Теорема виета формула для квадратного уравнения онлайн. Формула корней квадратного уравнения

В квадратных уравнениях существует целый ряд соотношений. Основными являются отношения между корнями и коэффициентами. Также в квадратных уравнениях работает ряд соотношений, которые задаются теоремой Виета.

В этой теме мы приведем саму теорему Виета и ее доказательство для квадратного уравнения, теорему, обратную теореме Виета, разберем ряд примеров решения задач. Особое внимание в материале мы уделим рассмотрению формул Виета, которые задают связь между действительными корнями алгебраического уравнения степени n и его коэффициентами.

Yandex.RTB R-A-339285-1

Формулировка и доказательство теоремы Виета

Формула корней квадратного уравнения a · x 2 + b · x + c = 0 вида x 1 = - b + D 2 · a , x 2 = - b - D 2 · a , где D = b 2 − 4 · a · c , устанавливает соотношения x 1 + x 2 = - b a , x 1 · x 2 = c a . Это подтверждает и теорема Виета.

Теорема 1

В квадратном уравнении a · x 2 + b · x + c = 0 , где x 1 и x 2 – корни, сумма корней будет равна соотношению коэффициентов b и a , которое было взято с противоположным знаком, а произведение корней будет равно отношению коэффициентов c и a , т. е. x 1 + x 2 = - b a , x 1 · x 2 = c a .

Доказательство 1

Предлагаем вам следующую схему проведения доказательства: возьмем формулу корней, составим суму и произведение корней квадратного уравнения и затем преобразуем полученные выражения для того, чтобы убедиться, что они равны - b a и c a соответственно.

Составим сумму корней x 1 + x 2 = - b + D 2 · a + - b - D 2 · a . Приведем дроби к общему знаменателю - b + D 2 · a + - b - D 2 · a = - b + D + - b - D 2 · a . Раскроем скобки в числителе полученной дроби и приведем подобные слагаемые: - b + D + - b - D 2 · a = - b + D - b - D 2 · a = - 2 · b 2 · a . Сократим дробь на: 2 - b a = - b a .

Так мы доказали первое соотношение теоремы Виета, которое относится к сумме корней квадратного уравнения.

Теперь давайте перейдем ко второму соотношению.

Для этого нам необходимо составить произведение корней квадратного уравнения: x 1 · x 2 = - b + D 2 · a · - b - D 2 · a .

Вспомним правило умножения дробей и запишем последнее произведение следующим образом: - b + D · - b - D 4 · a 2 .

Проведем в числителе дроби умножение скобки на скобку или же воспользуемся формулой разности квадратов для того, чтобы преобразовать это произведение быстрее: - b + D · - b - D 4 · a 2 = - b 2 - D 2 4 · a 2 .

Воспользуемся определением квадратного корня для того, чтобы осуществить следующий переход: - b 2 - D 2 4 · a 2 = b 2 - D 4 · a 2 . Формула D = b 2 − 4 · a · c отвечает дискриминанту квадратного уравнения, следовательно, в дробь вместо D можно подставить b 2 − 4 · a · c:

b 2 - D 4 · a 2 = b 2 - (b 2 - 4 · a · c) 4 · a 2

Раскроем скобки, приведем подобные слагаемые и получим: 4 · a · c 4 · a 2 . Если сократить ее на 4 · a , то остается c a . Так мы доказали второе соотношение теоремы Виета для произведения корней.

Запись доказательства теоремы Виета может иметь весьма лаконичный вид, если опустить пояснения:

x 1 + x 2 = - b + D 2 · a + - b - D 2 · a = - b + D + - b - D 2 · a = - 2 · b 2 · a = - b a , x 1 · x 2 = - b + D 2 · a · - b - D 2 · a = - b + D · - b - D 4 · a 2 = - b 2 - D 2 4 · a 2 = b 2 - D 4 · a 2 = = D = b 2 - 4 · a · c = b 2 - b 2 - 4 · a · c 4 · a 2 = 4 · a · c 4 · a 2 = c a .

При дискриминанте квадратного уравнения равном нулю уравнение будет иметь только один корень. Чтобы иметь возможность применить к такому уравнению теорему Виета, мы можем предположить, что уравнение при дискриминанте, равном нулю, имеет два одинаковых корня. Действительно, при D = 0 корень квадратного уравнения равен: - b 2 · a , тогда x 1 + x 2 = - b 2 · a + - b 2 · a = - b + (- b) 2 · a = - 2 · b 2 · a = - b a и x 1 · x 2 = - b 2 · a · - b 2 · a = - b · - b 4 · a 2 = b 2 4 · a 2 , а так как D = 0 , то есть, b 2 - 4 · a · c = 0 , откуда b 2 = 4 · a · c , то b 2 4 · a 2 = 4 · a · c 4 · a 2 = c a .

Чаще всего на практике теорема Виета применяется по отношению к приведенному квадратному уравнению вида x 2 + p · x + q = 0 , где старший коэффициент a равен 1 . В связи с этим и формулируют теорему Виета именно для уравнений такого вида. Это не ограничивает общности в связи с тем, что любое квадратное уравнение может быть заменено равносильным уравнением. Для этого необходимо поделить обе его части на число a , отличное от нуля.

Приведем еще одну формулировку теоремы Виета.

Теорема 2

Сумма корней в приведенном квадратном уравнении x 2 + p · x + q = 0 будет равна коэффициенту при x , который взят с противоположным знаком, произведение корней будет равно свободному члену, т.е. x 1 + x 2 = − p , x 1 · x 2 = q .

Теорема, обратная теореме Виета

Если внимательно посмотреть на вторую формулировку теоремы Виета, то можно увидеть, что для корней x 1 и x 2 приведенного квадратного уравнения x 2 + p · x + q = 0 будут справедливы соотношения x 1 + x 2 = − p , x 1 · x 2 = q . Из этих соотношений x 1 + x 2 = − p , x 1 · x 2 = q следует, что x 1 и x 2 – это корни квадратного уравнения x 2 + p · x + q = 0 . Так мы приходим к утверждению, которое является обратным теореме Виета.

Предлагаем теперь оформить это утверждение как теорему и провести ее доказательство.

Теорема 3

Если числа x 1 и x 2 таковы, что x 1 + x 2 = − p и x 1 · x 2 = q , то x 1 и x 2 являются корнями приведенного квадратного уравнения x 2 + p · x + q = 0 .

Доказательство 2

Замена коэффициентов p и q на их выражение через x 1 и x 2 позволяет преобразовать уравнение x 2 + p · x + q = 0 в равносильное ему .

Если в полученное уравнение подставить число x 1 вместо x , то мы получим равенство x 1 2 − (x 1 + x 2) · x 1 + x 1 · x 2 = 0 . Это равенство при любых x 1 и x 2 превращается в верное числовое равенство 0 = 0 , так как x 1 2 − (x 1 + x 2) · x 1 + x 1 · x 2 = x 1 2 − x 1 2 − x 2 · x 1 + x 1 · x 2 = 0 . Это значит, что x 1 – корень уравнения x 2 − (x 1 + x 2) · x + x 1 · x 2 = 0 , и что x 1 также является корнем равносильного ему уравнения x 2 + p · x + q = 0 .

Подстановка в уравнение x 2 − (x 1 + x 2) · x + x 1 · x 2 = 0 числа x 2 вместо x позволяет получить равенство x 2 2 − (x 1 + x 2) · x 2 + x 1 · x 2 = 0 . Это равенство можно считать верным, так как x 2 2 − (x 1 + x 2) · x 2 + x 1 · x 2 = x 2 2 − x 1 · x 2 − x 2 2 + x 1 · x 2 = 0 . Получается, что x 2 является корнем уравнения x 2 − (x 1 + x 2) · x + x 1 · x 2 = 0 , а значит, и уравнения x 2 + p · x + q = 0 .

