Теорема бернулли теория вероятности примеры. Повторные независимые испытания схема и формула бернулли

1

1. Боголюбов А.Н. Математики. Механики: биографический справочник. – Киев: Наукова думка, 1983.

2. Гулай Т.А., Долгополова А.Ф., Литвин Д.Б. Анализ и оценка приоритетности разделов математических дисциплин, изучаемых студентами экономических специальностей аграрных вузов // Вестник АПК Ставрополья. – 2013. – № 1 (9). – С. 6-10.

3. Долгополова А.Ф., Гулай Т.А., Литвин Д.Б. Перспективы применения математических методов в экономических исследованиях // Аграрная наука, творчество, рост. – 2013. – С. 255-257.

В математике довольно часто встречаются задачи, в которых присутствует большое количество повторений одного и того же условия, испытания или эксперимента. Результатом каждого испытания будет считаться совершенно другой результат от наступившего предыдущего. Зависимости в результатах так же наблюдаться не будет. В качестве результата испытания можно различить несколько возможностей элементарных последствий: возникновение события (А) или же возникновение события, которое дополняет А.

Тогда попробуем предположить, что вероятность возникновения события Р(А) регулярна и равна р (0<р<1).

Примерами такого испытания может быть большое количество задач, таких как подбрасывание монетки, извлечение из темного мешка черно-белых шаров или же рождение черно-белых кроликов.

Такой эксперимент называют конфигурацией повторных независимых испытаний или схемой Бернулли.

Якоб Бернулли родился в семье фармацевта. Отец пытался наставить сына на медицинский путь, но Я. Бернулли увлекся математикой самостоятельно, а позже это стало его профессией. Ему принадлежат различные трофеи в работах на темы по теории вероятностей и чисел, рядов и дифференциальном исчислении. Изучив теорию вероятности по одной изработ Гюйгенса «О расчетах в азартной игре», Якоб увлекся этим. В данной книге не было даже четкого определения концепции «вероятность». Именно Я. Бернулли ввел в математику большую часть современных понятий теории вероятностей. Так же Бернулли первымвыразил свой вариант закона больших чисел. Имя Якоба носят различные работы, теоремы и схемы: «Числа Бернулли», «Многочлен Бернулли», «Дифференциальное уравнение Бернулли», «Распределение Бернулли» и «Уравнение Бернулли».

Вернемся к повторениям. Как уже было указано выше, то в итоге различных испытаний возможны два исхода: либо появится событие А, либо противоположность этому событию. Сама схема Бернулли обозначает производство n-го количества типовых вольных опытов, и в каждом из этих опытов может появится нужное нам событие А (вероятность этого события известна: Р(А)=р), вероятность противоположного события событию А обозначена за q=P(A)=1-p. Требуется определение вероятности, что при проведении испытаний неизвестного количества событие А появится ровно k раз.

Важно помнить о главном условии при решении задач при помощи схемы Бернулли-это постоянство. Без него схема теряет всякий смысл.

Этой схемой можно пользоваться для решения задач различного уровня сложности: от простых (та же монетка) до сложных (проценты). Однако чаще схема Бернулли применяется в решении таких задач, которые связаны с контролем свойств различной продукции и уверенности в самых разных механизмах. Только для решения задачи до начала работы должны быть известны заранее все условия и значения.

Не все задачи в теории вероятностей сводятся к постоянству в условиях. Даже если взять в пример черные и белые шары в темном мешке: при вытягивании одного шара соотношение количества и цветов шариков в мешке изменилось, а значит изменилась и сама вероятность.

Однако если же условия у нас постоянны, то мы можем точно определить требуемую от нас вероятность того, что событие А произойдет ровно kраз из n возможных.

