Строение и функции палочек и колбочек. Функции палочек и колбочек

Острота зрения и чувствительность к освещенности.

В сетчатке глаза человека содержится один тип палочек (в них – ярко-красный пигмент родопсин ), относительно равномерно воспринимающих практически весь диапазон видимого спектра (от 390 до 760 нм) и три типа колбочек (пигменты – йодопсины ), каждый из которых воспринимает свет определенной длины волны. В результате более широкого спектра поглощения родопсина палочки восприни­мают слабый свет, т. е. необходимы в темноте, колбоч­ки – при ярком свете. Таким образом, колбочки являются аппаратом дневного зрения, а палочки – суме­речного.

Палочек в сетчатке содержится больше, чем колбочек (120 10 6 и 6-7 10 6 соответственно). Распределение палочек и колбочек тоже неодинаково. Тонкие, вытянутые палочки (размеры 50 х 3 мкм) равномерно распределены по всей сетчатке, кроме центральной ямки (желтого пятна), где располагаются почти исключительно удлиненные конические колбочки (60 х 1,5 мкм). Так как в центральной ямке колбочки очень плотно упакованы (15 10 4 на 1 мм 2), этот участок отличается высокой остротой зрения (еще одна из причин). Палочковое зрение отличается меньшей остротой, так как палочки расположены менее плотно (очередная причина) и сигналы от них подвергаются конвергенции (самая главная причина), но именно это обеспечивает высокую чувствительность, необходимую для ночного зрения. Палочки предназначены воспринимать информацию об освещенности и форме предметов.

Дополнительное приспособление к ночному видению. У некоторых видов животных (коров, лошадей, особенно кошек и собак) наблю­дается свечение глаз в темноте. Это обусловлено наличием особой отража­тельной перепонки (тапетум) , лежащей на дне глаза, впереди сосудистой оболочки. Перепонка состоит из волокон, пропитанных серебристыми кристаллами, отражающими попадающий в глаз свет. Свет вторично проходит через сетчатку и фоторецепторы получают дополнительную порцию фотонов. Правда, четкость изображения при таком отражении снижается, зато повышается чувствительность.

Цветовосприятие

Каждый зрительный пиг­мент поглощает часть падающего на него света и отража­ет остальную часть. Поглощая фотон света, зритель­ный пигмент меняет свою конфигурацию, при этом осво­бождается энергия, которая используется для осуществ­ления цепи химических реакций, что и приводит к возникновению нервного импульса.

У человека обнаружены три типа колбочек , в каждом из которых содержится свой зрительный пигмент – один из трех йодопсинов , максимально чувствительный к синему, зеленому или желтому свету. Электрический сигнал на выходе колбочек того или иного типа зависит от количества квантов, возбуждающих фотопигмент. Цветовое ощущение, очевидно, определяется соотношением между нервными сигналами от каждого из этих трех типов колбочек.

Может удивить кажущееся несоответствие между тремя типами колбочковых пигментов – синего, зеленого и желтого – и тремя «основными» цветами – синим, желтым и красным. Но хотя максимумы поглощения зрительных пигментов и не совпадают с тремя основными цветами, существенного противоречия в этом нет, поскольку свет любой длины волны (как и свет, состоящий из сочетания волн разной длины) создает уникальное соотношение между уровнями возбуждения цветовых рецепторов трех типов. Такое соотношение обеспечивает нервную систему, перерабатывающую сигналы от «трехпигментной» рецепторной системы, достаточной информацией для идентификации любых световых волн видимой части спектра.

У человека и у других приматов в цветовом зрении участвуют колбочки. Что в этом отношении можно сказать о палочках?

В сетчатке человека палочки имеются только за пределами центральной ямки и играют важную роль главным образом при слабой освещенности. Это объясняется двумя обстоятельствами. Во-первых, палочки более чувствительны к свету, чем колбочки (у родопсина очень широкий спектр поглощения ). Во-вторых, в их нервных связях сильнее выражена конвергенция, чем в связях колбочек, и это обеспечивает большую возможность суммации слабых стимулов. Поскольку у человека за цветовое зрение ответственны колбочки, при очень слабом освещении мы различаем лишь оттенки черного и серого. А так как в центральной ямке имеются в основном колбочки, мы лучше воспринимаем слабый свет, попадающий на участки вне центральной ямки – туда, где популяция палочек больше. Например, небольшая звездочка на небе кажется нам ярче, если ее изображение оказывается не в самой ямке, а в непосредственной близости от нее.

Исследования цветовосприятия у животных проводятся методом выработки дифференцировочных условных рефлексов – реакций на предметы, окрашенные в разные цвета, при обя­зательном выравнивании интенсивности яркости. Таким образом было установлено, что у собак и кошек цветное зрение раз­вито слабо, у мышей и кроликов отсутствует, лошади и крупный рогатый скот способны различать красный, зеленый, синий и желтый цвета; по-видимому, это относится и к свиньям.