Теорема, обратная теореме Виета, доказана.

Примеры использования теоремы Виета

Давайте теперь приступим к разбору наиболее типичных примеров по теме. Начнем с разбора задач, которые требуют применения теоремы, обратной теореме Виета. Ее можно применять для проверки чисел, полученных в ходе вычислений, на предмет того, являются ли они корнями заданного квадратного уравнения. Для этого необходимо вычислить их сумму и разность, а затем проверить справедливость соотношений x 1 + x 2 = - b a , x 1 · x 2 = a c .

Выполнение обоих соотношений свидетельствует о том, что числа, полученные в ходе вычислений, являются корнями уравнения. Если же мы видим, что хотя бы одно из условий не выполняется, то данные числа не могут быть корнями квадратного уравнения, данного в условии задачи.

Пример 1

Какая из пар чисел 1) x 1 = − 5 , x 2 = 3 , или 2) x 1 = 1 - 3 , x 2 = 3 + 3 , или 3) x 1 = 2 + 7 2 , x 2 = 2 - 7 2 является парой корней квадратного уравнения 4 · x 2 − 16 · x + 9 = 0 ?

Решение

Найдем коэффициенты квадратного уравнения 4 · x 2 − 16 · x + 9 = 0 . Это a = 4 , b = − 16 , c = 9 . В соответствии с теоремой Виета сумма корней квадратного уравнения должна быть равна - b a , то есть, 16 4 = 4 , а произведение корней должно быть равно c a , то есть, 9 4 .

Проверим полученные числа, вычислив сумму и произведение чисел из трех заданных пар и сравнив их с полученными значениями.

В первом случае x 1 + x 2 = − 5 + 3 = − 2 . Это значение отлично от 4 , следовательно, проверку можно не продолжать. Согласно теореме, обратной теореме Виета, можно сразу сделать вывод о том, что первая пара чисел не является корнями данного квадратного уравнения.

Во втором случае x 1 + x 2 = 1 - 3 + 3 + 3 = 4 . Мы видим, что первое условие выполняется. А вот второе условие нет: x 1 · x 2 = 1 - 3 · 3 + 3 = 3 + 3 - 3 · 3 - 3 = - 2 · 3 . Значение, которое мы получили, отлично от 9 4 . Это значит, что вторая пара чисел не является корнями квадратного уравнения.

Перейдем к рассмотрению третьей пары. Здесь x 1 + x 2 = 2 + 7 2 + 2 - 7 2 = 4 и x 1 · x 2 = 2 + 7 2 · 2 - 7 2 = 2 2 - 7 2 2 = 4 - 7 4 = 16 4 - 7 4 = 9 4 . Выполняются оба условия, а это значит, что x 1 и x 2 являются корнями заданного квадратного уравнения.

Ответ: x 1 = 2 + 7 2 , x 2 = 2 - 7 2

Мы также можем использовать теорему, обратную теореме Виета, для подбора корней квадратного уравнения. Наиболее простой способ – это подбор целых корней приведенных квадратных уравнений с целыми коэффициентами. Можно рассматривать и другие варианты. Но это может существенно затруднить проведение вычислений.

Для подбора корней мы используем тот факт, что если сумма двух чисел равна второму коэффициенту квадратного уравнения, взятому со знаком минус, а произведение этих чисел равно свободному члену, то эти числа являются корнями данного квадратного уравнения.

Пример 2

В качестве примера используем квадратное уравнение x 2 − 5 · x + 6 = 0 . Числа x 1 и x 2 могут быть корнями этого уравнения в том случае, если выполняются два равенства x 1 + x 2 = 5 и x 1 · x 2 = 6 . Подберем такие числа. Это числа 2 и 3 , так как 2 + 3 = 5 и 2 · 3 = 6 . Получается, что 2 и 3 – корни данного квадратного уравнения.

Теорему, обратную теореме Виета, можно использовать для нахождения второго корня, когда первый известен или очевиден. Для этого мы можем использовать соотношения x 1 + x 2 = - b a , x 1 · x 2 = c a .

Пример 3

Рассмотрим квадратное уравнение 512 · x 2 − 509 · x − 3 = 0 . Необходимо найти корни данного уравнения.

Решение

Первым корнем уравнения является 1 , так как сумма коэффициентов этого квадратного уравнения равна нулю. Получается, что x 1 = 1 .

Теперь найдем второй корень. Для этого можно использовать соотношение x 1 · x 2 = c a . Получается, что 1 · x 2 = − 3 512 , откуда x 2 = - 3 512 .

Ответ: корни заданного в условии задачи квадратного уравнения 1 и - 3 512 .

Подбирать корни, используя теорему, обратную теореме Виета, можно лишь в простых случаях. В остальных случаях лучше проводить поиск с использованием формулы корней квадратного уравнения через дискриминант.

Благодаря теореме, обратной теореме Виета, мы также можем составлять квадратные уравнения по имеющимся корням x 1 и x 2 . Для этого нам необходимо вычислить сумму корней, которая дает коэффициент при x с противоположным знаком приведенного квадратного уравнения, и произведение корней, которое дает свободный член.

Пример 4

Напишите квадратное уравнение, корнями которого являются числа − 11 и 23 .

Решение

Примем, что x 1 = − 11 и x 2 = 23 . Сумма и произведение данных чисел будут равны: x 1 + x 2 = 12 и x 1 · x 2 = − 253 . Это значит, что второй коэффициент - 12 , свободный член − 253.

Составляем уравнение: x 2 − 12 · x − 253 = 0 .

Ответ : x 2 − 12 · x − 253 = 0 .

Мы можем использовать теорему Виета для решения заданий, которые связаны со знаками корней квадратных уравнений. Связь между теоремой Виета связана со знаками корней приведенного квадратного уравнения x 2 + p · x + q = 0 следующим образом:

  • если квадратное уравнение имеет действительные корни и если свободный член q является положительным числом, то эти корни будут иметь одинаковый знак « + » или « - » ;
  • если квадратное уравнение имеет корни и если свободный член q является отрицательным числом, то один корень будет « + » , а второй « - » .

Оба этих утверждения являются следствием формулы x 1 · x 2 = q и правила умножения положительных и отрицательных чисел, а также чисел с разными знаками.

Пример 5

Являются ли корни квадратного уравнения x 2 − 64 · x − 21 = 0 положительными?

Решение

По теореме Виета корни данного уравнения не могут быть оба положительными, так как для них должно выполняться равенство x 1 · x 2 = − 21 . Это невозможно при положительных x 1 и x 2 .

Ответ: Нет

Пример 6

При каких значениях параметра r квадратное уравнение x 2 + (r + 2) · x + r − 1 = 0 будет иметь два действительных корня с разными знаками.

Решение

Начнем с того, что найдем значения каких r , при которых в уравнении будет два корня. Найдем дискриминант и посмотрим, при каких r он будет принимать положительные значения. D = (r + 2) 2 − 4 · 1 · (r − 1) = r 2 + 4 · r + 4 − 4 · r + 4 = r 2 + 8 . Значение выражения r 2 + 8 положительно при любых действительных r , следовательно, дискриминант будет больше нуля при любых действительных r . Это значит, что исходное квадратное уравнение будет иметь два корня при любых действительных значениях параметра r .

