Что представляет собой объем мертвого пространства легких. Вентиляция легких

Коэффициент вентиляции альвеол

Легочная вентиляция

Статические легочные объемы, л.

Функциональная характеристика легких и легочная вентиляция

Альвеолярная среда. Постоянство альвеолярной среды, физиологическая значимость

Легочные объемы

Легочные объемы подразделяются на статические и динамические.

Статические легочные объемы измеряют при завершенных дыхательных движениях, без лимитирования их скорости.

Динамические легочные объемы измеряют при проведении дыхательных движений с ограничением времени на их выполнение.

Объем воздуха в легких и дыхательных путях зависит от следующих показателей:

1. Антропометрических индивидуальных характеристик человека и дыхательной системы.

2. Свойств легочной ткани.

3. Поверхностного натяжения альвеол.

4. Силы, развиваемой дыхательными мышцами.

1Общая емкость- 6

2Жизненная емкость – 4,5

3Функциональная остаточная емкость -2,4

4Остаточный объем – 1,2

5Дыхательный объем- 0,5

6Объем мертвого пространства – 0,15

Легочной вентиляцией называют объем воздуха, вдыхаемого за единицу времени (минутный объем дыхания)

МОД - то количество воздуха, которое вдыхается в минуту

МОД = ДО х ЧД

До-дыхательный объем,

Чд-частота дыхания

Параметры вентиляции

Частота дыхания- 14 мин.

Минутный объем дыхания- 7л/мин

Альвеолярная вентиляция – 5л/мин

Вентиляция мертвого пространства – 2л/мин

В альвеолах к концу спокойного выдоха находится около 2500 мл воздуха (ФОЕ – функциональная остаточная емкость), во время вдоха в альвеолы поступает 350 мл воздуха, следовательно, обновляется лишь 1/7 часть альвеолярного воздуха (2500/350 = 7.1).

Для нормального процесса обмена газов в легочных альвеолах необходимо, чтобы их вентиляция воздухом находилась в определенном соотношении с перфузией их капилляров кровью т.е. минутному объему дыхания должен соответствовать соответствующий минутный объем крови, протекающий через сосуды малого круга, а этот объем, естественно, равен объему крови, протекающей через большой круг кровообращения.

В обычных условиях вентиляционно-перфузионный коэффициент у человека составляет 0,8-0,9.

Например, при альвеолярной вентиляции, равной 6 л/мин, минутный объем крови может составить около 7 л/мин.

В отдельных областях легких соотношение между вентиляцией и перфузией может быть неравномерным.

Резкие изменения этих отношений могут вести к недостаточной артериализации крови, проходящей через капилляры альвеол.

Анатомически мертвым пространством называют воздухопроводящую зону легкого, которая не участвует в газообмене (верхние дыхательные пути, трахея, бронхи, терминальные бронхиолы). АМП выполняет ряд важных функций: нагревает вдыхаемый атмосферные воздух, задерживает примерно 30% выдыхаемого тепла и воды.


Анатомически мертвое пространство соответствует воздухопроводящей зоне легких, объем которой варьирует от 100 до 200 мл., а в среднем составляет 2 мл на 1 кг. массы тела.

В здоровом легком некоторое количество апикальных альвеол вентилируются нормально, но частично либо полностью не перфузируются кровью.

Подобное физиологическое состояние обозначается как «альвеолярное мертвое пространство».

В физиологических условиях АМП может появляться в случае снижения минутного объема крови, уменьшения давления в артериальных сосудах легких, при патологических состояниях. В подобных зонах легких не происходит газообмена.

Сумма объемов анатомического и альвеолярного мертвого пространства называется физиологическим, или функциональным мертвым пространством.


Анатомическое мертвое пространство - это часть дыхательной системы, в которой нет значительного газообмена. Анатомическое мертвое пространство составляют воздухопроводящие пути, а именно носоглотка, трахея, бронхи и бронхиолы вплоть до их перехода в альвеолы. Заполняющий их объем воздуха называется объемом мертвого пространства ^Б). Объем мертвого пространства является величиной переменной и у взрослых составляет около 150200 мл (2 мл/кг массы тела). В этом пространстве не происходит га- зообмен, а указанные структуры выполняют вспомогательную роль по согреванию, увлажнению и очистке вдыхаемого воздуха.
Функгциональное мертвое пространство. Под функциональным (физиологическим) мертвым пространством понимают те участки легких, в которых не происходит газообмен. В отличие от анатомического, к функциональному мертвому пространству относятся также альвеолы, которые вентилируются, но не перфузируются кровью. Суммарно это называется альвеолярным мертвым пространством. В здоровых легких количество таких альвеол невелико, поэтому объемы мертвого анатомического и физиологического пространства отличаются мало. Однако при некоторых нарушениях функции легких, когда легкие вентилируются и перфузируются кровью неравномерно, объем функционального мертвого пространства может оказаться значительно больше анатомического. Таким образом, функциональное мертвое пространство представляет сумму анатомического и альвеолярного мертвого пространства: Тфунк. = Танат. + Тальвеол. Вентиляция увеличение без = функционального перфузии мертвого пространства
Соотношение объема мертвого пространства (VD). к дыхательному объему ^Т) - это коэффициент мертвого пространства (VD/VТ). В норме вентиляция мертвого пространства составляет 30% от дыхательного объема и альвеолярная вентиляция - около 70%. Таким образом, коэффициент мертвого пространства VD/VТ = = 0,3. При повышении коэффициента мертвого пространства до 0,70,8 длительное спонтанное дыхание невозможно, поскольку увеличивается дыхательная работа и СOJ накапливается в большем количестве, чем может быть удалено. Регистрируемое увеличение коэффициента мертвого пространства свидетельствует о том, что в отдельных участках легкого перфузия практически прекратилась, но этот участок по-прежнему вентилируется.
Вентиляция мертвого пространства оценивается за минуту и зависит от величины мертвого пространства (УЭ) и частоты дыхания, возрастая с ней линейно. Возрастание вентиляции мертвого пространства может компенсироваться увеличением дыхательного объема. Важным является результирующий объем альвеолярной вентиляции ^А), который фактически поступает в альвеолы за минуту и вовлекается в газообмен. Он может быть рассчитан следующим образом: VA = (VI - VD)F, где VA - объем альвеолярной вентиляции; VI - дыхательный объем; VD - объем мертвого пространства; F - частота дыхания.
Функциональное мертвое пространство может быть рассчитано по следующей формуле:
VDфунк. = VT(1 - РМТ С02/раС02), где VI - дыхательный объем; РМТ С02 - содержание С02 в выдыхаемом воздухе; раС02 - парциальное давление С02 в артериальной крови.
Для приблизительной оценки значения РМТ С02 может быть использовано парциальное давление С02 в выдыхаемой смеси вместо содержания С02 в выдыхаемом воздухе.
Тфунк. = VT(1 - рЕС02/раС02), где рЕС02 - парциальное давление С02 в конце выдоха.
Пример. Если у пациента с весом 75 кг частота дыхания 12 в минуту, дыхательный объем - 500 мл, то МОД составляет 6 л, из которых вентиляция мертвого пространства - 12 150 мл (2 мл/кг), т.е. 1800 мл. Коэффициент мертвого пространства составляет 0,3. Если у такого пациента частота дыхания будет 20 в минуту, а после-операционный ДО (VI) 300 мл, то минутный объем дыхания будет равен 6 л, при этом вентиляция мертвого пространства возрастет до 3 л (20 150 мл). Коэффициент мертвого пространства составит 0,5. При увеличении частоты дыхания и уменьшении ДО вентиляция мертвого пространства возрастает за счет уменьшения альвеолярной вентиляции. Если дыхательный объем не изменяется, то возрастание частоты дыхания приводит к увеличению дыхательной работы. После операции, особенно после лапаротомии или торакотомии, коэффициент мертвого пространства приблизительно составляет 0,5 и может возрастать до 0,55 в первые 24 часа.