Курсивом и особым форматированием выделен дополнительный материал.

В 1666г. Исаак Ньютон показал, что белый свет можно разложить на ряд цветных компонентов, пропустив его сквозь призму. Каждый такой спектральный цвет является монохроматическим, т.е. не способен больше разлагаться на другие цвета. К тому времени, однако, было уже известно, что художник может воспроизвести любой спектральный цвет (например, оранжевый), смешивая две чистые краски (например, красную и желтую), каждая из которых отражает свет, отличающийся по длине волны от данного спектрального цвета. Таким образом, открытый Ньютоном факт существования бесчисленного множества цветов и убежденность художников Возрождения, что любой цвет можно получить, комбинируя три основные краски – красную, желтую и синюю, казалось, противоречили друг другу.

Это противоречие в 1802г. разрешил Томас Юнг, предположивший, что рецепторы глаза избирательно воспринимают три основных цвета: красный, желтый и синий. Согласно его теории, цветовые рецепторы каждого типа в большей или меньшей степени возбуждаются светом с любой длиной волны. Иными словами, Юнг предположил, что ощущение «оранжевого цвета» возникает в результате одновременного возбуждения «красных» и «желтых» рецепторов. Таким образом, он сумел примирить факт бесконечного многообразия спектральных цветов с выводом о возможности их воспроизведения с помощью ограниченного числа красок.

Эту трихроматическую теорию Юнга подтвердили в XIX столетии результаты многочисленных психофизических исследований Джеймса Максвелла и Германа Гельмгольца, а также более поздние данные Уильяма Раштона.

Однако прямое доказательство существования трех типов цветовых рецепторов было получено лишь в 1964г., когда Уильям Б. Маркс (совместно с Эдвардом Ф. Мак Николом) изучил спектры поглощения одиночных колбочек из сетчатки золотой рыбки. Были обнаружены три типа колбочек, которые различались по спектральным пикам поглощения световых волн и соответствовали трем зрительным пигментам. Аналогичные исследования на сетчатке человека и обезьян дали схожие результаты.

Согласно одному из принципов фотохимии, свет, состоящий из волн разной длины, стимулирует фотохимические реакции пропорционально поглощению световых волн каждой длины. Если фотон не поглощается, то никакого влияния на молекулу пигмента он не оказывает. Поглощенный фотон передает часть своей энергии молекуле пигмента. Такой процесс переноса энергии означает, что волны разной длины будут возбуждать фоторецепторную клетку (что выражается в ее спектре действия) пропорционально тому, насколько эффективно пигмент этой клетки поглощает эти волны (т.е. в соответствии с ее спектром поглощения света).

Микроспектрофотометрическое изучение колбочек золотой рыбки позволило выявить три спектра поглощения, каждый из которых соответствует определенному зрительному пигменту с характерным для него максимумом. У человека кривая для соответствующего «длинноволнового» пигмента имеет максимум примерно при 560 нм, т. е. в желтой области спектра.

Существование трех типов колбочковых пигментов было подтверждено данными о существовании трех электрофизиологических типов пигмента со спектрами действия, соответствующими спектрам поглощения. Таким образом, в настоящее время трихроматическая теория Юнга может быть сформулирована с учетом данных о колбочковых пигментах.

Цветовое зрение было выявлено у представителей всех классов позвоночных. Трудно сделать какие-то обобщения о вкладе палочек и колбочек в цветовое зрение. Как правило, оно связано с наличием в сетчатке колбочек, однако в ряде случаев были обнаружены и «цветные» типы палочек. Например, у лягушки помимо колбочек имеются два типа палочек – «красные» (содержат родопсин и поглощают сине–зеленый свет) и «зеленые» (содержат пигмент, поглощающий свет синей части спектра). Из беспозвоночных способность различать цвета, в том числе и ультрафиолетовые лучи, хорошо развита у насекомых.

Задания:

1. Объясните, почему конвергенция должна повышать чувствительность глаза к слабому свету.

2. Объясните, почему ночью предметы видны лучше, если не смотреть прямо на них.

3. Объясните биологическую основу поговорки: «Ночью все кошки серые».

Строение палочек и колбочек

Палочки и колбочки весьма сходны по своему строению и состоят из четырех участков:

Наружный сегмент.

Это тот светочувствительный участок, где световая энергия преобразуется в рецепторный потенциал. Весь наружный сегмент палочек заполнен мембранными дисками, образованными плазматической мембраной и отделившимися от нее. В палочках число этих дисков составляет 600-1000, они представляют собой уплощенные мембранные мешочки и уложены наподобие стопки монет. В колбочках мембранных дисков меньше, и они представляют собой не обособленные складки плазматической мембраны. На поверхности мембранных дисков и складок, обращенной к цитоплазме находятся светочувствительные пигменты.