Теперь посмотрим, когда корни будут иметь разные знаки. Это возможно в том случае, если их произведение будет отрицательным. Согласно теореме Виета произведение корней приведенного квадратного уравнения равно свободному члену. Значит, правильным решением будут те значения r , при которых свободный член r − 1 отрицателен. Решим линейное неравенство r − 1 < 0 , получаем r < 1 .

Ответ: при r < 1 .

Формулы Виета

Существует ряд формул, которые применимы для осуществления действий с корнями и коэффициентами не только квадратных, но также кубических и других видов уравнений. Их называют формулами Виета.

Для алгебраического уравнения степени n вида a 0 · x n + a 1 · x n - 1 + . . . + a n - 1 · x + a n = 0 считается, что уравнение имеет n действительных корней x 1 , x 2 , … , x n , среди которых могут быть совпадающие:
x 1 + x 2 + x 3 + . . . + x n = - a 1 a 0 , x 1 · x 2 + x 1 · x 3 + . . . + x n - 1 · x n = a 2 a 0 , x 1 · x 2 · x 3 + x 1 · x 2 · x 4 + . . . + x n - 2 · x n - 1 · x n = - a 3 a 0 , . . . x 1 · x 2 · x 3 · . . . · x n = (- 1) n · a n a 0

Определение 1

Получить формулы Виета нам помогают:

  • теорема о разложении многочлена на линейные множители;
  • определение равных многочленов через равенство всех их соответствующих коэффициентов.

Так, многочлен a 0 · x n + a 1 · x n - 1 + . . . + a n - 1 · x + a n и его разложение на линейные множители вида a 0 · (x - x 1) · (x - x 2) · . . . · (x - x n) равны.

Если мы раскрываем скобки в последнем произведении и приравниваем соответствующие коэффициенты, то получаем формулы Виета. Приняв n = 2 , мы можем получить формулу Виета для квадратного уравнения: x 1 + x 2 = - a 1 a 0 , x 1 · x 2 = a 2 a 0 .

Определение 2

Формула Виета для кубического уравнения:
x 1 + x 2 + x 3 = - a 1 a 0 , x 1 · x 2 + x 1 · x 3 + x 2 · x 3 = a 2 a 0 , x 1 · x 2 · x 3 = - a 3 a 0

Левая часть записи формул Виета содержит так называемые элементарные симметрические многочлены.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter


Между корнями и коэффициентами квадратного уравнения , помимо формул корней, существуют другие полезные соотношения, которые задаются теоремой Виета . В этой статье мы дадим формулировку и доказательство теоремы Виета для квадратного уравнения. Дальше рассмотрим теорему, обратную теореме Виета. После этого разберем решения наиболее характерных примеров. Наконец, запишем формулы Виета, задающие связь между действительными корнями алгебраического уравнения степени n и его коэффициентами.

Навигация по странице.

Теорема Виета, формулировка, доказательство

Из формул корней квадратного уравнения a·x 2 +b·x+c=0 вида , где D=b 2 −4·a·c , вытекают соотношения x 1 +x 2 =−b/a , x 1 ·x 2 =c/a . Эти результаты утверждаются теоремой Виета :

Теорема.

Если x 1 и x 2 – корни квадратного уравнения a·x 2 +b·x+c=0 , то сумма корней равна отношению коэффициентов b и a , взятому с противоположным знаком, а произведение корней равно отношению коэффициентов c и a , то есть, .

Доказательство.

Доказательство теоремы Виета проведем по следующей схеме: составим сумму и произведение корней квадратного уравнения, используя известные формулы корней, после этого преобразуем полученные выражения, и убедимся, что они равны −b/a и c/a соответственно.

Начнем с суммы корней, составляем ее . Теперь приводим дроби к общему знаменателю, имеем . В числителе полученной дроби , после чего : . Наконец, после на 2 , получаем . Этим доказано первое соотношение теоремы Виета для суммы корней квадратного уравнения. Переходим ко второму.

Составляем произведение корней квадратного уравнения: . Согласно правилу умножения дробей, последнее произведение можно записать как . Теперь выполняем умножение скобки на скобку в числителе, но быстрее свернуть это произведение по формуле разности квадратов , так . Дальше, вспомнив , выполняем следующий переход . А так как дискриминанту квадратного уравнения отвечает формула D=b 2 −4·a·c , то в последнюю дробь вместо D можно подставить b 2 −4·a·c , получаем . После раскрытия скобок и приведения подобных слагаемых приходим к дроби , а ее сокращение на 4·a дает . Этим доказано второе соотношение теоремы Виета для произведения корней.

Если опустить пояснения, то доказательство теоремы Виета примет лаконичный вид:
,
.

Остается лишь заметить, что при равном нулю дискриминанте квадратное уравнение имеет один корень. Однако, если считать, что уравнение в этом случае имеет два одинаковых корня, то равенства из теоремы Виета также имеют место. Действительно, при D=0 корень квадратного уравнения равен , тогда и , а так как D=0 , то есть, b 2 −4·a·c=0 , откуда b 2 =4·a·c , то .

На практике наиболее часто теорема Виета используется применительно к приведенному квадратному уравнению (со старшим коэффициентом a , равным 1 ) вида x 2 +p·x+q=0 . Иногда ее и формулируют для квадратных уравнений именно такого вида, что не ограничивает общности, так как любое квадратное уравнение можно заменить равносильным уравнением , выполнив деление его обеих частей на отличное от нуля число a . Приведем соответствующую формулировку теоремы Виета:

Теорема.

Сумма корней приведенного квадратного уравнения x 2 +p·x+q=0 равна коэффициенту при x , взятому с противоположным знаком, а произведение корней – свободному члену, то есть, x 1 +x 2 =−p , x 1 ·x 2 =q .

Теорема, обратная теореме Виета

Вторая формулировка теоремы Виета, приведенная в предыдущем пункте, указывает, что если x 1 и x 2 корни приведенного квадратного уравнения x 2 +p·x+q=0 , то справедливы соотношения x 1 +x 2 =−p , x 1 ·x 2 =q . С другой стороны, из записанных соотношений x 1 +x 2 =−p , x 1 ·x 2 =q следует, что x 1 и x 2 являются корнями квадратного уравнения x 2 +p·x+q=0 . Иными словами, справедливо утверждение, обратное теореме Виета. Сформулируем его в виде теоремы, и докажем ее.

Теорема.

Если числа x 1 и x 2 таковы, что x 1 +x 2 =−p и x 1 ·x 2 =q , то x 1 и x 2 являются корнями приведенного квадратного уравнения x 2 +p·x+q=0 .

Доказательство.

После замены в уравнении x 2 +p·x+q=0 коэффициентов p и q их выражения через x 1 и x 2 , оно преобразуется в равносильное уравнение .

Подставим в полученное уравнение вместо x число x 1 , имеем равенство x 1 2 −(x 1 +x 2)·x 1 +x 1 ·x 2 =0 , которое при любых x 1 и x 2 представляет собой верное числовое равенство 0=0 , так как x 1 2 −(x 1 +x 2)·x 1 +x 1 ·x 2 = x 1 2 −x 1 2 −x 2 ·x 1 +x 1 ·x 2 =0 . Следовательно, x 1 – корень уравнения x 2 −(x 1 +x 2)·x+x 1 ·x 2 =0 , а значит, x 1 – корень и равносильного ему уравнения x 2 +p·x+q=0 .