Еще по теме Мертвое пространство вентиляции:

  1. Особенности вентиляции у новорожденных и детей раннего возраста Показания к вентиляционной поддержке и основные принципы механической вентиляции у новорожденных и детей

Функциональная остаточная емкость имеет важное физиологическое значение, поскольку выравнивает колебания содержания газов в альвеолярном пространстве, которые могли бы измениться в связи со сменой фаз дыхательного цикла. Поступающие во время вдоха в альвеолы 350 мл воздуха смешивается с воздухом, содержащимся в легких, количество которого в среднем 2, 5 – 3,5 л. Поэтому при вдохе обновляется примерно 1/7 часть смеси газов в альвеолах. Поэтому газовый состав альвеолярного пространства существенно не изменяется.

В каждой альвеоле газообмен характеризуется своим вентиляционно-перфузионным отношением (ВПО). Нормальное соотношение между альвеолярной вентиляцией и лёгочным кровотоком составляет 4/5 = 0,8, т.е. в минуту в альвеолы поступает 4 л воздуха и через сосудистое русло легких протекает за это время 5 л крови (на верхушке легкого соотношение в целом больше, чем на основании легких). Такое соотношение вентиляции и перфузии обеспечивает потребление кислорода достаточное для метаболизма за время нахождения крови в капиллярах легкого. Величина легочного кровотока в покое составляет 5-6 л/мин, движущей силой является разница давления около 8 мм рт. ст. между легочной артерией и левым предсердием. При физической работе легочной кровоток увеличивается в 4 раза, а давление в легочной артерии в 2 раза. Это уменьшение сосудистого сопротивления происходит пассивно в результате расширения легочных сосудов и раскрытия резервных капилляров. В покое кровь протекает примерно только через 50% всех легочных капилляров. По мере возрастания нагрузки доля перфузируемых капилляров возрастает, параллельно увеличивается и площадь газообменной поверхности. Легочный кровоток отличается региональной неравномерностью, которая зависит, в основном, от положения тела. При вертикальном положении тела лучше снабжаются кровью основания легких. Основными факторами, от которых зависит насыщение крови в легких кислородом и удаление из нее углекислого газа, являются альвеолярная вентиляция, перфузия легких и диффузионная способность легких.

3. Жизненная емкость легких.

Жизненная ёмкость лёгких это объем воздуха, который человек может выдохнуть после максимально глубокого вдоха. Это сумма дыхательного объёма и резервных объёмов вдоха и выдоха (у человека среднего возраста и среднего телосложения равен около 3,5л).

Дыхательный объём - это количество воздуха, которое человек вдыхает при спокойном дыхании (около 500 мл). Воздух, поступающий в легкие после окончания спокойного вдоха дополнительно, называется резервным объёмом вдоха (около 2500 мл), дополнительный выдох после спокойного выдоха - резервным объёмом выдоха (около 1000 мл). Воздух, остающийся после максимально глубокого выдоха - остаточный объём (около 1500 мл). Сумма остаточного объема и жизненной емкости легких называется общей емкостью легких. Объем легких после окончания спокойного выдоха называется функциональной остаточной емкостью. Она слагается из остаточного объема и резервного объема выдоха. Воздух, находящийся в спавшихся легких при пневмотораксе, называется минимальным объемом.

4. Альвеолярная вентиляция.

Лёгочная вентиляция - движение воздуха в лёгких во время дыхания. Она характеризуется минутным объёмом дыхания (МОД). Минутным объемом дыхания называется объем воздуха, вдыхаемого или выдыхаемого за 1 минуту. Он равен произведению дыхательного объема и частоты дыхательных движений. Частота дыхательных движений у взрослого человека в покое равна 14 л/мин. Минутный объем дыхания равен примерно 7 л/мин. При физической нагрузке может достигать 120 л/мин.

Альвеолярная вентиляция характеризует обмен воздуха в альвеолах и определяет эффективность вентиляции. Альвеолярной вентиляцией называется часть минутного объема дыхания, достигающая альвеол. Объём альвеолярной вентиляции равен разнице между дыхательным объёмом и объёмом воздуха мёртвого пространства, умноженной на число дыхательных движений в 1 минуту. (V альвеолярной вентиляции = (ДО - V мёртвого пространства) х ЧД/мин). Таким образом, при общей вентиляции легких 7 л/мин альвеолярная вентиляция равна 5 л/мин.