Перетяжка .

Здесь наружный сегмент почти полностью отделен от внутреннего впячиванием наружной мембраны. Связь между двумя сегментами осуществляется через цитоплазму и пару ресничек, переходящих из одного сегмента в другой. Реснички содержат только 9 периферических дублетов микротрубочек: пара центральных микротрубочек, характерных для ресничек, отсутствует.

Внутренний сегмент.

Это область активного метаболизма; она заполнена митохондриями, доставляющими энергию для процессов зрения, и полирибосомами, на которых синтезируются белки, участвующие в образовании мембранных дисков и синтезе зрительного пигмента. В этом же участке расположено ядро.

Синаптическая область.

В этом участке клетка образует синапсы с биполярными клетками. Диффузные биполярные клетки могут образовывать синапсы с несколькими палочками. Это явление, называемое синаптической конвергенцией, уменьшает остроту зрения, но повышает светочувствительность глаза. Моносинаптические биполярные клетки связывают одну колбочку с одной ганглиозной клеткой , что обеспечивает большую по сравнению с палочками остроту зрения. Горизонтальные и амакриновые клетки связывают вместе некоторое число палочек или колбочек . Благодаря этим клеткам зрительная информация еще до выхода из сетчатки подвергается определенной переработке; эти клетки, в частности, участвуют в латеральном торможении.

Латеральное торможение одна из форм фильтрации в зрительной системе служит для усиления контраста.

Поскольку изменения силы или качества стимула во времени или пространстве, как правило, имеют для животного большое значение, в процессе эволюции сформировались нервные механизмы для «подчеркивания» таких изменений. Об усилении зрительного контраста можно получить представление, бегло взглянув на рисунок:

Кажется, что каждая вертикальная полоса несколько светлее у ее границы с соседней более темной полосой. И наоборот, там, где она граничит с более светлой полосой, она кажется темнее. Это оптическая иллюзия; на самом деле полосы по всей ее ширине закрашены равномерно (при хорошем качестве печати). Чтобы в этом убедиться, достаточно закрыть бумагой все полосы, кроме одной.

Как возникает эта иллюзия? Сигнал, передаваемый фоторецептором (палочкой, или колбочкой), возбуждает амакриновую клетку, которая тормозит передачу сигналов от соседних рецепторов, тем самым увеличивая четкость изображения («гасит блики»).

Первое физиологическое объяснение латерального торможения появилось в результате изучения фасеточного глаза мечехвоста. Хотя организация такого глаза гораздо проще, чем организация сетчатки позвоночных, между отдельными омматидиями у мечехвоста также существуют взаимодействия. Впервые это было обнаружено в середине 1950–х годов в лаборатории Х. К. Хартлайна в Рокфеллеровском университете. Сначала в темной комнате регистрировали электрическую активность отдельного омматидия при стимуляции его ярким лучом света, направленным только на этот омматидий. Когда включали также общий свет в комнате, эта дополнительная стимуляция не только не повышала частоту разрядов передаваемых омматидием, но наоборот приводила к ее снижению. Впоследствии было установлено, что причиной торможения (снижения частоты импульсации) данного омматидия было возбуждение окружающих его омматидиев рассеянным комнатным светом. Этот феномен, получивший название латерального торможения, позднее наблюдался и в зрительной системе других животных, а также в ряде сенсорных систем иного типа.

Механизм фоторецепции в палочках

Зададимся вопросом: а откуда в составе сетчатки нейроны: биполяры, ганглиозные клетки, а также горизонтальные и амакриновые клетки?

Вспомним, что сетчатка развивается как вырост переднего мозга. Следовательно – это нервная ткань. Парадоксально, но палочки и колбочки – это тоже нейроны, правда, видоизмененные. Причем, не просто нейроны, а спонтанно активные: без света их мембрана деполяризована, и они секретируют медиаторы, а свет вызывает торможение и гиперполяризацию мембраны! На примере палочек попытаемся разобраться, как это происходит.

Палочки содержат светочувствительный пигмент родопсин, находящийся на наружной поверхности мембранных дисков. Родопсин, или зрительный пурпур, представляет собой сложную молекулу, образующуюся в результате обратимого связывания белка опсина с небольшой молекулой поглощающего свет каротиноида – ретиналя (альдегидной формой витамина А – ретинола). Опсин может существовать в виде двух изомеров. Пока опсин связан с ретиналем, он существует в виде химически неактивного изомера, поскольку ретиналь, занимая определенный участок на поверхности его молекулы, блокирует реакционно-способные группы атомов.