Если же в уравнение x 2 −(x 1 +x 2)·x+x 1 ·x 2 =0 подставить вместо x число x 2 , то получим равенство x 2 2 −(x 1 +x 2)·x 2 +x 1 ·x 2 =0 . Это верное равенство, так как x 2 2 −(x 1 +x 2)·x 2 +x 1 ·x 2 = x 2 2 −x 1 ·x 2 −x 2 2 +x 1 ·x 2 =0 . Следовательно, x 2 тоже является корнем уравнения x 2 −(x 1 +x 2)·x+x 1 ·x 2 =0 , а значит, и уравнения x 2 +p·x+q=0 .

На этом завершено доказательство теоремы, обратной теореме Виета.

Примеры использования теоремы Виета

Пришло время поговорить о практическом применении теоремы Виета и обратной ей теоремы. В этом пункте мы разберем решения нескольких наиболее характерных примеров.

Начнем с применения теоремы, обратной теореме Виета. Ее удобно применять для проверки, являются ли данные два числа корнями заданного квадратного уравнения. При этом вычисляется их сумма и разность, после чего проверяется справедливость соотношений . Если выполняются оба этих соотношения, то в силу теоремы, обратной теореме Виета, делается вывод, что данные числа являются корнями уравнения. Если же хотя бы одно из соотношений не выполняется, то данные числа не являются корнями квадратного уравнения. Такой подход можно использовать при решении квадратных уравнений для проверки найденных корней.

Пример.

Какая из пар чисел 1) x 1 =−5 , x 2 =3 , или 2) , или 3) является парой корней квадратного уравнения 4·x 2 −16·x+9=0 ?

Решение.

Коэффициентами заданного квадратного уравнения 4·x 2 −16·x+9=0 являются a=4 , b=−16 , c=9 . Согласно теореме Виета сумма корней квадратного уравнения должна быть равна −b/a , то есть, 16/4=4 , а произведение корней должно быть равно c/a , то есть, 9/4 .

Теперь вычислим сумму и произведение чисел в каждой из трех заданных пар, и сравним их с только что полученными значениями.

В первом случае имеем x 1 +x 2 =−5+3=−2 . Полученное значение отлично от 4 , поэтому дальнейшую проверку можно не осуществлять, а по теореме, обратной теореме Виета, сразу сделать вывод, что первая пара чисел не является парой корней заданного квадратного уравнения.

Переходим ко второму случаю. Здесь , то есть, первое условие выполнено. Проверяем второе условие: , полученное значение отлично от 9/4 . Следовательно, и вторая пара чисел не является парой корней квадратного уравнения.

Остался последний случай. Здесь и . Оба условия выполнены, поэтому эти числа x 1 и x 2 являются корнями заданного квадратного уравнения.

Ответ:

Теорему, обратную теореме Виета, на практике можно использовать для подбора корней квадратного уравнения. Обычно подбирают целые корни приведенных квадратных уравнений с целыми коэффициентами, так как в других случаях это сделать достаточно сложно. При этом пользуются тем фактом, что если сумма двух чисел равна второму коэффициенту квадратного уравнения, взятому со знаком минус, а произведение этих чисел равно свободному члену, то эти числа являются корнями данного квадратного уравнения. Разберемся с этим на примере.

Возьмем квадратное уравнение x 2 −5·x+6=0 . Чтобы числа x 1 и x 2 были корнями этого уравнения, должны выполняться два равенства x 1 +x 2 =5 и x 1 ·x 2 =6 . Остается подобрать такие числа. В данном случае это сделать достаточно просто: такими числами являются 2 и 3 , так как 2+3=5 и 2·3=6 . Таким образом, 2 и 3 – корни данного квадратного уравнения.

Теорему, обратную теореме Виета, особенно удобно применять для нахождения второго корня приведенного квадратного уравнения, когда уже известен или очевиден один из корней. В этом случае второй корень находится из любого из соотношений .

Для примера возьмем квадратное уравнение 512·x 2 −509·x−3=0 . Здесь легко заметить, что единица является корнем уравнения, так как сумма коэффициентов этого квадратного уравнения равна нулю. Итак, x 1 =1 . Второй корень x 2 можно найти, например, из соотношения x 1 ·x 2 =c/a . Имеем 1·x 2 =−3/512 , откуда x 2 =−3/512 . Так мы определили оба корня квадратного уравнения: 1 и −3/512 .

Понятно, что подбор корней целесообразен лишь в самых простых случаях. В остальных случаях для поиска корней можно применить формулы корней квадратного уравнения через дискриминант.

Еще одно практическое применение теоремы, обратной теореме Виета, состоит в составлении квадратных уравнений по заданным корням x 1 и x 2 . Для этого достаточно вычислить сумму корней, которая дает коэффициент при x с противоположным знаком приведенного квадратного уравнения, и произведение корней, которое дает свободный член.

Пример.

Напишите квадратное уравнение, корнями которого являются числа −11 и 23 .

Решение.

Обозначим x 1 =−11 и x 2 =23 . Вычисляем сумму и произведение данных чисел: x 1 +x 2 =12 и x 1 ·x 2 =−253 . Следовательно, указанные числа являются корнями приведенного квадратного уравнения со вторым коэффициентом −12 и свободным членом −253 . То есть, x 2 −12·x−253=0 – искомое уравнение.

Ответ:

x 2 −12·x−253=0 .

Теорема Виета очень часто используется при решении заданий, связанных со знаками корней квадратных уравнений. Как же связана теорема Виета со знаками корней приведенного квадратного уравнения x 2 +p·x+q=0 ? Приведем два соответствующих утверждения:

  • Если свободный член q – положительное число и если квадратное уравнение имеет действительные корни, то либо они оба положительные, либо оба отрицательные.
  • Если же свободный член q – отрицательное число и если квадратное уравнение имеет действительные корни, то их знаки различны, другими словами, один корень положительный, а другой - отрицательный.

Эти утверждения вытекают из формулы x 1 ·x 2 =q , а также правил умножения положительных, отрицательных чисел и чисел с разными знаками. Рассмотрим примеры их применения.

Пример.

R он положителен. По формуле дискриминанта находим D=(r+2) 2 −4·1·(r−1)= r 2 +4·r+4−4·r+4=r 2 +8 , значение выражения r 2 +8 положительно при любых действительных r , таким образом, D>0 при любых действительных r . Следовательно, исходное квадратное уравнение имеет два корня при любых действительных значениях параметра r .

Теперь выясним, когда корни имеют разные знаки. Если знаки корней различны, то их произведение отрицательно, а по теореме Виета произведение корней приведенного квадратного уравнения равно свободному члену. Следовательно, нас интересуют те значения r , при которых свободный член r−1 отрицателен. Таким образом, чтобы найти интересующие нас значения r , надо решить линейное неравенство r−1<0 , откуда находим r<1 .

Ответ:

при r<1 .

Формулы Виета

Выше мы говорили о теореме Виета для квадратного уравнения и разбирали утверждаемые ей соотношения. Но существуют формулы, связывающие действительные корни и коэффициенты не только квадратных уравнений, но и кубических уравнений, уравнений четверной степени, и вообще, алгебраических уравнений степени n . Их называют формулами Виета .

Запишем формулы Виета для алгебраического уравнения степени n вида , при этом будем считать, что оно имеет n действительных корней x 1 , x 2 , …, x n (среди них могут быть совпадающие):

Получить формулы Виета позволяет теорема о разложении многочлена на линейные множители , а также определение равных многочленов через равенство всех их соответствующих коэффициентов. Так многочлен и его разложение на линейные множители вида равны. Раскрыв скобки в последнем произведении и приравняв соответствующие коэффициенты, получим формулы Виета.

В частности при n=2 имеем уже знакомые нам формулы Виета для квадратного уравнения .