Этот факт Якоб Бернулли скомпоновал в теорему, которую впоследствии стали называть его именем. «Теорема Бернулли» является одной из главных теорем в теории вероятности. Впервые ее опубликовали в труде Я.Бернулли «Искусство предположений». Что же представляет из себя эта теорема? «Если вероятность р наступления события А в каждом испытании постоянна, то вероятность Рk,n того, что событие наступит k раз в n испытаниях, не зависящих друг от друга равна: , где q=1-p».

В доказательство действенности формулы можно привести задачи.

Задача № 1:

Из n стеклянных банок за месяц хранения k разбиваются. Наугад взяли m банок. Найти вероятность, что среди этих банок l не разобьются. n=250, k=10, m=8,l=4.

Решение: Имеем схему Бернулли со значениями:

p=10/250=0,04 (вероятность того, что банки разобьются);

n=8 (число испытаний);

k=8-4=4 (количество разбитых банок).

Используем формулу Бернулли

Получили:

Ответ: 0,0141

Задача № 2:

Вероятность изготовления неисправного изделия на производстве равна 0,2. Найти вероятность того, что из 10 изготовленных на этом производстве изделий ровно k должны быть исправны. Выполнить решение для k = 0, 1, 10.

Нам интересно событие A - изготовление исправных деталей, случающееся раз в час с вероятностью p=1-0,2=0,8. Надо найти вероятность того, что данное событие совершится k раз. Событию A противоположно событие «не A», т.е. изготовление неисправного изделия.

Следовательно, мы имеем: n=10; p=0,8; q=0,2.

В итоге найдем вероятность того, что из 10 изготовленных изделий все изделия неисправны (k=0), что одно изделие исправно (k=1), что неисправных нет вообще (k=10):

В заключении хотелось бы отметить, что в современности многие ученые пытаются доказать, что «формула Бернулли» не соответствует законам природы и можно решить задачи, не применяя ее к использованию. Конечно это возможно, большинство задач по теории вероятности возможно выполнить без формулы Бернулли, главное не запутаться в больших объемах цифр.

Библиографическая ссылка

Хомутова Е.А., Калиниченко В.А. ФОРМУЛА БЕРНУЛЛИ В ТЕОРИИ ВЕРОЯТНОСТИ // Международный студенческий научный вестник. – 2015. – № 3-4.;
URL: http://eduherald.ru/ru/article/view?id=14141 (дата обращения: 12.03.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Производится n опытов по схеме Бернулли с вероятностью успеха p . Пусть X - число успехов. Случайная величина X имеет область значений {0,1,2,...,n}. Вероятности этих значений можно найти по формуле: , где C m n - число сочетаний из n по m .
Ряд распределения имеет вид:

x 0 1 ... m n
p (1-p) n np(1-p) n-1 ... C m n p m (1-p) n-m p n
Этот закон распределения называется биноминальным .

Назначение сервиса . Онлайн-калькулятор используется для построения биноминальным ряда распределения и вычисления всех характеристик ряда: математического ожидания, дисперсии и среднеквадратического отклонения. Отчет с решением оформляется в формате Word (пример).

Число испытаний: n = , Вероятность p =
При малой вероятности p и большом количестве n (np формула Пуассона.

Видеоинструкция

Схема испытаний Бернулли

Числовые характеристики случайной величины, распределенной по биноминальному закону

Математическое ожидание случайной величины Х, распределенной по биноминальному закону.
M[X]=np

Дисперсия случайной величины Х, распределенной по биноминальному закону.
D[X]=npq

Пример №1 . Изделие может оказаться дефектным с вероятностью р = 0.3 каждое. Из партии выбирают три изделия. Х – число дефектных деталей среди отобранных. Найти (все ответы вводить в виде десятичных дробей): а) ряд распределения Х; б) функцию распределения F(x) .
Решение . Случайная величина X имеет область значений {0,1,2,3}.
Найдем ряд распределения X.
P 3 (0) = (1-p) n = (1-0.3) 3 = 0.34
P 3 (1) = np(1-p) n-1 = 3(1-0.3) 3-1 = 0.44

