимулирующее действие.

Световые ритмы. Как я уже писал в предыдущей статье, результаты многочисленных экспериментов свидетельствуют, что синий свет подавляет синтез мелатонина и, следовательно, способен изменять ход внутренних биологических часов человека, вызывая нарушения режима сна.

Сетчатка. Избыток синего света (суммарный) опасен для сетчатки. Согласно результатам этого исследования при равных условиях эксперимента синий свет в 15 раз более опасен для сетчатки, чем весь оставшийся диапазон видимого спектра. Международная организация по стандартизации (International Standards Organization – ISO) в стандарте ISO 13666 назвала диапазон длин волн синего света с центром при 440 нм диапазоном функционального риска для сетчатки. Именно эти длины волн синего света приводят к фоторетинопатии и ВДМ.

Привлечение внимания. Синие витрины, синие подсветки, указатели, названия кафе и магазинов выполняют не только информационную роль, но и играют световой аналог громкого шума, и это действительно все работает. Синяя светомузыка на танцплощадках не дает людям.

Плюсы синего света.

1. Воздействие на человека голубого света повышает бдительность и работоспособность! Для водителей или работы в ночную смену, помещения и переходы, там, где нужно внимание! Источники синего света непроизвольно притягивают внимание, даже если попадают в периферию.

2. В исследованиях было показано, что голубой свет повышает внимание в течение ночи и это действие распространяется и на дневное время суток. Согласно полученным результатам, длительное воздействие голубым светом повышает внимание и в течение дня. В ходе исследования ученые пытались выяснили влияние света различной длины волны на бдительность, работоспособность. Участники оценивали, насколько сонными они себя ощущают, врачи измеряли их время реакций, а с помощью специальных электродов определялась активность различных частей мозга в период воздействия светом. Выяснилось, что люди, облучавшиеся голубым светом, чувствовали меньшую сонливость, показывали более быстрые реакции и лучше проходили тесты, чем те, кто облучался зеленым светом.

3. Кроме того, по анализу мозговой активности было видно, что голубой свет вызывал большую бдительность и настороженность, это открытие может улучшить работоспособность и эффективность деятельности людей, работающих как в дневное, так и в ночное время.

Источники:



В 80-х годах ХХ века, когда персональные компьютеры только начинали широко использоваться, главной проблемой было мощное излучение. Первые мониторы выплескивали целый шквал рентгеновских лучей, электромагнитных полей низких и высоких частот. На фоне всеобщей паники родители не переставали нас ограничивать в работе за ПК, мотивируя все тем же излучением, которое производителям давно удалось решить. Даже было доказано, что современные компьютер не опасней телевизора. Измерения показали, что обычный электрический кабель, около рабочего стола, дает большее излучение, чем монитор.
Все дружно выдохнули с приходом LCD/TFT мониторов, — ни какого облучения, все счастливы, и могли спокойно объяснить родителям что не стоит больше волноваться.
Однако современные мониторы, телефоны, и прочие бытовые и осветительные приборы не менее опасны и излучают уже не электромагнитные поля, а лучи видимого спектра. Для глаз фиолетово-синяя область лучей (коротковолновая), является наиболее вредной. Ежедневное многочасовое пребывание за компьютером вызывает развитие глазных заболеваний, усталость глаз, головные боли, и нарушение сна, а в последствии и нарушению психики, именно из-за непрерывного воздействия квантов фиолетового и синего излучения, поскольку они ближе к ультрафиолетовой части спектра.
Мечта Накамура

В настоящее время синие светодиоды окружают нас везде. Первые рабочие синие светодиоды были разработаны японским ученым Shuji Nakamura, который исследовал чужие (закрытые как тупиковые) работы в этом направлении.

Накамура выстроил новую технику для изготовления светодиодов, а не использовал расширенные процессы, которые уже использовались для красных и зеленых светодиодов.
Таким образом ранние этапы создания светодиодов требовали очень дорого производственного процесса.

Когда Синие диоды стали появляться в продуктах, они быстро обрели популярность в промышленном дизайне. Каждый дизайнер хотел использовать синий светодиод, поскольку это был совершенно новый «свежий» цвет придающий продуктам высокотехнологичный вид. Позже «Синий свет» подешевел, и гонка продуктов за внимание покупателей сошла к минимуму, и вход пошла игра повышенной интенсивности синего светового эффекта.

Вы спросите а в чем разница? свет просто свет, и не важно какого он цвета.

На самом деле, синий свет вызывает большее зрительное напряжение и усталость, чем другие цвета. Он намного сложнее для человеческого глаза, затрудняет сосредоточение, отбрасывает больше бликов и ослепляющих эффектов. Он также влияет на внутренние биологические часы человека, а в последствии и на нарушение сна. Многие исследователи считают, что даже очень незначительный уровень синего света во время сна может ослабить иммунную систему и иметь негативные последствия для здоровья.
Наши глаза и мозг имеют множества проблем с синим светом

Эти проблемы просто побочные эффекты эволюции которая адаптировала нас к натуральному окружение нашей планеты.
Синий ярче в темноте

Помимо того, что синий диод сам по себе ярче в 20 раз, чем красный или зеленый, он выглядит еще ярче для нас в ночи, и создает иллюзию менее яркого окружающего света вокруг источника, так называемый Феномен (Сдвиг) Пуркинье который происходит по причине повышенной чувствительности колбочек в наших глазах к сине-зеленому свету.