Под воздействием света родопсин «выцветает» – разрушается на опсин и ретиналь. Этот процесс обратим. Обратный процесс лежит в основе темновой адаптации . В полной темноте требуется около 30 мин, чтобы весь родопсин был ресинтезирован и глаза (точнее – палочки) приобрели максимальную чувствительность.

Установлено, что даже один фотон способен вызывать выцветание родопсина. Освободившийся опсин изменяет свою конформацию, становится реакционно-способным и запускает каскад процессов. Рассмотрим эту цепь взаимообусловленных процессов последовательно.

В темноте:

1) родопсин в целости и сохранности, неактивен ;

2) в цитоплазме фоторецепторов работает фермент (гуанилатциклаза ), превращающий один из нуклеотидов – гуанилат (гуанозинмонофосфорная кислота – ГМФ) из линейной в циклическую форму – цГМФ (ГМФ → цГМФ) ;

3) цГМФ ответственен за поддержание открытого состояния Na + -каналов плазмалеммы фоторецепторов (цГМФ-зависимые Na + -каналы);

4) Na + -ионы свободно поступают в клетку – мембрана деполяризована, клетка в состоянии возбуждения ;

5) В состоянии возбуждения фоторецепторы секретируют медиатор в синаптическую щель.

На свету:

1) Поглощение света родопсином вызывает его выцветание , опсин изменяет свою конформацию и приобретает активность.

2) Появление активной формы опсина провоцирует активацию регуляторного G-белка (этот связанный с мембраной белок служит регуляторным агентом в клетках самого разного типа).

3) Активированный G-белок в свою очередь активирует в цитоплазме наружного сегмента фермент – фосфодиэстеразу . Все эти процессы протекают в плоскости мембраны диска.

4) Активированная фосфодиэстераза превращает в цитоплазме циклический гуанозинмонофосфат в обычную линейную форму (цГМФ → ГМФ) .

5) Уменьшение концентрации cGMP в цитоплазме приводит к закрытию Na + -каналов , пропускающих темновой ток, и мембрана гиперполяризуется .

6) В гиперполяризованном состоянии клетка не секретирует медиаторы .

Когда снова наступает темнота, под действием уже упоминавшейся гуанилатциклазы – происходит регенерация цГМФ. Повышение уровня цГМФ ведет к открытию каналов, и рецепторный ток восстанавливается до своего полного «темнового» уровня.

Модель фотопреобразования в палочке позвоночного.

Фотоизомеризация родопсина (Ро) приводит к активации G-белка, а он в свою очередь активирует фосфодиэстеразу (ФДЭ). Последняя затем гидролизует цГМФ в линейный ГМФ. Поскольку цГМФ поддерживает Na + -каналы в темноте открытыми, превращение на свету цГМФ в ГМФ вызывает закрытие этих каналов и уменьшение темнового тока. Сигнал об этом событии передается на пресинаптическую терминаль у основания внутреннего сегмента в результате распространения возникающего гиперполяризационного потенциала.

Таким образом, то, что происходит в фоторецепторах, прямо противоположно тому, что обычно наблюдается в других рецепторных клетках, где раздражение вызывает деполяризацию, а не гиперполяризацию. Гиперполяризация замедляет высвобождение из палочек возбуждающего медиатора, который в темноте выделяется в наибольшем количестве.

Столь сложный каскад процессов необходим для усиления сигнала. Как уже говорилось, поглощение даже одного фотона может быть зарегистрировано на выходе палочки. Фотоизомеризация одной молекулы фотопигмента вызывает лавинообразный каскад реакций, каждая из которых во много раз усиливает эффект предыдущей. Так, если одна молекула фотопигмента активирует 10 молекул G-белка, одна молекула G-белка активирует 10 молекул фосфодиэстеразы, а каждая молекула фосфодиэстеразы в свою очередь гидролизует 10 молекул цГМФ, фотоизомеризация одной молекулы пигмента сможет вывести из строя 1000 молекул цГМФ. Из этих произвольных, но скорее заниженных цифр нетрудно понять, как может усиливаться сенсорный сигнал с помощью каскада ферментативных реакций.

Все это позволяет объяснить ряд явлений, бывших ранее загадочными.

Во-первых, давно известно, что человек, адаптировавшийся к полной темноте, способен увидеть такую слабую вспышку света, при которой ни один рецептор не может получить более одного фотона. Как показывают расчеты, для ощу­щения вспышки нужно, чтобы в короткий промежуток времени около шести близко расположенных палочек были стимулированы фотонами. Теперь ста­новится понятно, как одиночный фотон может возбудить палочку и заставить ее генерировать сигнал достаточной силы.