P 3 (3) = p n = 0.3 3 = 0.027

x i 0 1 2 3
p i 0.34 0.44 0.19 0.027

Математическое ожидание находим по формуле M[X]= np = 3*0.3 = 0.9
Проверка: m = ∑x i p i .
Математическое ожидание M[X] .
M[x] = 0*0.34 + 1*0.44 + 2*0.19 + 3*0.027 = 0.9
Дисперсию находим по формуле D[X]=npq = 3*0.3*(1-0.3) = 0.63
Проверка: d = ∑x 2 i p i - M[x] 2 .
Дисперсия D[X] .
D[X] = 0 2 *0.34 + 1 2 *0.44 + 2 2 *0.19 + 3 2 *0.027 - 0.9 2 = 0.63
Среднее квадратическое отклонение σ(x) .

Функция распределения F(X) .
F(xF(0F(1F(2F(x>3) = 1
  1. Вероятность появления события в одном испытании равна 0.6 . Производится 5 испытаний. Составить закон распределения случайной величины Х – числа появлений события.
  2. Составить закон распределения случайной величины Х числа попаданий при четырех выстрелах, если вероятность попадания в цель при одном выстреле равна 0.8 .
  3. Монету подбрасывают 7 раз. Найти математическое ожидание и дисперсию числа появлений герба. Примечание: здесь вероятность появление герба равна p = 1/2 (т.к. у монеты две стороны).

Пример №2 . Вероятность появления события в отдельном испытании равна 0.6 . Применяя теорему Бернулли, определите число независимых испытаний, начиная с которого вероятность отклонения частоты события от его вероятности по абсолютной величине меньше 0.1 , больше 0.97 . (Ответ: 801)

Пример №3 . Студенты выполняют контрольную работу в классе информатики. Работа состоит из трех задач. Для получения хорошей оценки нужно найти правильные ответы не меньше чем на две задачи. К каждой задаче дается 5 ответов из которых только одна правильная. Студент выбирает ответ наугад. Какая вероятность того, что он получит хорошую оценку?
Решение . Вероятность правильно ответить на вопрос: p=1/5=0.2; n=3.
Эти данные необходимо ввести в калькулятор. В ответ см. для P(2)+P(3).

Пример №4 . Вероятность попадания стрелка в мишень при одном выстреле равна (m+n)/(m+n+2) . Производится n+4 выстрела. Найти вероятность того, что он промахнется не более двух раз.

Примечание . Вероятность того, что он промахнется не более двух раз включает в себя следующие события: ни разу не промахнется P(4), промахнется один раз P(3), промахнется два раза P(2).

Пример №5 . Определите распределение вероятностей числа отказавших самолётов, если влетает 4 машины. Вероятность безотказной работы самолета Р=0.99 . Число отказавших в каждом вылете самолётов распределено по биноминальному закону.

Не будем долго размышлять о высоком — начнем сразу с определения.

Схема Бернулли — это когда производится n однотипных независимых опытов, в каждом из которых может появиться интересующее нас событие A , причем известна вероятность этого события P (A ) = p. Требуется определить вероятность того, что при проведении n испытаний событие A появится ровно k раз.

Задачи, которые решаются по схеме Бернулли, чрезвычайно разнообразны: от простеньких (типа «найдите вероятность, что стрелок попадет 1 раз из 10») до весьма суровых (например, задачи на проценты или игральные карты). В реальности эта схема часто применяется для решения задач, связанных с контролем качества продукции и надежности различных механизмов, все характеристики которых должны быть известны до начала работы.

Вернемся к определению. Поскольку речь идет о независимых испытаниях, и в каждом опыте вероятность события A одинакова, возможны лишь два исхода:

  1. A — появление события A с вероятностью p;
  2. «не А» — событие А не появилось, что происходит с вероятностью q = 1 − p.

