Теоремы площадей фигур. Квадрат — определение и свойства

Площадь квадрата Презентация по геометрии ученицы 8 «В» класса Жиряковой Марии. Площадь - численная характеристика двумерной (плоской или искривлённой) геометрической фигуры, неформально говоря, показывающая размер этой фигуры. Фигуры с одинаковой площадью называются равновеликими. Аксиомы площади Площадь единичного квадрата равна 1. Площадь аддитивна. Площадь неотрицательна. аддитивность площади означает, что площадь целого равен сумме …составляющих его частей. Докажем, что площадь квадрата со стороной а равна а2. 1 случай. а=1/n, где n- нат.число. Возьмем квадрат со стороной 1 и разобьем его на n2 равных квадратов, как на рисунке. Так как площадь большого квадрата равна 1, то площадь каждого маленького квадрата... Сторона каждого маленького квадрата равна…, т.е. равна а. Итак, S= 1/n2 = (1/n)2 =a2 (1) Случай 2. Пусть теперь а представляет собой конечную десятичную дробь, содержащую n знаков после запятой, так же число а может быть целым, и тогда n=0. Тогда число квадратиков на каждой стороне m=а*10n . Разобьем данный квадрат со стороной а на m2 равных квадратов, как на рисунке. При этом каждая сторона данного квадрата разобьется на m равных частей, и, значит, сторона любого маленького квадрата равна а/m=a/a*10n =1/10n По формуле(1) площадь маленького квадрата равна (1/10n)2 . Следовательно, площадь данного квадрата равна m2 * (1/10n)2 =(m/10n)2= (a*10n/10n)2= a2 . Пусть число а представляет собой бесконечную десятичную дробь. Рассмотрим число аn, получаемое из а отбрасыванием всех десятичных знаков после запятой, начиная с(n+1)-го. Так как число а отличается от аn не более чем на 1/10n, то аn ≤ а ≤ аn + 1/10n , откуда аn2 ≤ а2 ≤ (аn + 1/10n)2 . (2) Площадь данного квадрата заключена между площадью квадрата со стороной аn и площадью квадрата со стороной аn + 1/10n аn2 ≤ S ≤ (аn + 1/10n)2 (3) аn а аn + 1/10n Будем неограниченно увеличивать число n. Тогда число 1/10n , будет становиться сколь угодно малым, и, значит, число (аn + 1/10n)2 будет сколь угодно мало отличаться от числа аn2 . Поэтому из неравенств (2) и (3) следует, что число S сколь угодно мало отличается от числа а2 . Следовательно, эти числа равны: S= а2 , Ч.Т.Д. Теорема Пифагора. Теорема Пифагора - одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение между сторонами прямоугольного треугольника. Формулировки Геометрическая формулировка: Изначально теорема была сформулирована следующим образом: В прямоугольном треугольнике площадь квадрата, построенного на гипотенузе, равна сумме площадей квадратов, построенных на катетах. Алгебраическая формулировка: В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов. То есть, обозначив длину гипотенузы треугольника через c, а длины катетов через a и b: Обе формулировки теоремы эквивалентны, но вторая формулировка более элементарна, она не требует понятия площади. То есть второе утверждение можно проверить, ничего не зная о площади и измерив только длины сторон прямоугольного треугольника. Обратная теорема Пифагора: Для всякой тройки положительных чисел a, b и c, такой, что a2 + b2 = c2, существует прямоугольный треугольник с катетами a и b и гипотенузой c. Доказательства По преданию, Пифагор отпраздновал открытие своей теоремы гигантским пиром, заклав на радостях сотню быков. На данный момент в научной литературе зафиксировано 367 доказательств данной теоремы. Вероятно, теорема Пифагора является единственной теоремой со столь внушительным числом доказательств. Такое многообразие можно объяснить лишь фундаментальным значением теоремы для геометрии.

Самыми древними понятиями в развитии мировой геометрии являются понятия площадей многих прямолинейных фигур, в том числе: прямоугольника, параллелограмма, треугольника, и трапеции. Еще в 7 веке до нашей эры площадь прямоугольника умели вычислять египтяне. Они умножали длину на ширину.

Вавилонская арифметика и алгебра тоже были достаточно развиты, об этом свидетельствуют найденные при раскопках клинописные таблички. Вавилонская геометрия имела представление о пропорциональности отрезков, которые пересекались параллельными прямыми, а также о теореме Пифагора и даже вычислении объемов и площадей некоторых фигур. При этом вавилоняне под пространственными фигурами принимали конкретные предметы из быта. Например, при строительстве круглых зданий, они длину окружности приблизительно вычисляли по ее трем диаметрам. Площадь прямоугольника они высчитывали количеством пройденных шагов. Видимо для того времени такие определения значений были вполне приемлемыми. Такая прикладная геометрия была характерна для многих народов мира и широко использовалась в решении разных спорных бытовых вопросов.

Выдающийся ученый своего времени Архимед, доказывая теоремы о площадях фигур, использовал метод исчерпывания. На самом деле, это не что иное, как косвенное доказательство, которое начинают от противного. Основная идея метода Архимеда состоит в том, что вовнутрь фигуры, площадь которой ищут, нужно вписать правильные фигуры. Используя варианты метода исчерпывания, выдающийся ученый смог доказать многие теоремы.

Теорема: площадь прямоугольника равна произведению его смежных сторон.

S = ab

Итак, мы имеем прямоугольник, у которого две стороны - a и b . Площадь прямоугольника - S . Докажем, что S = ab .

Превратим наш прямоугольник в квадрат. Для этого увеличим его сторону b до длины стороны a

В итоге у нас получилось четыре квадрата. Мы знаем, что площадь квадрата равна (a + b) 2 . В то же время эти квадраты составлены из двух прямоугольников: одного прямоугольника с площадью S и такого же прямоугольника с такой же площадью, а также двух квадратов, у которых площади a 2 и b 2 . Исходя из того, что наш четырехугольник состоит не из одного четырехугольника, а из нескольких, то его площадь будет равна сумме всех площадей данных четырехугольников. Это выходит из свойства площадей.

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля - до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.