Анатомическое мертвое пространство. Анатомическим мертвым пространством называется объем, заполняющий воздухоносные пути, в которых не происходит газообмен. Оно включает носовую, ротовую полости, глотку, гортань, трахею, бронхи и бронхиолы. Этот объем у взрослых равен примерно 150 мл.

Функциональное мертвое пространство. К нему относятся все участки дыхательной системы, в которых не происходит газообмен, включая не только воздухоносные пути, но и те альвеолы, которые вентилируются, но не перфузируются кровью. Альвеолярным мертвым пространством обозначается объем альвеол апикальных участков легких, которые вентилируются, но не перфузируются кровью. Оно может оказать отрицательное влияние на газообмен в легких при снижении минутного объема крови, снижении давления в сосудистой системе легких, анемии, снижении воздушности легких. Сумма объемов «анатомического» и альвеолярного обозначается как функциональное или физиологическое мертвое пространство.

Заключение

Нормальная жизнедеятельность клеток организма возможна при условии постоянного поступления кислорода и удаления углекислого газа. Обмен газами между клетками (организмом) и окружающей средой называется дыханием.

Поступление воздуха в альвеолы обусловлено разностью давлений между атмосферой и альвеолами, которая возникает в результате увеличения объема грудной клетки, плевральной полости, альвеол и понижения в них давления по отношению к атмосферному. Возникающая разность давлений между атмосферой и альвеолами обеспечивает поступление атмосферного воздуха по градиенту давления в альвеолы. Выдох совершается пассивно в результате расслабления инспираторных мышц и превышения альвеолярного давления над атмосферным.

Учебно-контрольные вопросы по теме лекции

1. Значение дыхания. Внешнее дыхание. Механизм вдоха и выдоха.

2. Отрицательное внутриплевральное давление, его значение для дыхания и кровообращения. Пневмоторакс. Типы дыхания.

3. Лёгочная и альвеолярная вентиляция. Жизненная ёмкость лёгких и дыхательные объемы.

Организационно-методические указания по материально-техническому обеспечению лекции.

1. За 15 мин до лекции подготовить мультимедийный проектор.

2. По окончании лекции выключить проектор, диск вернуть на кафедру.

Заведующий кафедрой, профессор Э.С. Питкевич

Поговорим, немного о простом, из-за непонимания которого, порой сложно принимать тактические решения.
Итак, анатомическое мертвое пространство (АМП) - это совокупный объем дыхательных путей, не участвующих в газообмене между вдыхаемым и альвеолярным газами. Таким образом, величина анатомического мертвого пространства равна объему проксимальной части дыхательных путей, где состав вдыхаемого газа сохраняется неизменным (носовая и ротовая полость, глотка, гортань, трахея, бронхи и бронхиолы). В условиях нормочастотной вентиляции в среднем у взрослого человека АМП равняется
150-200 ml (2ml/kg).
Альвеолярное мертвое пространство — альвеолы, выключенные из газообмена, например которые вентилируются, но не перфузируются (ТЭЛА).
Аппаратное мертвое пространство является своеобразным искусственным началом анатомического мертвого пространства, включаая объемы интубационной трубки, пространства между куполом лицевой маски и поверхностью лица пациента, адаптера-пробоотборника капнографа и т.д.
Следует помнить, что объем мертвого пространства, связанный с ИВЛ, иногда намного превосходит ожидаемый.

Функциональное мертвое пространство (ФМП) — понимают все те участки дыхательной системы, в которых не происходит газообмена по причине сниженного или отсутствующего кровотока. Суть – общая сумма объемов газовой смеси по тем или иным причинам не участвующая в газообмене.

Методы снижения объема мертвого пространства — трахеостомия и TRIO2 (tracheal insufflation of oxygen, инсуффляция кислорода через катетер параллельно с ИВЛ — фото в конце статьи).

Теперь, немного о другом, CO2 – газ, в 10 раз более растворимый в крови, элиминирующийся во время выдоха. Нормальные показатели paCO2 35-45 mmHg. У пациентов с ХОБЛ регистрируется постоянная умеренная гиперкапния. Вообще говоря, об максимально допустимом уровне углекислого газа конкретную цифру привести невозможно. Однако, стоит понимать, что накопление углекислоты приводит к пропорциональному снижению рН артериальной крови:
СО2 + Н2О -> Н2СО3 -> Н+ + НСО3-
Необходимо поддерживать параметры ИВЛ, которые бы не способствовали снижению рН ниже 7,2 (иначе неизбежны неприятные последствия – сдвиг кривой диссоциации оксигемоглобина вправо, расширение сосудов головного мозга, рост ВЧД и т.д.). Применение таких параметров ИВЛ (при условии поддержания адекватной оксигенации) не сопровождалось развитием осложнений и приводило к снижению летальности. Исходя из этого, давайте считать пермиссивной (допустимой) гиперкапнию до 65 mmHg.
Понятие «carbon dioxide narcosis» подразумевает под собой развитие нарушений сознания вплоть до комы, судорожных припадков при повышении paCO2 до 70 mmHg, у пациентов устойчивых к гиперкапнии симптоматика может развиться при больших значениях paCO2.
Существуют работы, показывающие, что при ИВЛ у пациентов с ОРДС на вентиляцию мертвого пространства может уходить до 50-80 % дыхательного объема, а через безвоздушные зоны легких шунтируется более половины минутного объема кровообращения.

ИВЛ при септическом ОРДС часто сталкивается с одной и той же проблемой. При тяжелом ресриктивном поражении легких (РИ<100) все способы повлиять на оксигенацию (использование вентиляции по давлению, увеличение времени вдоха, вплоть до инверсии I:E), не использование больших дыхательных объемов при высоких показателях PEEP – все это ведет к гиперкапнии. Особенно на фоне гиперпродукции CO2 при септическом процессе.

Проводящие пути

Нос - первые изменения поступающего воздуха происходят в носу, где он очищается, согревается и увлажняется. Этому способствует волосяной фильтр, преддверие и раковины носа. Интенсивное кровоснабжение слизистой оболочки и пещеристых сплетений раковин обеспечивает быстрое согревание или охлаждение воздуха до температуры тела. Испаряющаяся со слизистой оболочки вода увлажняет воздух на 75-80%. Длительное вдыхание воздуха пониженной влажности приводит к высыханию слизистой оболочки, попаданию сухого воздуха в легкие, развитию ателектазов, пневмонии и повышению сопротивления в воздухоносных путях.