Во-вторых, мы теперь можем объяснить неспособность палочек реагиро­вать на изменения освещенности, если свет уже достаточно ярок. По-видимо­му, чувствительность палочек столь высока, что при сильной освещенности, например при солнечном свете, все натриевые поры закрыты, и дальнейшее усиление света может не давать никакого дополнительного эффекта. Тогда говорят, что палочки насыщены.

Задание:

Один из законов теоретической биологии – закон органической целесообразности или закон Аристотеля – в настоящее время нашел объяснение в учении Дарвина о твор­ческой роли естественного отбора, проявляющейся в адаптивном характере биологической эволюции. Постарайтесь объяснить, в чем заключается адаптивность спонтанной активности фоторецепторов в темноте, учитывая, что на синтез и секрецию медиаторов затрачивается много энергии (АТФ).

Колбочки и палочки относятся к чувствительным фоторецепторам, расположенным в сетчатке глаза. Они преобразуют световое раздражение в нервное, то есть в этих рецепторах происходит трансформация фотона света в электрический импульс. Далее эти импульсы поступают в центральные структуры мозга по волокнам зрительного нерва. Палочки воспринимают в основном свет в условиях низкой видимости, можно сказать, что они отвечают за ночное восприятие. За счет работы колбочек у человека имеется цветовосприятие и острота зрения. Теперь более подробно рассмотрим каждую группу фоторецепторов.

Палочковый аппарат

Фоторецепторы этого типа по форме напоминают цилиндр, диаметр которого неравномерный, но длина по окружности примерно одинаковая. Длина палочкового фоторецептора, которая составляет 0,06 мм, в тридцать раз превышает его диаметр (0,002 мм). В связи с этим цилиндр этот, скорее, похож именно на палочку. В глазном яблоке человека в норме насчитывается около 115-120 миллионов палочек.

В фоторецепторе этого типа можно выделить четыре сегмента:

  • В наружном сегменте имеются мембранные диски;
  • Связующий сегмент представляет собой ресничку;
  • Внутренний сегмент содержит в себе митохондрии;
  • Базальный сегмент является нервным сплетением.

Чувствительность палочек очень высока, поэтому энергии даже одного фотона достаточно, чтобы они произвели электрический импульс. Именно это свойство позволяет воспринимать окружающие предметы в условиях низкой освещенности. При этом палочки не могут различать цвета из-за того, что в их структуре имеется всего один тип пигмента (родопсин). Этот пигмент по-другому называют зрительным пурпуром. Он содержит две группы белковых молекул (опсин и хромофор), поэтому на кривой поглощения световых волн также имеется два пика. Один из этих пиков находится в зоне (278 нм), в которой человек не может воспринимать свет (ультрафиолет). Второй максимум находится в районе 498 нм, то есть на границе синего и зеленого спектров.

Известно, что пигмент родопсин, который располагается в палочках, реагирует на световые волны заметно медленнее, чем йодопсин, находящийся в колбочках. В связи с этим реакция палочек на динамику световых потоков также медленнее и слабее, то есть в темноте человеку сложнее различить движущиеся предметы.

Колбочковый аппарат

Форма колбочковых фоторецепторов, как не сложно догадаться, напоминает лабораторные колбы. Длина ее составляет 0,05 мм, диаметр в узком месте - 0,001 мм, а в широком месте - в четыре раза больше. В сетчатке глазного яблока в норме имеется примерно семь миллионов колбочек. Сами по себе колбочки менее восприимчивы к световым лучам, чем палочки, то есть для их возбуждения требуется в десятки раз больше количество фотонов. Однако, колбочковые фоторецепторы обрабатывают полученную информацию гораздо интенсивнее, в связи с чем им проще различить любую динамику светового потока. Это позволяет лучше воспринимать движущиеся объекты, а также определяет высокую остроту зрения человека.

В строении колбочки также имеется четыре элемента:

  • Наружный сегмент, который состоит их мембранных дисков с йодопсином;
  • Связующий элемент, представленный перетяжкой;
  • Внутренний сегмент, в состав которого входят митохондрии;
  • Базальный сегмент, ответственный за синаптическое соединение.

Колбочковые фоторецепторы могут выполнять свои функции, так как в их составе имеется йодопсин. Этот пигмент может быть разных типов, благодаря чему человек способен различать цвета. Два типа пигмента уже выделено из сетчатки глаза: эритролаб, который особенно чувствителен к волнам из красного спектра, и хлоролаб, имеющий высокую чувствительность к зеленых волнам света. Третий тип пигмента, который должен быть чувствителен к синему свету, выделить к настоящему времени не удалось, но планируется назвать его цианолабом.