Важнейшее условие, без которого схема Бернулли теряет смысл — это постоянство. Сколько бы опытов мы ни проводили, нас интересует одно и то же событие A , которое возникает с одной и той же вероятностью p.

Между прочим, далеко не все задачи в теории вероятностей сводятся к постоянным условиям. Об этом вам расскажет любой грамотный репетитор по высшей математике. Даже такое нехитрое дело, как вынимание разноцветных шаров из ящика, не является опытом с постоянными условиями. Вынули очередной шар — соотношение цветов в ящике изменилось. Следовательно, изменились и вероятности.

Если же условия постоянны, можно точно определить вероятность того, что событие A произойдет ровно k раз из n возможных. Сформулируем этот факт в виде теоремы:

Теорема Бернулли. Пусть вероятность появления события A в каждом опыте постоянна и равна р. Тогда вероятность того, что в n независимых испытаниях событие A появится ровно k раз, рассчитывается по формуле:

где C n k — число сочетаний, q = 1 − p.

Эта формула так и называется: формула Бернулли. Интересно заметить, что задачи, приведенные ниже, вполне решаются без использования этой формулы. Например, можно применить формулы сложения вероятностей. Однако объем вычислений будет просто нереальным.

Задача. Вероятность выпуска бракованного изделия на станке равна 0,2. Определить вероятность того, что в партии из десяти выпущенных на данном станке деталей ровно k будут без брака. Решить задачу для k = 0, 1, 10.

По условию, нас интересует событие A выпуска изделий без брака, которое случается каждый раз с вероятностью p = 1 − 0,2 = 0,8. Нужно определить вероятность того, что это событие произойдет k раз. Событию A противопоставляется событие «не A », т.е. выпуск бракованного изделия.

Таким образом, имеем: n = 10; p = 0,8; q = 0,2.

Итак, находим вероятность того, что в партии все детали бракованные (k = 0), что только одна деталь без брака (k = 1), и что бракованных деталей нет вообще (k = 10):

Задача. Монету бросают 6 раз. Выпадение герба и решки равновероятно. Найти вероятность того, что:

  1. герб выпадет три раза;
  2. герб выпадет один раз;
  3. герб выпадет не менее двух раз.

Итак, нас интересует событие A , когда выпадает герб. Вероятность этого события равна p = 0,5. Событию A противопоставляется событие «не A », когда выпадает решка, что случается с вероятностью q = 1 − 0,5 = 0,5. Нужно определить вероятность того, что герб выпадет k раз.

Таким образом, имеем: n = 6; p = 0,5; q = 0,5.

Определим вероятность того, что герб выпал три раза, т.е. k = 3:

Теперь определим вероятность того, что герб выпал только один раз, т.е. k = 1:

Осталось определить, с какой вероятностью герб выпадет не менее двух раз. Основная загвоздка — во фразе «не менее». Получается, что нас устроит любое k , кроме 0 и 1, т.е. надо найти значение суммы X = P 6 (2) + P 6 (3) + ... + P 6 (6).

Заметим, что эта сумма также равна (1 − P 6 (0) − P 6 (1)), т.е. достаточно из всех возможных вариантов «вырезать» те, когда герб выпал 1 раз (k = 1) или не выпал вообще (k = 0). Поскольку P 6 (1) нам уже известно, осталось найти P 6 (0):

Задача. Вероятность того, что телевизор имеет скрытые дефекты, равна 0,2. На склад поступило 20 телевизоров. Какое событие вероятнее: что в этой партии имеется два телевизора со скрытыми дефектами или три?

Интересующее событие A — наличие скрытого дефекта. Всего телевизоров n = 20, вероятность скрытого дефекта p = 0,2. Соответственно, вероятность получить телевизор без скрытого дефекта равна q = 1 − 0,2 = 0,8.

Получаем стартовые условия для схемы Бернулли: n = 20; p = 0,2; q = 0,8.