Глотка отделяет пищу от воздуха, регулирует давление в области среднего уха.


Гортань обеспечивает голосовую функцию, с помощью надгортанника предотвращая аспирацию, а смыкание голосовых связок является одним из основных компонентов кашля.

Трахея — основной воздуховод, в ней согревается и увлажняется воздух. Клетки слизистой оболочки захватывают инородные вещества, а реснички продвигают слизь вверх по трахее.

Бронхи (долевые и сегментарные) заканчиваются концевыми бронхиолами.


Гортань, трахея и бронхи также участвуют в очищении, согревании и увлажнении воздуха.


Строение стенки проводящих воздухоносных путей (ВП) отличается от структуры дыхательных путей газообменной зоны. Стенка проводящих воздухоносных путей состоит из слизистой оболочки, слоя гладких мышц, подслизистой соединительной и хрящевой оболочек. Эпителиальные клетки воздухоносных путей снабжены ресничками, которые, ритмично колеблясь, продвигают защитный слой слизи в направлении носоглотки. Слизистая оболочка ВП и легочная ткань содержат макрофаги, фагоцитирующие и переваривающие минеральные и бактериальные частицы. В норме слизь из дыхательных путей и альвеол постоянно удаляется. Слизистая оболочка ВП представлена реснитчатым псевдомногослойным эпителием, а также секреторными клетками, выделяющими слизь, иммуноглобулины, комплемент, лизоцим, ингибиторы, интерферон и другие вещества. В ресничках содержится много митохондрий, обеспечивающих энергией их высокую двигательную активность (около 1000 движений в 1 мин.), что позволяет транспортировать мокроту со скоростью до 1 см/мин в бронхах и до 3 см/мин в трахее. За сутки из трахеи и бронхов в норме эвакуируется около 100 мл мокроты, а при патологических состояниях до 100 мл/час.


Реснички функционируют в двойном слое слизи. В нижнем находятся биологически активные вещества, ферменты, иммуноглобулины, концентрация которых в 10 раз больше, чем в крови. Это обуславливает биологическую защитную функцию слизи. Верхний слой ее механически защищает реснички от повреждений. Утолщение или уменьшение верхнего слоя слизи при воспалении или токсическом воздействии неизбежно нарушает дренажную функцию реснитчатого эпителия, раздражает дыхательные пути и рефлекторно вызывает кашель. Чихание и кашель защищают легкие от проникновения минеральных и бактериальных частиц.


Альвеолы


В альвеолах происходит газообмен между кровью легочных капилляров и воздухом. Общее число альвеол равно примерно 300 млн., а суммарная площадь их поверхности - примерно 80 м 2 . Диаметр альвеол составляет 0,2-0,3 мм. Газообмен между альвеолярным воздухом и кровью осуществляется путем диффузии. Кровь легочных капилляров отделена от альвеолярного пространства лишь тонким слоем ткани - так называемой альвеолярно-капиллярной мембраной, образованной альвеолярным эпителием, узким интерстициальным пространством и эндотелием капилляра. Общая толщина этой мембраны не превышает 1 мкм. Вся альвеолярная поверхность легких покрыта тонкой пленкой, называемой сурфактантом.

Сурфактант уменьшает поверхностное натяжение на границе между жидкостью и воздухом в конце выдоха, когда объем легкого минимален, увеличивает эластичность легких и играет роль противоотечного фактора (не пропускает пары воды из альвеолярного воздуха), в результате чего альвеолы остаются сухими. Он снижает поверхностное натяжение при уменьшении объема альвеолы во время выдоха и предупреждает её спадение; уменьшает шунтирование, что улучшает оксигенацию артериальной крови при более низком давлении и минимальном содержании О 2 во вдыхаемой смеси.


Сурфактантный слой состоит из:

1) собственно сурфактанта (микропленки из фосфолипидных или полипротеидных молекулярных комплексов на границе с воздушной средой);

2) гипофазы (глубжележащего гидрофильного слоя из белков, электролитов, связанной воды, фосфолипидов и полисахаридов);

3) клеточного компонента, представленного альвеолоцитами и альвеолярными макрофагами.


Основными химическими составляющими сурфактанта является липиды, белки и углеводы. Фосфолипиды (лецитин, пальмитиновая кислота, гепарин) составляют 80-90% его массы. Сурфактант покрывает непрерывным слоем и бронхиолы, понижает сопротивление при дыхании, поддерживает наполнение

При низком давлении растяжения, уменьшает действие сил, вызывающих накопление жидкости в тканях. Кроме того, сурфактант очищает вдыхаемые газы, отфильтровывает и улавливает вдыхаемые частицы, регулирует обмен воды между кровью и воздушной средой альвеолы, ускоряет диффузию СО 2 , обладает выраженным антиокислительным действием. Сурфактант очень чувствителен к различным эндо- и экзогенным факторам: нарушениям кровообращения, вентиляции и метаболизма, изменению РО 2 во вдыхаемом воздухе, загрязнению его. При дефиците сурфактанта возникают ателектазы и РДС новорожденных. Примерно 90-95% альвеолярного сурфактанта повторно перерабатывается, очищается, накапливается и ресекретируется. Период полувыведения компонентов сурфактанта из просвета альвеол здоровых легких составляет около 20 ч.

Легочные объёмы

Вентиляция легких зависит от глубины дыхания и частоты дыхательных движений. Оба этих параметра могут варьировать в зависимости от потребностей организма. Есть ряд объемных показателей, характеризующих состояние легких. Нормальные средние значения для взрослого человека следующие:


1. Дыхательный объем (ДО- VT - Tidal Volume) - объем вдыхаемого и выдыхаемого воздуха при спокойном дыхании. Нормальные значения - 7-9мл/кг.


2. Резервный объем вдоха (РОвд - IRV - Inspiratory Reserve Volume) - объем, который может дополнительно поступить после спокойного вдоха, т.е. разница между нормальной и максимальной вентиляцией. Нормальное значение: 2-2,5 л (около 2/3 ЖЕЛ).