Эта теория (трехкомпонентная) цветовосприятия основана на предположении, что колбочковые рецепторы бывают трех типов. В зависимости от того, какой длины световые волны попадают на них, происходит дальнейшее формирование цветового образа. Однако, помимо трехкомпонентной теории, существует также и двухкомпонентная нелинейная теория. Согласно ей, в каждом колбочковом фоторецепторе имеется оба типа пигмента (хлоролаб и эритролаб), то есть этот рецептор может воспринимать как зеленый, так и красный цвет. Роль же цианолаба играет выцветший из палочек родопсин. В поддержку этой гипотезы можно привести тот факт, что люди с дальтонизмом (тританопсией), у которых потеряно цветовосприятие в синем спектре, имеют трудности с сумеречным зрением. Это свидетельствует о нарушении работы именно палочкового аппарата.

Благодаря зрительному органу люди видят окружающий мир во всех его красках. Все это происходит за счет сетчатки глаза, на которой расположены особые фоторецепторы. В медицине их принято называть палочки и колбочки.

Они гарантируют высочайшую степень восприимчивости объектов. Палочки и колбочки сетчатки глаза переносят попадающие светосигналы в импульсы. Потом их принимает нервная система и передает полученную информацию человеку.

Любой тип фоторецепторов имеет свою определенную функцию. К примеру, в дневной промежуток времени наибольшую нагрузку ощущают колбочки. Когда происходит понижение попадания потока света, то в дело вступают палочки.

Палочка имеет вытянутую форму, напоминающую небольшой цилиндр и состоящая из четырех важных звеньев: мембранные диски, ресничка, митохондрии и нервная ткань. Такой вид фоторецепторов обладает повышенной световосприимчивостью, что гарантирует воздействие даже на очень мельчайшее вспыхивание светом. Палочки начинают воздействовать при принятии энергии в один фотон. Это свойство палочек воздействует на зрительную функцию в сумерках и помогает разглядеть предметы в темноте. Так как палочки в своей структуре имеют лишь один пигмент под названием родопсин, то цвета не имеют различий.

Функции колбочек в сетчатке глаза

Колбочки по форме смахивают на колбы, применяющиеся при лабораторных исследованиях. В сетчатки глаза у людей размещается приблизительно семь миллионов таких рецепторов. Одна колбочка в своем составе имеет четыре элемента.
  1. Поверхностный слой представляется мембранными дисками, которые наполнены цветовым пигментом под названием йодопсин.
  2. Связующий ярус является вторым слоем в колбочках. Его основной ролью выступает перетяжка, которая формирует определенный вид у рецепторов.
  3. Внутренней частью колбочек являются митохондрии.
  4. В центральной части рецептора расположился основной сегмент, осуществляющий функцию связующих звеньев.

Цветовой пигмент йодопсин подразделяют на несколько типов. Это обеспечивает полноценную восприимчивость колбочек при определении разных участков светового спектра. При доминантности разных типов пигментов колбочки подразделяются на три основных типа. Все они воздействуют настолько слаженно, что дает людям при прекрасном зрении воспринимать все цвета видимых объектов.

Способность к цветовой восприимчивости глаза

Палочки и колбочки нужны не только для того, чтобы отличать дневное и вечернее зрение, но и определять цвета на картинках. Строение зрительного органа выполняет множество функций: благодаря ему воспринимается огромная площадь окружающего мира. Ко всему этому, человек имеет одно из интересных свойств, которое подразумевает под собой . Рецепторы принимают участие в восприятии цветовых спектров, в результате чего человек является единственным представителем, который различает все краски мира.

Строение зрительной сетчатки глаза

Если говорить о структуре сетчатки глаза, то палочки и колбочки располагаются на одном из лидирующих мест. Наличие данных фоторецепторов на нервных тканях помогает мгновенно трансформировать принятый световой поток в импульсный набор.

Сетчатка заполучает изображение, которое конструируется при помощи глазной части и хрусталика. Потом картинка перерабатывается и поступает на импульсы при помощи зрительных путей в нужную область головного мозга. Сложнейший тип структуры глаза совершает цельное обрабатывание информационных данных за малейшие секунды. Наибольшая часть рецепторов находится в макуле, расположение которой находится в центре сетчатки

Функции палочек и колбочек в сетчатке глаза

Палочки и колбочки имеют непохожую структуру и функции. Палочки позволяют человеку сконцентрироваться на объектах в темноте, а колбочки, наоборот, помогают различить цветовое восприятие окружающего мира. Но несмотря на это, они обеспечивают слаженную работу всего зрительного органа. Поэтому можно сделать вывод, что оба фоторецептора необходимы для выполнения зрительной функции.