Практическим примером Феномена Пуркинье может стать:
Прикольная синяя лампочка питания на Телевизоре может привлечь ваше внимание и позволить купить именно этот ТВ. Но привезя его домой и включив любимый канал ночью эта же самая лампочка питания станет для вас раздражающе яркой, и мешающей просмотру. Или же обычная музыкальная колонка стоящая возле монитора.
Cиний ярче в периферийном зрении

Сдвиг Пуркинье также заметен в нашем периферийном зрении, в условиях низкой освещенности, поскольку на краю сетчатки глаз колбочек намного больше чем по центру.
Синий препятствует четкости зрения

Это происходит потому, что фиолетово-синие (коротковолновые) лучи не доходят до сетчатки глаза в полном объеме – они попросту рассеиваются в воздухе. В зрачке же полностью преломляются только желтые и зеленые (длинноволновые) лучи. В результате такой неравномерности картинка, фокусирующаяся на сетчатке, частично теряет свою четкость.

Дилемма заключается в том, что на данный момент нет способов избавить глаза от такой нагрузки:
С одной стороны, нет средств позволяющих полностью убрать коротковолновую часть спектра с пути светового потока от монитора до глаз, что позволило бы повысить четкость изображения и снизить утомляемость глаз за счет уменьшения рассеивания света.

С другой, устранение фиолетового и синего излучения лишит видимую картинку полноцветности, а это также повышает нагрузку на глаза.
Мы наполовину слепы в синем свете.

Глаза современного человека устроены таким образом, что хорошо различают мелкие детали в первую очередь с зеленым или красным цветом. Это происходит потому что мы слабы в четком различии деталей в синих цветах, или наши глаза просто не пытаются это сделать.

Наиболее чувствительной точкой на сетчатке является центральное углубление, которое не имеет палочек для обнаружения синего света. Да, мы все дальтоники в наиболее чувствительной части наших глаз.

В дополнении ко всему, в центральной части сетчатки, пятно (macula), отфильтровывает синий цвет, с целью обострения нашего зрения.

Снайперы и спортсмены часто используют очки с тонированными желтыми линзами, что бы избавится от отвлекающего голубого света и иметь более четкое видение окружающей среды.
Синие блики мешают зрению

Двойную нагрузку на глаза создают блики и отражения от источника синего света. Несмотря на то, что сетчатка глаза не обрабатывает синий, никто не говорит что оставшиеся органы глаза не пытаются это сделать за нее.

Если мы хотим видеть мелкие детали на синем фоне, то напрягаем мышцы и косим глаза пытаясь выделить синий цвет и сконцентрировать внимание на деталях. Попытайтесь делать это очень продолжительное количество времени, и вы, вероятно, заработаете себе головную боль. Этого не произойдет на любом другом цветовом фоне, поскольку другие цвета спектра обеспечивают лучшую детализацию различных элементов.

Ослепительная боль в глазах

Интенсивный синий свет может вызвать долговременное фотохимическое повреждение сетчатки. Никто не станет утверждать, что вы вероятно, страдаете от такого рода травмы по причине многочасовых просмотров горящего синего диода с расстояния в несколько миллиметров. Тем не менее, существует предположение, что это может быть эволюционной движущей силой, — непосредственное чувство боли от яркого света с очень сильной составляющей синего. Инстинктивной реакцией нашего организма является уменьшение синего света попадающего в глаза, путем закрытия зрачок. Примером может послужить невозможность различать цвета некоторое время после вспышки фотокамеры.
Синий свет и нарушение сна

Свет в синей части спектра, подавляет уровень мелатонина в организме. Мелатонин, который иногда называют гормоном сна, играет ключевую роль в регуляции цикла сна и бодрствования. Таким образом, когда уровень мелатонина в организме высокий, мы спим, когда он мал, мы просыпаемся.

Синий свет, является своего рода естественным будильником, который будит все живое, как только небо становится синим после восхода солнца. Даже света одного яркого синего светодиода достаточно, чтобы подавить уровень мелатонина.

Многие люди стали осознавать что плохо спят именно по причине горящих индикаторов на панели ТВ, и на других бытовых приборах и гаджетах. Также под удар попали горящие мониторы и лампы дневного света.

Причиной по которой светодиоды рассматривается как потенциальная опасность для сна является то, что они нашли свое место в спальнях, в эфирных ионизаторах, зарядных устройствах, и других разнообразных корпусах. В некоторых «кустарных» продуктах они гораздо ярче, чем они должны быть. В отличие от традиционных ламп накаливания источниками такого вредного света, также являются люминесцентные лампы.
Промышленный Дизайн

Несколько лет назад многие компании озадачились данной проблемой, и в числе первых компаний откликнувшейся на данную проблему стала компания Logitech, которая пообещала произвести редизайн своих изделий в кротчайшие сроки.
Другие же менее сознательные компании в производственных странах как Китай даже слышать не хотят о возможных проблемах пользователей от всеми любимыми синими LED. Производители корпусов для ПК продолжают навешивать корпуса Синими подсветками, руководствуясь большим спросом и не утруждают себя написанием предупреждений о возможных проблемах, и не предлагают другие осветительные цвета.
В заключении

Несколько советов:
По постановлению Минзравмедпрома РФ, люди, имеющие дефекты зрения, при поступлении на работу, связанную с использованием компьютерной техники, обязаны пройти полное офтальмологическое обследование.

Если вы еще не ходите в очках и со зрением у вас все хорошо, не стесняйтесь заботиться о своем здоровье и подберите себе компьютерные очки, окружающие могут посмеяться, но в конечном итоге здоровее окажетесь именно вы.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.