3. Резервный объем выдоха (РОвыд - ERV - Expiratory Reserve Volume) - объем, который можно дополнительно выдохнуть после спокойного выдоха, т.е. разница между нормальным и максимальным выдохом. Нормальное значение: 1,0-1,5 л (около 1/3 ЖЕЛ).


4.Остаточный объем (ОО - RV - Residal Volume) - объем, остающийся в легких после максимального выдоха. Около 1,5-2,0 л.


5. Жизненная емкость легких (ЖЕЛ - VT - Vital Capacity) — количество воздуха, которое может быть максимально выдохнуто после максимального вдоха. ЖЕЛ является показателем подвижности легких и грудной клетки. ЖЕЛ зависит от возраста, пола, размеров и положения тела, степени тренированности. Нормальные значения ЖЕЛ - 60-70 мл/кг - 3,5-5,5 л.


6. Резерв вдоха (РВ) -Ёмкость вдоха (Евд - IC - Inspiritory Capacity) - максимальное количество воздуха, которое может поступить в легкие после спокойного выдоха. Равен сумме ДО и РОвд.

7. Общая емкость легких (ОЕЛ - TLC - Total lung capacity) или максимальная емкость легких - количество воздуха, содержащееся в легких на высоте максимального вдоха. Состоит из ЖЕЛ и ОО и рассчитывается как сумма ЖЕЛ и ОО. Нормальное значение около 6,0 л.
Исследование структуры ОЕЛ является решающим в выяснении путей увеличения или снижения ЖЕЛ, что может иметь существенное практическое значение. Увеличение ЖЕЛ может быть расценено положительно только в том случаи, если ОЕЛ не меняется или увеличивается, но меньше, чем ЖЕЛ, что происходит при увеличении ЖЕЛ за счет уменьшения ОО. Если одновременно с увеличением ЖЕЛ происходит еще большее увеличение ОЕЛ, то это нельзя считать положительным фактором. При ЖЕЛ ниже 70% ОЕЛ функция внешнего дыхания глубоко нарушена. Обычно при патологических состояниях ОЕЛ и ЖЕЛ изменяются одинаково, за исключением обструктивной эмфиземы легких, когда ЖЕЛ, как правило, уменьшается, ОО увеличивается, а ОЕЛ может оставаться нормальной или быть выше нормы.


8. Функциональная остаточная емкость (ФОЕ - FRC - Functional residual volume) - количество воздуха, которое остается в легких после спокойного выдоха. Нормальные значения у взрослых - от 3 до 3,5 л. ФОЕ = ОО + РОвыд. По определению ФОЕ - объем газа, который остается в легких при спокойном выдохе и может быть мерой области газообмена. Она образуется в результате баланса между противоположно направленными эластическими силами легких и грудной клетки. Физиологическое значение ФОЕ состоит в частичном обновлении альвеолярного объема воздуха во время вдоха (вентилируемый объем) и указывает на объем альвеолярного воздуха, постоянно находящегося в легких. Со снижением ФОЕ связаны развитие ателектазов, закрытие мелких дыхательных путей, уменьшение податливости легких, увеличение альвеолярно-артериального различия по О 2 в результате перфузии в ателектазированных участках легких, снижение вентиляционно-перфузионного соотношения. Обструктивные вентиляционные нарушения ведут к повышению ФОЕ, рестриктивные нарушения - к снижению ФОЕ.


Анатомическое и функциональное мертвое пространство


Анатомическим мертвым пространством называют объем воздухоносных путей, в котором не происходит газообмен. Это пространство включает носовую и ротовую полости, глотку, гортань, трахею, бронхи и бронхиолы. Объем мертвого пространства зависит от роста и положения тела. Приближенно можно считать, что у сидящего человека объем мертвого пространства (в миллилитрах) равен удвоенной массе тела (в килограммах). Таким образом, у взрослых он равен около 150-200 мл (2 мл/кг массы тела).


Под функциональным (физиологическим) мертвым пространством понимают все те участки дыхательной системы, в которых не происходит газообмена по причине сниженного или отсутствующего кровотока. К функциональному мертвому пространству в отличие от анатомического относятся не только воздухоносные пути, но также и те альвеолы, которые вентилируются, но не перфузируются кровью.


Альвеолярная вентиляция и вентиляция мертвого пространства

Часть минутного объема дыхания, достигающая альвеол, называется альвеолярной вентиляцией, остальная его часть составляет вентиляцию мертвого пространства. Альвеолярная вентиляция служит показателем эффективности дыхания в целом. Именно от этой величины зависит газовый состав, поддерживаемый в альвеолярном пространстве. Что касается минутного объема, то он лишь в незначительной степени отражает эффективность вентиляции легких. Так, если минутный объем дыхания нормальный (7л/мин), но дыхание частое и поверхностное (ДО-0,2 л, ЧД-35/мин), то вентилироваться

Будет главным образом мертвое пространство, в которое воздух поступает раньше, чем в альвеолярное; в этом случае вдыхаемый воздух почти не будет достигать альвеол. Поскольку объем мертвого пространства постоянен, альвеолярная вентиляция тем больше, чем глубже дыхание и меньше частота.


Растяжимость (податливость) легочной ткани
Растяжимость легких является мерой эластической тяги, а также эластического сопротивления легочной ткани, которое преодолевается в процессе вдоха. Иначе говоря, растяжимость — это мера упругости легочной ткани, т. е. её податливость. Математически растяжимость выражается в виде частного от изменения объема легких и соответствующего изменения внутрилегочного давления.

Растяжимость может быть измерена отдельно для легких и для грудной клетки. С клинической точки зрения (особенно во время ИВЛ) наибольший интерес представляет именно податливость самой легочной ткани, отражающая степень рестриктивной легочной патологии. В современной литературе растяжимость легких принято обозначать термином «комплайнс» (от английского слова «compliance», сокращенно — С).