Функции родопсина в сетчатке глаза

Родопсин относится к зрительным пигментам, по строению являющийся белком. Относится он к хромопротеинам. В практике его еще принято называть зрительный пурпур. Свое название он получил за счет ярко-красного оттенка. Пурпурное окрашивание палочек обнаружилось и доказалось при проведении многочисленных обследований. Родопсин имеет в своем составе два компонента — желтый пигмент и бесцветный белок.

При воздействии светового потока пигмент начинает разлагаться. Восстановление родопсина происходит во время сумеречного освещения при помощи белка. При яркой освещенности он опять разлагается и его восприимчивость сменяется на синюю зрительную область. Белок родопсина полностью возобновляется в течение тридцати минут. К этому времени зрение сумеречного типа приходит к своему максимуму, то есть человек начинает видеть в темном помещение гораздо лучше.

Признаки поражения палочек и колбочек

  • Понижение зрительной остроты.
  • Нарушение в цветовом восприятии.
  • Проявление .
  • Суженность зрительного поля.
  • Возникновение .
  • Падение сумеречного зрения.

Заболевания, которые затрагивают палочки и колбочки в сетчатке глаза

Поражение фоторецепторов происходит при различных аномалиях сетчатки глаза в виде болезней.

  1. Гемералопии. В народе называют , которая влияет на сумеречное зрение.
  2. Макулодистрофии. Патология центральной части сетчатки.
  3. Пигментной абиотрофии сетчатки.
  4. Дальтонизма. Невозможность различать синюю область спектра.
  5. Отслоения сетчатки.
  6. Воспалительного процесса в сетчатке глаза.
  7. Травмирования глаза.

Зрительный орган играет важную роль в жизни человека, а основные функции в восприятии цветов играют палочки и колбочки. Поэтому если страдает один из фоторецепторов, то нарушается вся работа зрительной системы.

Улавливание света и распознавание цвета обеспечивают палочки и колбочки сетчатки глаза человека. Это небольшие рецепторы, что расположены в слое сетчатки, помогают глазам улавливать и изменять поток света в импульс. После эти импульсы передаются в мозг. Анатомия рецепторов практически одинаковое. Различие состоит в том, что палочки сетчатки помогают видеть предметы в приглушенном свете, а колбочки - при дневном свете.

Рецепторы глаз

На сетчатке человека находится приблизительно 115-120 миллионов рецепторов. Это рецепторы в глазу человека, которые помогают воспринимать окружающую реальность. Внешне напоминают продолговатый цилиндр. Они крайне чувствительны к свету, но не могут обеспечить цветовое зрение. Отличаются от колбочек сетчатки глаза, палочки. Они плохо различают цвета и медленно реагируют на передвижения предметов. Состояние этих рецепторов не сказывается на качестве зрения человека. Они находятся на периферии зрения и отвечают за видение в ночное время суток.

Другие зрительные рецепторы в глазах человека называются колбочки. Их приблизительно 7 миллионов, а форма соответствует названию. Как и палочки, колбочки помогают глазу воспринять изображения окружающей среды. Они вместе с палочками преобразовывают нейронные импульсы из лучей света и отправляют их по зрительному нерву в мозг. Колбочки в сетчатке отвечают за восприятие окружающей реальности днем. Именно к цветам чувствительны колбочки сетчатки. Это связано с пигментами, которые находятся в их составе. Расположены колбочки в глазу у человека в области макулы.

Разделяются на 3 типа:

  • коротковолновые;
  • средневолновые;
  • длинноволновые.

Строение рецепторов

Палочки в радужном зрении не участвуют и отвечают за видимость и различие предметов в сумерках.

Анатомия рецепторов:

  • наружное поле (диск);
  • связующую зону;
  • внутреннюю;
  • базальная зона.

В длину одна палка 0,06 миллиметров, а диаметр - 0,002 мм. Эти фоторецепторы глаза крайне светочувствительны. Они воспринимают максимальное количество волн света, что предоставляет человеку возможность различать предметы в темное время суток. В рецепторах присутствует родопсин или зрительный пурпур, который содержится на мембранных дисках. В желтом пятне палочек практически нет. Под воздействием лучей он раздражается и помогает улавливать свет в ночное время.

Колбочки по строению схожи с палочками:

  • наружная зона;
  • связующая (перетяжка);
  • внутренняя;
  • базальная.

Длина рецепторов - 0,05 мм, а диаметр в широкой зоне составляет 0,004 мм. В дисках колбочек содержится йодопсин. Благодаря ему светочувствительные рецепторы обрабатывают поступающее изображение и изменяют его в нейронный импульс. Такая работа обеспечивает дневное видение и более точное изображение реальности. Колбочки улавливают красный и зеленый оттенков. Различают 3 вида йодопсина: эритролаб, хлоролаб цианолаб. Каждый из них отвечает за различие одного из 3-х основных оттенков: синего, красного и зеленого. Но если первые 2 вида были официально найдены учеными, то цианолаб еще не открыт, но уже имеет название.