Найдем вероятность получить два «дефектных» телевизора (k = 2) и три (k = 3):

\[\begin{array}{l}{P_{20}}\left(2 \right) = C_{20}^2{p^2}{q^{18}} = \frac{{20!}}{{2!18!}} \cdot {0,2^2} \cdot {0,8^{18}} \approx 0,137\\{P_{20}}\left(3 \right) = C_{20}^3{p^3}{q^{17}} = \frac{{20!}}{{3!17!}} \cdot {0,2^3} \cdot {0,8^{17}} \approx 0,41\end{array}\]

Очевидно, P 20 (3) > P 20 (2), т.е. вероятность получить три телевизора со скрытыми дефектами больше вероятности получить только два таких телевизора. Причем, разница неслабая.

Небольшое замечание по поводу факториалов. Многие испытывают смутное ощущение дискомфорта, когда видят запись «0!» (читается «ноль факториал»). Так вот, 0! = 1 по определению.

P . S . А самая большая вероятность в последней задаче — это получить четыре телевизора со скрытыми дефектами. Подсчитайте сами — и убедитесь.

Перед изложением третьего вопроса лекции преподаватель обозначает проблему, вызывающую необходимость рассмотрения теоремы о повторении опытов, при этом отмечая, что в изучаемом курсе теории вероятностей будет рассматриваться только частная теорема, связанная с повторением независимых опытов, в каждом из которых событие А появляется с постоянной вероятностью.

После чего преподаватель показывает доказательство этой теоремы (вывод формулы Бернулли).

Для пояснения физической сущности рассматриваемой теоремы преподаватель использует оверхэд-проектор и подготовленные слайды.

В заключении лекции преподаватель поясняет почему распределение вероятностей появления события А в серии из n испытаний, в условиях когда они несовместны и образуют полную группу событий называют биномиальным и обращает внимание на важность знания этого распределения для решения прикладных задач.

До сих пор мы рассматривали комбинации сравнительного небольшого числа событий, когда непосредственное применение правил сложения и умножения вероятностей не вызывало больших вычислительных затруднений. Однако с увеличением числа событий или числа испытаний, в которых может появляться интересующее нас событие, изученный способ вычисления становится очень громоздким.

При этом задача решалась достаточно просто только в том случае, если опыты являлись независимыми.

Несколько опытов называются независимыми , если вероятность того или иного исхода каждого из опытов не зависит от того, какие исходы имели другие опыты.

На практике имеют место случаи, когда вероятность наступления события А во всех независимых опытах может быть либо одинаковой, либо меняться от опыта к опыту. Например, при корректировании огня после каждого выстрела вероятность попадания в цель с каждым выстрелом будет изменяться.

В случае, когда в независимых опытах вероятность наступления события от опыта к опыту изменяется, используют общую теорему о повторении опытов, а когда в независимых опытах вероятность наступления события от опыта к опыту не изменяется, используют частную теорему о повторении опытов.

В изучаемом нами курсе теории вероятностей мы рассмотрим только частную терему о повторении опытов, когда необходимо определить вероятность наступления события А в серии изnнезависимых опытов, в каждом из которых событие А появляется с одинаковой вероятностью.

Например, необходимо вычислить вероятность того, что при пяти выстрелах из орудия на постоянных установках будет получено ровно два попадания в цель, если выстрелы независимы и при каждом выстреле вероятность попадания в цель известна и не изменяется.

В случае, если составить возможные комбинации появления интересующего нас события А 1 , то получим:

Возможных комбинаций, в которых наступит событие А={получить 2 попадания при пяти выстрелах} будет 10.

Применив теорему о сумме и произведении независимых событий, будем иметь:

Увеличение числа интересующих нас событий или числа испытаний приведёт к еще большему увеличению объёма вычислительных операций, поэтому возникает задача отыскания менее трудоёмких способов расчёта.

Постановка задачи:

Пусть предполагается в одинаковых условиях произвести nнезависимых испытаний, результатом каждого из которых может быть наступление либо событияА , либо ему противоположного.