Податливость легких снижается:

С возрастом (у пациентов старше 50 лет);

В положении лежа (из-за давления органов брюшной полости на диафрагму);

Во время лапароскопических хирургических вмешательств в связи с карбоксиперитонеумом;

При острой рестриктивной патологии (острые полисегментарные пневмонии, РДС, отёк легких, ателектазирование, аспирация и т. д.);

При хронической рестриктивной патологии (хроническая пневмония, фиброз легких, коллагенозы, силикозы и т. д.);

При патологии органов, которые окружают легкие (пневмо- или гидроторакс, высокое стояние купола диафрагмы при парезе кишечника и т.д.).


Чем хуже податливость лёгких, тем большее эластическое сопротивление легочной ткани надо преодолеть, чтобы достигнуть того дыхательного объема, что и при нормальной податливости. Следовательно, в случае ухудшающейся растяжимости лёгких при достижении того же дыхательного объема давление в дыхательных путях существенно возрастает.

Данное положение очень важно для понимания: при объемной ИВЛ, когда принудительный дыхательный объём подается больному с плохой податливостью легких (без высокого сопротивления дыхательных путей), существенный рост пикового давления в дыхательных путях и внутрилегочного давления значительно увеличивает риск баротравмы.


Сопротивление дыхательных путей


Поток дыхательной смеси в легких должен преодолеть не только эластическое сопротивление самой ткани, но и резистивное сопротивление дыхательных путей Raw (аббревиатура от английского слова «resistance»). Поскольку трахеобронхиальное дерево представляет собой систему трубок различной длины и ширины, то сопротивление газотоку в легких можно определить по известным физическим законам. В целом, сопротивление потоку зависит от градиента давлений в начале и в конце трубки, а также от величины самого потока.


Поток газа в легких может быть ламинарным, турбулентным и переходным. Для ламинарного потока характерно послойное поступательное движение газа с

Различной скоростью: скорость потока наиболее высока в центре и постепенно снижается к стенкам. Ламинарный поток газа преобладает при относительно низких скоростях и описывается законом Пуазейля, в соответствии с которым сопротивление газотоку в наибольшей степени зависит от радиуса трубки (бронхов). Уменьшение радиуса в 2 раза приводит к возрастанию сопротивления в 16 раз. В связи с этим понятна важность выбора по возможности наиболее широкой эндотрахеальной (трахеостомической) трубки и поддержания проходимости трахеобронхиального дерева во время ИВЛ.
Сопротивление дыхательных путей газотоку значительно увеличивается при бронхиолоспазме, отеке слизистой оболочки бронхов, скоплении слизи и воспалительного секрета по причине сужения просвета бронхиального дерева. На сопротивление влияют также скорость потока и длина трубки (бронхов). С

Увеличением скорости потока (форсирование вдоха или выдоха) сопротивление дыхательных путей увеличивается.

Основные причины увеличения сопротивления дыхательных путей:

Бронхиолоспазм;

Отек слизистой оболочки бронхов, (обострение бронхиальной астмы, бронхит, подсвязочный ларингит);

Инородное тело, аспирация, новообразования;

Скопление мокроты и воспалительного секрета;

Эмфизема (динамическая компрессия воздухоносных путей).


Турбулентный поток характеризуется хаотичным движением молекул газа вдоль трубки (бронхов). Он преобладает при высоких объемных скоростях потока. В случае турбулентного потока сопротивление дыхательных путей возрастает, так как при этом оно в еще большей степени зависит от скорости потока и радиуса бронхов. Турбулентное движение возникает при высоких потоках, резких изменениях скорости потока, в местах изгибов и разветвлений бронхов, при резком изменении диаметра бронхов. Вот почему турбулентный поток характерен для больных ХОЗЛ, когда даже в стадии ремиссии имеет место повышенное сопротивление дыхательных путей. Это же касается больных бронхиальной астмой.


Сопротивление воздухоносных путей распределено в легких неравномерно. Наибольшее сопротивление создают бронхи среднего калибра (до 5-7-й генерации), так как сопротивление крупных бронхов невелико из-за их большого диаметра, а мелких бронхов — вследствие значительной суммарной площади поперечного сечения.


Сопротивление дыхательных путей зависит также от объема легких. При большом объёме паренхима оказывает большее «растягивающее» действие на дыхательные пути, и их сопротивление уменьшается. Применение ПДКВ (PEEP) способствует увеличению объема легких и, следовательно, снижению сопротивления дыхательных путей.

Сопротивление дыхательных путей в норме составляет:

У взрослых — 3-10 мм вод.ст./л/с;

У детей — 15-20 мм вод.ст./л/с;

У младенцев до 1 года — 20-30 мм вод.ст./л/с;

У новорожденных — 30-50 мм вод.ст./л/с.


На выдохе сопротивление дыхательных путей на 2-4 мм вод.ст./л/с больше, чем на вдохе. Это связано с пассивным характером выдоха, когда состояние стенки воздухоносных путей в большей мере влияет на газоток, чем при активном вдохе. Поэтому для полноценного выдоха требуется в 2-3 раза больше времени, чем для вдоха. В норме соотношение времени вдох/выдох (I:E) составляет для взрослых около 1: 1,5-2. Полноценность выдоха у больного во время ИВЛ можно оценить при помощи мониторинга экспираторной временной константы.


Работа дыхания


Работа дыхания совершается преимущественно инспираторными мышцами во время вдоха; выдох почти всегда пассивен. В то же время в случае, например, острого бронхоспазма или отека слизистой оболочки дыхательных путей выдох также становится активным, что значительно увеличивает общую работу внешней вентиляции.


Во время вдоха работа дыхания, в основном, тратится на преодоление эластического сопротивления легочной ткани и резистивного сопротивления дыхательных путей, при этом около 50 % затраченной энергии накапливается в упругих структурах легких. Во время выдоха эта накопленная потенциальная энергия высвобождается, что позволяет преодолевать экспираторное сопротивление дыхательных путей.

Увеличение сопротивления вдоху или выдоху компенсируется дополнительной работой дыхательных мышц. Работа дыхания возрастает при снижении растяжимости легких (рестриктивная патология), росте сопротивления дыхательных путей (обструктивная патология), тахипноэ (за счет вентиляции мертвого пространства).