Для кубического уравнения формулы Виета имеют вид

Остается лишь заметить, что в левой части формул Виета находятся так называемые элементарные симметрические многочлены .

Список литературы.

  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Мордкович А. Г. Алгебра. 8 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 11-е изд., стер. - М.: Мнемозина, 2009. - 215 с.: ил. ISBN 978-5-346-01155-2.
  • Алгебра и начала математического анализа. 10 класс: учеб. для общеобразоват. учреждений: базовый и профил. уровни / [Ю. М. Колягин, М. В. Ткачева, Н. Е. Федорова, М. И. Шабунин]; под ред. А. Б. Жижченко. - 3-е изд. - М.: Просвещение, 2010.- 368 с. : ил. - ISBN 978-5-09-022771-1.

Формулировка и доказательство теоремы Виета для квадратных уравнений. Обратная теорема Виета. Теорема Виета для кубических уравнений и уравнений произвольного порядка.

Квадратные уравнения

Теорема Виета

Пусть и обозначают корни приведенного квадратного уравнения
(1) .
Тогда сумма корней равна коэффициенту при , взятому с обратным знаком. Произведение корней равно свободному члену:
;
.

Замечание по поводу кратных корней

Если дискриминант уравнения (1) равен нулю, то это уравнение имеет один корень. Но, чтобы избежать громоздких формулировок, принято считать, что в этом случае, уравнение (1) имеет два кратных, или равных, корня:
.

Доказательство первое

Найдем корни уравнения (1). Для этого применим формулу для корней квадратного уравнения :
;
;
.

Находим сумму корней:
.

Чтобы найти произведение, применим формулу:
.
Тогда

.

Теорема доказана.

Доказательство второе

Если числа и являются корнями квадратного уравнения (1), то
.
Раскрываем скобки.

.
Таким образом, уравнение (1) примет вид:
.
Сравнивая с (1) находим:
;
.

Теорема доказана.

Обратная теорема Виета

Пусть и есть произвольные числа. Тогда и являются корнями квадратного уравнения
,
где
(2) ;
(3) .

Доказательство обратной теоремы Виета

Рассмотрим квадратное уравнение
(1) .
Нам нужно доказать, что если и , то и являются корнями уравнения (1).

Подставим (2) и (3) в (1):
.
Группируем члены левой части уравнения:
;
;
(4) .

Подставим в (4) :
;
.

Подставим в (4) :
;
.
Уравнение выполняется. То есть число является корнем уравнения (1).

Теорема доказана.

Теорема Виета для полного квадратного уравнения

Теперь рассмотрим полное квадратное уравнение
(5) ,
где , и есть некоторые числа. Причем .

Разделим уравнение (5) на :
.
То есть мы получили приведенное уравнение
,
где ; .

Тогда теорема Виета для полного квадратного уравнения имеет следующий вид.

Пусть и обозначают корни полного квадратного уравнения
.
Тогда сумма и произведение корней определяются по формулам:
;
.

Теорема Виета для кубического уравнения

Аналогичным образом мы можем установить связи между корнями кубического уравнения. Рассмотрим кубическое уравнение
(6) ,
где , , , есть некоторые числа. Причем .
Разделим это уравнение на :
(7) ,
где , , .
Пусть , , есть корни уравнения (7) (и уравнения (6)). Тогда

.

Сравнивая с уравнением (7) находим:
;
;
.

Теорема Виета для уравнения n-й степени

Тем же способом можно найти связи между корнями , , ... , , для уравнения n-й степени
.

Теорема Виета для уравнения n-й степени имеет следующий вид:
;
;
;

.

Чтобы получить эти формулы мы записываем уравнение в следующем виде:
.
Затем приравниваем коэффициенты при , , , ... , и сравниваем свободный член.

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.
С.М. Никольский, М.К. Потапов и др., Алгебра: учебник для 8 класса общеобразовательных учреждений, Москва, Просвещение, 2006.

Начальный уровень

Квадратные уравнения. Исчерпывающий гид (2019)

В термине «квадратное уравнение» ключевым является слово «квадратное». Это значит, что в уравнении обязательно должна присутствовать переменная (тот самый икс) в квадрате, и при этом не должно быть иксов в третьей (и большей) степени.

Решение многих уравнений сводится к решению именно квадратных уравнений.

Давай научимся определять, что перед нами квадратное уравнение, а не какое-нибудь другое.

Пример 1.

Избавимся от знаменателя и домножим каждый член уравнения на

Перенесем все в левую часть и расположим члены в порядке убывания степеней икса

Теперь можно с уверенностью сказать, что данное уравнение является квадратным!

Пример 2.

Домножим левую и правую часть на:

Это уравнение, хотя в нем изначально был, не является квадратным!

Пример 3.

Домножим все на:

Страшно? Четвертая и вторая степени… Однако, если произвести замену, то мы увидим, что перед нами простое квадратное уравнение:

Пример 4.

Вроде бы есть, но давай посмотрим внимательнее. Перенесем все в левую часть:

Видишь, сократился - и теперь это простое линейное уравнение!

Теперь попробуй сам определить, какие из следующий уравнений являются квадратными, а какие нет:

Примеры:

Ответы:

  1. квадратное;
  2. квадратное;
  3. не квадратное;
  4. не квадратное;
  5. не квадратное;
  6. квадратное;
  7. не квадратное;
  8. квадратное.

Математики условно делят все квадратные уравнения на вида:

  • Полные квадратные уравнения - уравнения, в которых коэффициенты и, а также свободный член с не равны нулю (как в примере). Кроме того, среди полных квадратных уравнений выделяют приведенные - это уравнения, в которых коэффициент (уравнение из примера один является не только полным, но еще и приведенным!)
  • Неполные квадратные уравнения - уравнения, в которых коэффициент и или свободный член с равны нулю:

    Неполные они, потому что в них не хватает какого-то элемента. Но в уравнении всегда должен присутствовать икс в квадрате!!! Иначе это будет уже не квадратное, а какое-то другое уравнение.

Зачем придумали такое деление? Казалось бы, есть икс в квадрате, и ладно. Такое деление обусловлено методами решения. Рассмотрим каждый из них подробнее.

Решение неполных квадратных уравнений

Для начала остановимся на решении неполных квадратных уравнений - они гораздо проще!

Неполные квадратные уравнения бывают типов:

  1. , в этом уравнении коэффициент равен.
  2. , в этом уравнении свободный член равен.
  3. , в этом уравнении коэффициент и свободный член равны.

1. и. Поскольку мы знаем, как извлекать квадратный корень, то давайте выразим из этого уравнения

Выражение может быть как отрицательным, так и положительным. Число, возведенное в квадрат, не может быть отрицательным, ведь при перемножении двух отрицательных или двух положительных чисел - результатом всегда будет положительное число, так что: если, то уравнение не имеет решений.

А если, то получаем два корня. Эти формулы не нужно запоминать. Главное, ты должен знать и помнить всегда, что не может быть меньше.

Давай попробуем решить несколько примеров.

Пример 5:

Решите уравнение

Теперь осталось извлечь корень из левой и правой части. Ведь ты помнишь как извлекать корни?

Ответ:

Никогда не забывай про корни с отрицательным знаком!!!

Пример 6:

Решите уравнение

Ответ:

Пример 7:

Решите уравнение

Ой! Квадрат числа не может быть отрицательным, а значит у уравнения

нет корней!

Для таких уравнений, в которых нет корней, математики придумали специальный значок - (пустое множество). И ответ можно записать так:

Ответ:

Таким образом, данное квадратное уравнение имеет два корня. Здесь нет никаких ограничений, так как корень мы не извлекали.
Пример 8:

Решите уравнение

Вынесем общий множитель за скобки:

Таким образом,

У этого уравнения два корня.