Обозначим через А 1 наступление событияА при первом испытании,А 2 – при втором испытании,А n – при последнем испытании.

В силу постоянства условий испытания:

Р(А 1 ) = Р(А 2 ) = … Р(А n ) = р

Нас интересует вероятность того, что событие А при nиспытаниях наступит ровноmраз, а в оставшихсяn-mиспытаниях – не наступит (т.е. наступит противоположное событию А событие -).

Допустим, что интересующее нас событие А наступает подрядmраз, начиная с первого, т.е. имеет место событие –Е .

Е= А 1 А 2 … А m -1 А m
(1)

m n - m

По условию повторения испытаний, события, входящие в данную комбинацию, независимы, при этом вероятности наступления событий А 1 ,А 2 ,… А m -1 , А m одинаковы и равныр: Р(А 1 ) = Р(А 2 ) =…= Р(А m ) = р, а вероятности не наступления событий
так же одинаковы и равныq =1-р: .

Применяя правило умножения вероятностей для независимых событий к выражению 1 получим:

Р(Е) = Р(А 1 ) Р(А 2 ) … Р(А m -1 ) Р(А m ) Р(
= р
m (1-р) n - m = р m q n - m

В силу постоянства условий испытаний мы допустили, что интересующее нас событие А наступает подрядmраз, начиная с первого. Но событиеА вn испытаниях может наступить ровноm раз в различных последовательностях или комбинациях. При этом нам безразлично, в какой именно последовательности появляется событие А ровноm раз.

Число таких комбинаций равно числу сочетаний изnэлементов поm .

Так как эти комбинации событий (подобные комбинации Е) несовместны и нас не интересует последовательность наступления события А в испытании ровноm раз, то обозначив интересующую нас вероятность черезР m , получим:

Р m =
р
m (1-р) n - m =
=

где
- число сочетаний изn элементов поm .

Данная формула носит имя формулы Бернулли.

Формула Бернулли позволяет получить ответ на вопрос: какова вероятность того, что при повторении nнезависимых испытаний некоторое событиеА наступает ровноm раз, если в каждом из этих испытаний вероятность наступления событияА постоянна и равнаР(А) = р.

Приведенная формула Бернулли имеет исключительно важное значение в теории вероятностей по той причине, что она связана с повторением испытаний в одинаковых условиях, т.е. с такими условиями, в которых как раз и проявляются законы теории вероятностей.

Заключение по лекции:

В лекции мы рассмотрели принципиальные вопросы теории вероятностей применительно к случайным величинам, ввели основной понятийный аппарат, необходимый для дальнейшего изучения дисциплины: определение случайной величины, их классификацию; понятия закона распределения и его формы для различных типов случайной величины.

В ходе подготовки к последующим лекциям и практическим занятиям вы должны самостоятельно при углубленном изучении рекомендованной литературы и решения предложенных задач дополнить свои конспекты лекций.

Кроме того, на последующих занятиях мы будем изучать теоремы и зависимости, позволяющие определить вероятность появления случайной величины требуемое число раз или на определенном интервале, например вероятность попадания в цель.

Изучить:

    Вентцель Е.С. Теория вероятностей. Учебник. Издание восьмое, стереотипное. – М.: Высшая школа, 2002 г. - 575 с. – стр. 67-78, 80-84

    Вентцель Е.С., Овчаров Л.А.. Теория вероятностей и ее инженерные приложения. Учебное пособие. Издание третье, переработанное и дополненное. – М.: «Академия», 2003 г. – 464 с. – стр. 73-93

    Гмурман В.Е. Теория вероятностей и математическая статистика. Учебное пособие. Издание десятое, стереотипное.-М.:Высшая школа», 2004 г. – 480 с. Стр 64-73

При практическом применении теории вероятностей часто приходится встречаться с задачами, в которых один и тот же опыт или аналогичные опыты повторяются неоднократно. В результате каждого опыта может появиться или не появиться событие А , причем нас интересует не результат каждого отдельного опыта, а общее число появлений события А в результате серии опытов. Например, если производится группа выстрелов по одной и той же цели, нас интересует не результат каждого выстрела, а общее число попаданий. Такие задачи решаются достаточно просто, если опыты являются независимыми .