На работу дыхательной мускулатуры в норме тратится только 2-3% от всего потребляемого организмом кислорода. Это, так называемая, «стоимость дыхания». При физической работе стоимость дыхания может достигать 10-15%. А при патологии (особенно рестриктивной) на работу дыхательных мышц может расходоваться более 30-40% от всего поглощаемого организмом кислорода. При тяжёлой диффузионной дыхательной недостаточности стоимость дыхания возрастает до 90%. С какого-то момента весь дополнительный кислород, получаемый за счет увеличения вентиляции, идет на покрытие соответствующего прироста работы дыхательных мышц. Вот почему на определенном этапе существенное увеличение работы дыхания является прямым показанием к началу ИВЛ, при которой стоимость дыхания уменьшается практически до 0.


Работа дыхания, которая требуется для преодоления эластического сопротивления (податливости легких), возрастает по мере увеличения дыхательного объема. Работа, необходимая для преодоления резистивного сопротивления дыхательных путей, возрастает при увеличении частоты дыхания. Пациент стремится уменьшить работу дыхания, меняя частоту дыхания и дыхательный объем в зависимости от преобладающей патологии. Для каждой ситуации существуют оптимальные частота дыхания и дыхательный объем, при которых работа дыхания минимальна. Так, для больных со сниженной растяжимостью, с точки зрения минимизации работы дыхания, подходит более частое и поверхностное дыхание (малоподатливые легкие трудно поддаются расправлению). С другой стороны, при увеличенном сопротивлении дыхательных путей оптимально глубокое и медленное дыхание. Это понятно: увеличение дыхательного объема позволяет «растянуть», расширить бронхи, уменьшить их сопротивление газотоку; с этой же целью больные с обструктивной патологией во время выдоха сжимают губы, создавая собственное «ПДКВ» (PEEP). Медленное и редкое дыхание способствует удлинению выдоха, что важно для более полного удаления выдыхаемой газовой смеси в условиях повышенного экспираторного сопротивления дыхательных путей.


Регуляция дыхания

Процесс дыхания регулируется центральной и периферической нервной системой. В ретикулярной формации головного мозга находится дыхательный центр, состоящий из центров вдоха, выдоха и пневмотаксиса.


Центральные хеморецепторы расположены в продолговатом мозге и возбуждаются при повышении концентрации Н+ и РСО 2 в спинномозговой жидкости. В норме рН последней составляет 7,32, РСО 2 - 50 мм.рт.ст., а содержание НСО 3 - 24,5 ммоль/л. Даже небольшое снижение рН и рост РСО 2 увеличивают вентиляцию легких. Эти рецепторы реагируют на гиперкапнию и ацидоз медленнее, чем периферические, так как требуется дополнительное время на измерение величины СО 2 , Н + и НСО 3 из-за преодоления гематоэнцефалического барьера. Сокращения дыхательных мышц контролирует центральный дыхательный механизм, состоящий из группы клеток продолговатого мозга, моста, а также пневмотаксических центров. Они тонизируют дыхательный центр и по импульсации из механорецепторов определяют порог возбуждения, при котором прекращается вдох. Пневмотаксические клетки также переключают вдох на выдох.


Периферические хеморецепторы, расположенные на внутренних оболочках сонного синуса, дуги аорты, левого предсердия, контролируют гуморальные параметры (РО 2 , РСО 2 в артериальной крови и спинномозговой жидкости) и немедленно реагируют на изменения внутренней среды организма, меняя режим самостоятельного дыхания и, таким образом, корригируя рН, РО 2 и РСО 2 в артериальной крови и спинномозговой жидкости. Импульсы из хеморецепторов регулируют объем вентиляции, необходимый для поддержания определенного уровня метаболизма. В оптимизации режима вентиляции, т.е. установлении частоты и глубины дыхания, длительности вдоха и выдоха, силы сокращения дыхательных мышц при данном уровне вентиляции, участвуют и механорецепторы. Вентиляция легких определяется уровнем метаболизма, воздействием продуктов обмена веществ и О2 на хеморецепторы, которые трансформируют их в афферентную импульсацию нервных структур центрального дыхательного механизма. Основная функция артериальных хеморецепторов - немедленная коррекция дыхания в ответ на изменения газового состава крови.


Периферические механорецепторы, локализующиеся в стенках альвеол, межреберных мышцах и диафрагме, реагируют на растяжение структур, в которых они находятся, на информацию о механических явлениях. Главную роль играют механорецепторы легких. Вдыхаемый воздух поступает по ВП к альвеолам и участвует в газообмене на уровне альвеолярно-капиллярной мембраны. По мере растяжения стенок альвеол во время вдоха механорецепторы возбуждаются и посылают афферентный сигнал в дыхательный центр, который тормозит вдох (рефлекс Геринга-Брейера).


При обычном дыхании межреберно-диафрагмальные механорецепторы не возбуждаются и имеют вспомогательное значение.

Система регуляции завершается нейронами, интегрирующими импульсы, которые поступают к ним от хеморецепторов, и посылающими импульсы возбуждения к дыхательным мотонейронам. Клетки бульбарного дыхательного центра посылают как возбуждающие, так и тормозящие импульсы к дыхательным мышцам. Координированное возбуждение респираторных мотонейронов приводит к синхронному сокращению дыхательных мышц.

Дыхательные движения, создающие воздушный поток, происходят благодаря согласованной работе всех дыхательных мышц. Нервные клетки двигательных

Нейронов дыхательных мышц расположены в передних рогах серого вещества спинного мозга (шейные и грудные сегменты).


У человека в регуляции дыхания принимает участие и кора большого мозга в пределах, допускаемых хеморецепторной регуляцией дыхания. Так, например, волевая задержка дыхания ограничена временем, в течение которого РаО 2 в спинномозговой жидкости повышается до уровней, возбуждающих артериальные и медуллярные рецепторы.


Биомеханика дыхания


Вентиляция легких происходит за счет периодических изменений работыдыхательных мышц, объема грудной полости и легких. Основными мышцами вдоха являются диафрагма и наружные межреберные мышцы. Во время их сокращения происходят уплощение купола диафрагмы и приподнятие ребер кверху, в результате объем грудной клетки увеличивается, растет отрицательное внутриплевральное давление (Ppl). Перед началом вдоха (в конце выдоха) Ppl приблизительно составляет минус 3-5 см вод.ст. Альвеолярное давление (Palv) принимается за 0 (т. е. равно атмосферному), оно же отражает давление в дыхательных путях и коррелирует с внутригрудным давлением.