Ответ:

Самый простой тип неполных квадратных уравнений (хотя они все простые, не так ли?). Очевидно, что данное уравнение всегда имеет только один корень:

Здесь обойдемся без примеров.

Решение полных квадратных уравнений

Напоминаем, что полное квадратное уравнение, это уравнение вида уравнение где

Решение полных квадратных уравнений немного сложнее (совсем чуть-чуть), чем приведенных.

Запомни, любое квадратное уравнение можно решить с помощью дискриминанта! Даже неполное.

Остальные способы помогут сделать это быстрее, но если у тебя возникают проблемы с квадратными уравнениями, для начала освой решение с помощью дискриминанта.

1. Решение квадратных уравнений с помощью дискриминанта.

Решение квадратных уравнений этим способом очень простое, главное запомнить последовательность действий и пару формул.

Если, то уравнение имеет корняНужно особое внимание обратить на шаг. Дискриминант () указывает нам на количество корней уравнения.

  • Если, то формула на шаге сократится до. Таким образом, уравнение будет иметь всего корень.
  • Если, то мы не сможем извлечь корень из дискриминанта на шаге. Это указывает на то, что уравнение не имеет корней.

Вернемся к нашим уравнениям и рассмотрим несколько примеров.

Пример 9:

Решите уравнение

Шаг 1 пропускаем.

Шаг 2.

Находим дискриминант:

А значит уравнение имеет два корня.

Шаг 3.

Ответ:

Пример 10:

Решите уравнение

Уравнение представлено в стандартном виде, поэтому Шаг 1 пропускаем.

Шаг 2.

Находим дискриминант:

А значит уравнение имеет один корень.

Ответ:

Пример 11:

Решите уравнение

Уравнение представлено в стандартном виде, поэтому Шаг 1 пропускаем.

Шаг 2.

Находим дискриминант:

Азначит мы не сможем извлечь корень из дискриминанта. Корней уравнения не существует.

Теперь мы знаем, как правильно записывать такие ответы.

Ответ: Корней нет

2. Решение квадратных уравнений с помощью теоремы Виета.

Если ты помнишь, то есть такой тип уравнений, которые называются приведенными (когда коэффициент а равен):

Такие уравнения очень просто решать, используя теорему Виета:

Сумма корней приведенного квадратного уравнения равна, а произведение корней равно.

Пример 12:

Решите уравнение

Это уравнение подходит для решения с использованием теоремы Виета, т.к. .

Сумма корней уравнения равна, т.е. получаем первое уравнение:

А произведение равно:

Составим и решим систему:

  • и. Сумма равна;
  • и. Сумма равна;
  • и. Сумма равна.

и являются решением системы:

Ответ: ; .

Пример 13:

Решите уравнение

Ответ:

Пример 14:

Решите уравнение

Уравнение приведенное, а значит:

Ответ:

КВАДРАТНЫЕ УРАВНЕНИЯ. СРЕДНИЙ УРОВЕНЬ

Что такое квадратное уравнение?

Другими словами, квадратное уравнение - это уравнение вида, где - неизвестное, - некоторые числа, причем.

Число называют старшим или первым коэффициентом квадратного уравнения, - вторым коэффициентом , а - свободным членом .

Почему? Потому что если, уравнение сразу станет линейным, т.к. пропадет.

При этом и могут быть равны нулю. В этом стулчае уравнение называют неполным. Если же все слагаемые на месте, то есть, уравнение - полное.

Решения различных типов квадратных уравнений

Методы решения неполных квадратных уравнений:

Для начала разберем методы решений неполных квадратных уравнений - они проще.

Можно выделить типа таких уравнений:

I. , в этом уравнении коэффициент и свободный член равны.

II. , в этом уравнении коэффициент равен.

III. , в этом уравнении свободный член равен.

Теперь рассмотрим решение каждого из этих подтипов.

Очевидно, что данное уравнение всегда имеет только один корень:

Число, возведенное в квадрат, не может быть отрицательным, ведь при перемножении двух отрицательных или двух положительных чисел результатом всегда будет положительное число. Поэтому:

если, то уравнение не имеет решений;

если, имеем учаем два корня

Эти формулы не нужно запоминать. Главное помнить, что не может быть меньше.

Примеры:

Решения:

Ответ:

Никогда не забывай про корни с отрицательным знаком!

Квадрат числа не может быть отрицательным, а значит у уравнения

нет корней.

Чтобы коротко записать, что у задачи нет решений, используем значок пустого множества.

Ответ:

Итак, это уравнение имеет два корня: и.

Ответ:

Вынесем общим множитель за скобки:

Произведение равно нулю, если хотя бы один из множителей равен нулю. А это значит, что уравнение имеет решение, когда:

Итак, данное квадратное уравнение имеет два корня: и.

Пример:

Решите уравнение.

Решение:

Разложим левую часть уравнения на множители и найдем корни:

Ответ:

Методы решения полных квадратных уравнений:

1. Дискриминант

Решать квадратные уравнения этим способом легко, главное запомнить последовательность действий и пару формул. Запомни, любое квадратное уравнение можно решить с помощью дискриминанта! Даже неполное.

Ты заметил корень из дискриминанта в формуле для корней? Но ведь дискриминант может быть отрицательным. Что делать? Нужно особое внимание обратить на шаг 2. Дискриминант указывает нам на количество корней уравнения.

  • Если, то уравнение имеет корня:
  • Если, то уравнение имеет одинаковых корня, а по сути, один корень:

    Такие корни называются двукратными.

  • Если, то корень из дискриминанта не извлекается. Это указывает на то, что уравнение не имеет корней.

Почему возможно разное количество корней? Обратимся к геометрическому смыслу квадратного уравнения. График функции является параболой:

В частном случае, которым является квадратное уравнение, . А это значит, что корни квадратного уравнения, это точки пересечения с осью абсцисс (ось). Парабола может вообще не пересекать ось, либо пересекать ее в одной (когда вершина параболы лежит на оси) или двух точках.

Кроме того, за направление ветвей параболы отвечает коэффициент. Если, то ветви параболы направлены вверх, а если - то вниз.

Примеры:

Решения:

Ответ:

Ответ: .

Ответ:

А значит, решений нет.

Ответ: .

2. Теорема Виета

Использовать теорему Виета очень легко: нужно всего лишь подобрать такую пару чисел, произведение которых равно свободному члену уравнения, а сумма - второму коэффициенту, взятому с обратным знаком.

Важно помнить, что теорему Виета можно применять только в приведенных квадратных уравнениях ().

Рассмотрим несколько примеров:

Пример №1:

Решите уравнение.

Решение:

Это уравнение подходит для решения с использованием теоремы Виета, т.к. . Остальные коэффициенты: ; .

Сумма корней уравнения равна:

А произведение равно:

Подберем такие пары чисел, произведение которых равно, и проверим, равна ли их сумма:

  • и. Сумма равна;
  • и. Сумма равна;
  • и. Сумма равна.

и являются решением системы:

Таким образом, и - корни нашего уравнения.

Ответ: ; .

Пример №2:

Решение:

Подберем такие пары чисел, которые в произведении дают, а затем проверим, равна ли их сумма:

и: в сумме дают.

и: в сумме дают. Чтобы получить, достаточно просто поменять знаки предполагаемых корней: и, ведь произведение.

Ответ:

Пример №3:

Решение:

Свободный член уравнения отрицательный, а значит и произведение корней - отрицательное число. Это возможно только если один из корней отрицательный, а другой - положительный. Поэтому сумма корней равна разности их модулей .