Определение . Независимыми относительно события А испытаниями называются такие, в которых вероятность события А в каждом испытании не зависит от исходов других испытаний.

Пример. Несколько последовательных выниманий карты из колоды представляют собой независимые опыты при условии, что вынутая карта каждый раз возвращается в колоду и карты перемешиваются; в противном случае это – зависимые опыты.

Пример . Несколько выстрелов представляют собой независимые опыты только в случае, если прицеливание производится заново перед каждым выстрелом; в случае, когда прицеливание производится один раз перед всей стрельбой или непрерывно осуществляется в процессе стрельбы (стрельба очередью, бомбометание серией), выстрелы представляют собой зависимые опыты.

Независимые испытания могут производиться в одинаковых или различных условиях. В первом случае вероятность события А во всех опытах одна и та же, во втором случае вероятность события А меняется от опыта к опыту. Первый случай связан со многими задачами теории надежности, теории стрельбы и приводит к так называемой схеме Бернулли , которая состоит в следующем:

1) проводится последовательность n независимых испытаний, в каждом из которых событие А может появиться, либо не появиться;

2) вероятность появления события А в каждом испытании постоянна и равна , как и вероятность его не появления .

Формула Бернулли, с помощью которой находится вероятность появления события А k раз в n независимых испытаниях, в каждом из которых событие А появляется с вероятностью p :

. (1)

Замечание 1 . С возрастанием n и k применение формулы Бернулли связано с вычислительными трудностями, поэтому формула (1) применяется, в основном, если k не превосходит 5 и n не велико.

Замечание 2. В связи с тем, что вероятности по форме представляют собой члены разложения бинома , распределение вероятностей вида (1) называется биномиальным распределением.

Пример . Вероятность попадания в цель при одном выстреле равна 0,8. Найти вероятность пяти попаданий при шести выстрелах.


Решение. Так как , то , кроме того и . Пользуясь формулой Бернулли, получим:

Пример . Производится четыре независимых выстрела по одной и той же цели с различных расстояний. Вероятности попадания при этих выстрелах равны соответственно:

Найти вероятности ни одного, одного, двух, трех и четырех попаданий:

Решение. Составляем производящую функцию:

Пример . Производится пять независимых выстрелов по цели, вероятность попадания в которую равна 0,2. Для разрушения цели достаточно трех попаданий. Найти вероятность того, что цель будет разрушена.

Решение. Вероятность разрушения цели вычисляем по формуле:

Пример . Производится десять независимых выстрелов по цели, вероятность попадания в которую при одном выстреле равна 0,1. Для поражения цели достаточно одного попадания. Найти вероятность поражения цели.

Решение. Вероятность хотя бы одного попадания вычисляем по формуле:

3. Локальная теорема Муавра-Лапласа

В приложениях часто приходится вычислять вероятности различных событий, связанных с числом появлений события в n испытаниях схемы Бернулли при больших значениях n . В этом случае вычисления по формуле (1) становятся затруднительными. Трудности возрастают, когда приходится ещё суммировать эти вероятности. Затруднения при вычислениях возникают также при малых значениях p или q .

Лаплас получил важную приближенную формулу для вероятности появления события А точно m раз, если - достаточно большое число, то есть при .

Локальная теорема Муавра – Лапласа . Если вероятность p появления события А в каждом испытании постоянна и отлична от нуля и единицы , , величина ограничена равномерно по m и n, то вероятность появления события А ровно m раз в n независимых испытаниях приближенно равна

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.