Градиент между альвеолярным и внутриплевральным давлением называется транспульмонарным давлением (Ptp). В конце выдоха оно составляет 3-5 см вод.ст. Во время спонтанного вдоха рост отрицательного Ppl (до минус 6-10 см вод.ст.) вызывает снижение давления в альвеолах и дыхательных путях ниже атмосферного. В альвеолах давление снижается до минус 3-5 см вод.ст. За счёт разницы давлений воздух поступает (засасывается) из внешней среды в легкие. Грудная клетка и диафрагма действуют как поршневой насос, втягивающий воздух в легкие. Такое «присасывающее» действие грудной клетки важно не только для вентиляции, но и для кровообращения. Во время спонтанного вдоха происходят дополнительное «присасывание» крови к сердцу (поддержание преднагрузки) и активизация легочного кровотока из правого желудочка по системе легочной артерии. В конце вдоха, когда движение газа прекращается, альвеолярное давление возвращается к нулю, но внутриплевральное давление остается сниженным до минус 6-10 см вод.ст.

Выдох в норме является процессом пассивным. После расслабления дыхательных мышц силы эластической тяги грудной клетки и легких вызывают удаление (выдавливание) газа из легких и восстановление первоначального объема легких. В случае нарушения проходимости трахеобронхиального дерева (воспалительный секрет, отек слизистой оболочки, бронхоспазм) процесс выдоха затруднен, и в акте дыхания начинают принимать участие также мышцы выдоха (внутренние межреберные мышцы, грудные мышцы, мышцы брюшного пресса и т. д.). При истощении экспираторных мышц процесс выдоха еще более затрудняется, происходит задержка выдыхаемой смеси и динамическое перераздувание легких.


Недыхательные функции легких

Функции легких не ограничиваются диффузией газов. В них содержится 50% всех эндотелиальных клеток организма, которые выстилают капиллярную поверхность мембраны и участвуют в метаболизме и инактивации биологически активных веществ, проходящих через легкие.


1. Легкие контролируют общую гемодинамику путем различного заполнения собственного сосудистого русла и влияния на биологически активные вещества, регулирующие сосудистый тонус (серотонин, гистамин, брадикинин, катехоламины), превращением ангиотензина I в ангиотензин II, участием в метаболизме простагландинов.


2. Легкие регулируют свертывание крови, секретируя простациклин - ингибитор агрегации тромбоцитов, и удаляя из кровотока тромбопластин, фибрин и продукты его деградации. В результате этого оттекающая от легких кровь имеет более высокую фибринолитическую активность.


3. Легкие участвуют в белковом, углеводном и жировом обмене, синтезируя фосфолипиды (фосфатидилхолин и фосфатидилглицерол - основные компоненты сурфактанта).

4. Легкие продуцируют и элиминируют тепло, поддерживая энергетический баланс организма.


5. Легкие очищают кровь от механических примесей. Агрегаты клеток, микротромбы, бактерии, пузырьки воздуха, капли жира задерживаются легкими и подвергаются деструкции и метаболизму.


Типы вентиляции и виды нарушений вентиляции


Разработана физиологически четкая классификация типов вентиляции, в основу которой положены парциальные давления газов в альвеолах. В соответствии с этой классификацией выделяются следующие типы вентиляции:


1.Нормовентиляция - нормальная вентиляция, при которой парциальное давление СО2 в альвеолах поддерживается на уровне около 40 мм.рт.ст.


2.Гипервентиляция - усиленная вентиляция, превышающаяметаболические потребности организма (РаСО2<40 мм.рт.ст.).


3.Гиповентиляция - сниженная вентиляция по сравнению с метаболическими потребностями организма (РаСО2>40 мм.рт.ст.).


4. Повышенная вентиляция - любое увеличение альвеолярной вентиляции по сравнению с уровнем покоя, независимо от парциального давления газов в альвеолах (например, при мышечной работе).

5.Эупноэ - нормальная вентиляция в покое, сопровождающаяся субъективным чувством комфорта.


6.Гиперпноэ - увеличение глубины дыхания независимо от того, повышена ли при этом частота дыхательных движений или нет.


7.Тахипноэ - увеличение частоты дыхания.


8.Брадипноэ - снижение частоты дыхания.


9.Апноэ - остановка дыхания, обусловленная, главным образом, отсутствием физиологической стимуляции дыхательного центра (уменьшение напряжения СО2, в артериальной крови).


10.Диспноэ (одышка) - неприятное субъективное ощущение недостаточности дыхания или затрудненного дыхания.


11.Ортопноэ - выраженная одышка, связанная с застоем крови в легочных капиллярах в результате недостаточности левого сердца. В горизонтальном положении это состояние усугубляется, и поэтому лежать таким больным тяжело.


12.Асфиксия - остановка или угнетение дыхания, связанные, главным образом, с параличом дыхательных центров или закрытием дыхательных путей. Газообмен при этом резко нарушен (наблюдается гипоксия и гиперкапния).

В целях диагностики целесообразно различать два типа нарушений вентиляции - рестриктивный и обструктивный.


К рестриктивному типу нарушений вентиляции относятся все патологические состояния, при которых снижаются дыхательная экскурсия и способность легких расправляться, т.е. уменьшается их растяжимость. Такие нарушения наблюдаются, например, при поражениях легочной паренхимы (пневмонии, отёк лёгких, фиброз лёгких) или при плевральных спайках.


Обструктивный тип нарушений вентиляции обусловлен сужением воздухоносных путей, т.е. повышением их аэродинамического сопротивления. Подобные состояния встречаются, например, при накоплении в дыхательных путях слизи, набухании их слизистой оболочки или спазме бронхиальных мышц (аллергический бронхиолоспазм, бронхиальная астма, астмоидный бронхит и т.д.). У таких больных сопротивление вдоху и выдоху повышено, и поэтому со временем воздушность легких и ФОЕ у них увеличиваются. Патологическое состояние, характеризующееся чрезмерным уменьшением числа эластических волокон(исчезновением альвеолярных перегородок, объединением капиллярной сети), называется эмфиземой легких.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.