Подберем такие пары чисел, которые в произведении дают, и разность которых равна:

и: их разность равна - не подходит;

и: - не подходит;

и: - не подходит;

и: - подходит. Остается только вспомнить, что один из корней отрицательный. Так как их сумма должна равняться, то отрицательным должен быть меньший по модулю корень: . Проверяем:

Ответ:

Пример №4:

Решите уравнение.

Решение:

Уравнение приведенное, а значит:

Свободный член отрицателен, а значит и произведение корней отрицательно. А это возможно только тогда, когда один корень уравнения отрицателен, а другой положителен.

Подберем такие пары чисел, произведение которых равно, а затем определим, какой корней должен иметь отрицательный знак:

Очевидно, что под первое условие подходят только корни и:

Ответ:

Пример №5:

Решите уравнение.

Решение:

Уравнение приведенное, а значит:

Сумма корней отрицательна, а это значит что, по крайней мере, один из корней отрицателен. Но поскольку их произведение положительно, то значит оба корня со знаком минус.

Подберем такие пары чисел, произведение которых равно:

Очевидно, что корнями являются числа и.

Ответ:

Согласись, это очень удобно - придумывать корни устно, вместо того, чтобы считать этот противный дискриминант. Старайся использовать теорему Виета как можно чаще.

Но теорема Виета нужна для того, чтобы облегчить и ускорить нахождение корней. Чтобы тебе было выгодно ее использовать, ты должен довести действия до автоматизма. А для этого порешай-ка еще пяток примеров. Но не жульничай: дискриминант использовать нельзя! Только теорему Виета:

Решения заданий для самостоятельной работы:

Задание 1. {{x}^{2}}-8x+12=0

По теореме Виета:

Как обычно, начинаем подбор с произведения:

Не подходит, так как сумма;

: сумма - то что надо.

Ответ: ; .

Задание 2.

И снова наша любимая теорема Виета : в сумме должно получиться, а произведение равно.

Но так как должно быть не, а, меняем знаки корней: и (в сумме).

Ответ: ; .

Задание 3.

Хм… А где тут что?

Надо перенести все слагаемые в одну часть:

Сумма корней равна, произведение.

Так, стоп! Уравнение-то не приведенное. Но теорема Виета применима только в приведенных уравнениях. Так что сперва нужно уравнение привести. Если привести не получается, бросай эту затею и решай другим способом (например, через дискриминант). Напомню, что привести квадратное уравнение - значит сделать старший коэффициент равным:

Отлично. Тогда сумма корней равна, а произведение.

Тут подобрать проще простого: ведь - простое число (извини за тавтологию).

Ответ: ; .

Задание 4.

Свободный член отрицательный. Что в этом особенного? А то, что корни будут разных знаков. И теперь во время подбора проверяем не сумму корней, а разность их модулей: эта разность равна, а произведение.

Итак, корни равны и, но один из них с минусом. Теорема Виета говорит нам, что сумма корней равна второму коэффициенту с обратным знаком, то есть. Значит, минус будет у меньшего корня: и, так как.

Ответ: ; .

Задание 5.

Что нужно сделать первым делом? Правильно, привести уравнение:

Снова: подбираем множители числа, и их разность должна равняться:

Корни равны и, но один из них с минусом. Какой? Их сумма должна быть равна, значит, с минусом будет больший корень.

Ответ: ; .

Подведу итог:
  1. Теорема Виета используется только в приведенных квадратных уравнениях.
  2. Используя теорему Виета можно найти корни подбором, устно.
  3. Если уравнение не приводится или не нашлось ни одной подходящей пары множителей свободного члена, значит целых корней нет, и нужно решать другим способом (например, через дискриминант).

3. Метод выделения полного квадрата

Если все слагаемые, содержащие неизвестное, представить в виде слагаемых из формул сокращенного умножения - квадрата суммы или разности - то после замены переменных можно представить уравнение в виде неполного квадратного уравнения типа.

Например:

Пример 1:

Решите уравнение: .

Решение:

Ответ:

Пример 2:

Решите уравнение: .

Решение:

Ответ:

В общем виде преобразование будет выглядеть так:

Отсюда следует: .

Ничего не напоминает? Это же дискриминант! Вот именно, формулу дискриминанта так и получили.

КВАДРАТНЫЕ УРАВНЕНИЯ. КОРОТКО О ГЛАВНОМ

Квадратное уравнение - это уравнение вида, где - неизвестное, - коэффициенты квадратного уравнения, - свободный член.

Полное квадратное уравнение - уравнение, в котором коэффициенты, не равны нулю.

Приведенное квадратное уравнение - уравнение, в котором коэффициент, то есть: .

Неполное квадратное уравнение - уравнение, в котором коэффициент и или свободный член с равны нулю:

  • если коэффициент, уравнение имеет вид: ,
  • если свободный член, уравнение имеет вид: ,
  • если и, уравнение имеет вид: .

1. Алгоритм решения неполных квадратных уравнений

1.1. Неполное квадратное уравнение вида, где, :

1) Выразим неизвестное: ,

2) Проверяем знак выражения:

  • если, то уравнение не имеет решений,
  • если, то уравнение имеет два корня.

1.2. Неполное квадратное уравнение вида, где, :

1) Вынесем общим множитель за скобки: ,

2) Произведение равно нулю, если хотя бы один из множителей равен нулю. Следовательно, уравнение имеет два корня:

1.3. Неполное квадратное уравнение вида, где:

Данное уравнение всегда имеет только один корень: .

2. Алгоритм решения полных квадратных уравнений вида где

2.1. Решение с помощью дискриминанта

1) Приведем уравнение к стандартному виду: ,

2) Вычислим дискриминант по формуле: , который указывает на количество корней уравнения:

3) Найдем корни уравнения:

  • если, то уравнение имеет корня, которые находятся по формуле:
  • если, то уравнение имеет корень, который находится по формуле:
  • если, то уравнение не имеет корней.

2.2. Решение с помощью теоремы Виета

Сумма корней приведенного квадратного уравнения (уравнения вида, где) равна, а произведение корней равно, т.е. , а.

2.3. Решение методом выделения полного квадрата

С помощью этой математической программы вы можете решить квадратное уравнение .

Программа не только даёт ответ задачи, но и отображает процесс решения двумя способами:
- с помощью дискриминанта
- с помощью теоремы Виета (если возможно).

Причём, ответ выводится точный, а не приближенный.
Например, для уравнения \(81x^2-16x-1=0\) ответ выводится в такой форме:

$$ x_1 = \frac{8+\sqrt{145}}{81}, \quad x_2 = \frac{8-\sqrt{145}}{81} $$ а не в такой: \(x_1 = 0,247; \quad x_2 = -0,05 \)

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Если вы не знакомы с правилами ввода квадратного многочлена, рекомендуем с ними ознакомиться.

Правила ввода квадратного многочлена

В качестве переменной может выступать любая латинсая буква.
Например: \(x, y, z, a, b, c, o, p, q \) и т.д.

Числа можно вводить целые или дробные.
Причём, дробные числа можно вводить не только в виде десятичной, но и в виде обыкновенной дроби.

Правила ввода десятичных дробей.
В десятичных дробях дробная часть от целой может отделяться как точкой так и запятой.
Например, можно вводить десятичные дроби так: 2.5x - 3,5x^2

Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.

Знаменатель не может быть отрицательным.

При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Целая часть отделяется от дроби знаком амперсанд: &
Ввод: 3&1/3 - 5&6/5z +1/7z^2
Результат: \(3\frac{1}{3} - 5\frac{6}{5} z + \frac{1}{7}z^2 \)

При вводе выражения можно использовать скобки . В этом случае при решении квадратного уравнения введённое выражение сначала упрощается.
Например: 1/2(y-1)(y+1)-(5y-10&1/2)


=0
Решить

Обнаружено что не загрузились некоторые скрипты, необходимые для решения этой задачи, и программа может не работать.
Возможно у вас включен AdBlock.
В этом случае отключите его и обновите страницу.

У вас в браузере отключено выполнение JavaScript.
Чтобы решение появилось нужно включить JavaScript.
Вот инструкции, как включить JavaScript в вашем браузере .

Т.к. желающих решить задачу очень много, ваш запрос поставлен в очередь.
Через несколько секунд решение появится ниже.
Пожалуйста подождите сек...


Если вы заметили ошибку в решении , то об этом вы можете написать в Форме обратной связи .
Не забудте указать какую задачу вы решаете и что вводите в поля .



Наши игры, головоломки, эмуляторы:

Немного теории.

Квадратное уравнение и его корни. Неполные квадратные уравнения

Каждое из уравнений
\(-x^2+6x+1,4=0, \quad 8x^2-7x=0, \quad x^2-\frac{4}{9}=0 \)
имеет вид
\(ax^2+bx+c=0, \)
где x - переменная, a, b и c - числа.
В первом уравнении a = -1, b = 6 и c = 1,4, во втором a = 8, b = -7 и c = 0, в третьем a = 1, b = 0 и c = 4/9. Такие уравнения называют квадратными уравнениями .

Определение.
Квадратным уравнением называется уравнение вида ax 2 +bx+c=0, где x - переменная, a, b и c - некоторые числа, причём \(a \neq 0 \).

Числа a, b и c - коэффициенты квадратного уравнения. Число a называют первым коэффициентом, число b - вторым коэффициентом и число c - свободным членом.

В каждом из уравнений вида ax 2 +bx+c=0, где \(a \neq 0 \), наибольшая степень переменной x - квадрат. Отсюда и название: квадратное уравнение.

Заметим, что квадратное уравнение называют ещё уравнением второй степени, так как его левая часть есть многочлен второй степени.

Квадратное уравнение, в котором коэффициент при x 2 равен 1, называют приведённым квадратным уравнением . Например, приведёнными квадратными уравнениями являются уравнения
\(x^2-11x+30=0, \quad x^2-6x=0, \quad x^2-8=0 \)

Если в квадратном уравнении ax 2 +bx+c=0 хотя бы один из коэффициентов b или c равен нулю, то такое уравнение называют неполным квадратным уравнением . Так, уравнения -2x 2 +7=0, 3x 2 -10x=0, -4x 2 =0 - неполные квадратные уравнения. В первом из них b=0, во втором c=0, в третьем b=0 и c=0.

Неполные квадратные уравнения бывают трёх видов:
1) ax 2 +c=0, где \(c \neq 0 \);
2) ax 2 +bx=0, где \(b \neq 0 \);
3) ax 2 =0.

Рассмотрим решение уравнений каждого из этих видов.

Для решения неполного квадратного уравнения вида ax 2 +c=0 при \(c \neq 0 \) переносят его свободный член в правую часть и делят обе части уравнения на a:
\(x^2 = -\frac{c}{a} \Rightarrow x_{1,2} = \pm \sqrt{ -\frac{c}{a}} \)

Так как \(c \neq 0 \), то \(-\frac{c}{a} \neq 0 \)

Если \(-\frac{c}{a}>0 \), то уравнение имеет два корня.

Если \(-\frac{c}{a} Для решения неполного квадратного уравнения вида ax 2 +bx=0 при \(b \neq 0 \) раскладывают его левую часть на множители и получают уравнение
\(x(ax+b)=0 \Rightarrow \left\{ \begin{array}{l} x=0 \\ ax+b=0 \end{array} \right. \Rightarrow \left\{ \begin{array}{l} x=0 \\ x=-\frac{b}{a} \end{array} \right. \)

Значит, неполное квадратное уравнение вида ax 2 +bx=0 при \(b \neq 0 \) всегда имеет два корня.

Неполное квадратное уравнение вида ax 2 =0 равносильно уравнению x 2 =0 и поэтому имеет единственный корень 0.

Формула корней квадратного уравнения

Рассмотрим теперь, как решают квадратные уравнения, в которых оба коэффициента при неизвестных и свободный член отличны от нуля.

Решим квадратне уравнение в общем виде и в результате получим формулу корней. Затем эту формулу можно будет применять при решении любого квадратного уравнения.

Решим квадратное уравнение ax 2 +bx+c=0

Разделив обе его части на a, получим равносильное ему приведённое квадратное уравнение
\(x^2+\frac{b}{a}x +\frac{c}{a}=0 \)

Преобразуем это уравнение, выделив квадрат двучлена:
\(x^2+2x \cdot \frac{b}{2a}+\left(\frac{b}{2a}\right)^2- \left(\frac{b}{2a}\right)^2 + \frac{c}{a} = 0 \Rightarrow \)

\(x^2+2x \cdot \frac{b}{2a}+\left(\frac{b}{2a}\right)^2 = \left(\frac{b}{2a}\right)^2 - \frac{c}{a} \Rightarrow \) \(\left(x+\frac{b}{2a}\right)^2 = \frac{b^2}{4a^2} - \frac{c}{a} \Rightarrow \left(x+\frac{b}{2a}\right)^2 = \frac{b^2-4ac}{4a^2} \Rightarrow \) \(x+\frac{b}{2a} = \pm \sqrt{ \frac{b^2-4ac}{4a^2} } \Rightarrow x = -\frac{b}{2a} + \frac{ \pm \sqrt{b^2-4ac} }{2a} \Rightarrow \) \(x = \frac{ -b \pm \sqrt{b^2-4ac} }{2a} \)

Подкоренное выражение называют дискриминантом квадратного уравнения ax 2 +bx+c=0 («дискриминант» по латыни - различитель). Его обозначают буквой D, т.е.
\(D = b^2-4ac \)

Теперь, используя обозначение дискриминанта, перепишем формулу для корней квадратного уравнения:
\(x_{1,2} = \frac{ -b \pm \sqrt{D} }{2a} \), где \(D= b^2-4ac \)

Очевидно, что:
1) Если D>0, то квадратное уравнение имеет два корня.
2) Если D=0, то квадратное уравнение имеет один корень \(x=-\frac{b}{2a} \).
3) Если D Таким образом, в зависимости от значения дискриминанта квадратное уравнение может иметь два корня (при D > 0), один корень (при D = 0) или не иметь корней (при D При решении квадратного уравнения по данной формуле целесообразно поступать следующим образом:
1) вычислить дискриминант и сравнить его с нулём;
2) если дискриминант положителен или равен нулю, то воспользоваться формулой корней, если дискриминант отрицателен, то записать, что корней нет.

Теорема Виета

Приведённое квадратное уравнение ax 2 -7x+10=0 имеет корни 2 и 5. Сумма корней равна 7, а произведение равно 10. Мы видим, что сумма корней равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену. Таким свойством обладает любое приведённое квадратное уравнение, имеющее корни.

Сумма корней приведённого квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.

Т.е. теорема Виета утверждает, что корни x 1 и x 2 приведённого квадратного уравнения x 2 +px+q=0 обладают свойством:
\(\left\{ \begin{array}{l} x_1+x_2=-p \\ x_1 \cdot x_2=q \end{array} \right. \)

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.