Теория о двухкомпонентном восприятии основывается на том, что колбочка способна воспринимать 2 цвета – красный и зеленый.

Существует теория о двухкомпонентном восприятии цветов. Так как цианолаб еще не был найден, то приверженцы этой теории считают, что эритролаб и хлоролаб дают возможность глазу различать красный и зеленый спектры, а синий оттенок глаз улавливает с помощью выцветших родопсин (пигмента палочек). Эту гипотезу подтверждают исследования людей, что не различают синие цвета и плохо ориентируются в темноте.

Функции рецепторов

Зрительные рецепторы отвечают за качество изображения и за цветное зрение. Светочувствительность у палочек рецепторов сетчатки намного выше, чем у колбочек. При сильном воздействии яркий лучей единственный пигмент родопсин выцветает и воспринимает только короткие волны синего света. Но в темноте он восстанавливается, что дает возможность человеку видеть.

Чувствительность глаз, к предметам, лежащим вне полей зрения, что еще называется конвергенция, выше у тех, у кого наблюдается объединение палочек в группы и соединением с интернейроном, собирающим сигналы c сетчатки.

Следовательно, к функциям палочек и колбочек относится:

  • цветовосприятие;
  • одновременное распознание нескольких объектов;
  • расширение периферического зрения;
  • видимость в темноте и сумерках.

З дравствуйте, уважаемые читатели! Все мы наслышаны о том, что здоровье глаз следует беречь смолоду, потому что утраченное зрение не всегда можно вернуть. А задумывались ли вы когда-либо о том, как устроен глаз? Если мы будем это знать, то нам легче будет разобраться в том, какие процессы обеспечивают зрительное восприятие окружающего мира.

Человеческий глаз имеет сложное строение. Пожалуй, самый загадочный и сложный элемент – сетчатка. Это тоненький слой, состоящий из нервной ткани и сосудов. Но именно на него возложена важнейшая функция по переработке полученной глазом информации в нервные импульсы, позволяющие мозгу создавать цветную объемную картинку.

Сегодня мы поговорим о рецепторах нервной ткани сетчатки – а именно о палочках. Какова светочувствительность у палочек рецепторов сетчатки глаза и что позволяет нам видеть в темноте?

Палочки и колбочки

Оба этих элемента с забавными названиями – фоторецепторы, дающие изображение, фиксируемое хрусталиком и участками роговицы.

И тех, и других очень много в глазу человека. Колбочек (они похожи на крошечные кувшинчики) – около 7 млн, а палочек («цилиндриков») еще больше – до 120 млн! Разумеется, размеры их ничтожно малы и насчитывают доли миллиметров (мкм). Длина одной палочки – 60 мкм. Колбочки еще меньше – 50 мкм.

Палочки получили свое название благодаря форме: они напоминают микроскопические цилиндрики.

Они состоят из:

  • мембранных дисков;
  • нервной ткани;
  • митохондрий.

А еще они обеспечены ресничками. Особый пигмент – белок родопсин – дает возможность клеткам «чувствовать» свет.

Родопсин (это белок плюс желтый пигмент) реагирует на луч света так: под действием световых импульсов он разлагается, таким образом вызывая раздражение зрительного нерва. Надо сказать, восприимчивость «цилиндриков» потрясающа: они улавливают информацию даже от 2 фотонов!

Различия между фоторецепторами глаза

Различия начинаются уже с места расположения. «Кувшинчики» «теснятся» ближе к центру. Они «отвечают» за центральное зрение. В центре сетчатки, в так называемом «желтом пятне», их особенно много.

Плотность скопления «цилиндриков», напротив, выше к периферии глаза.

А еще можно отметить следующие особенности:

  • колбочки содержат фотопигмент в меньшем количестве, нежели палочки;
  • общее число «цилиндриков» в 2 десятка раз больше;
  • палочки способны воспринять любой свет – рассеянный и прямой; а колбочки – исключительно прямой;
  • с помощью клеток, находящихся на периферии, мы воспринимаем черный и белый цвета (они ахроматичны);
  • с помощью собирающихся в центре – все цвета и оттенки (они хроматичны).

Каждый из нас способен благодаря «кувшинчикам» видеть до тысячи оттенков. А глаз художника еще более чувствителен: он видит даже до миллиона оттенков цветов!

Интересный факт: для того, чтобы осуществить передачу импульсов, нескольким палочкам требуется всего один нейрон. Колбочки «требовательнее»: для каждой нужен свой нейрон.

«Цилиндрики» отличаются высокой чувствительностью, «кувшинчикам» нужны более сильные световые импульсы, чтобы они могли их воспринимать и передавать.

По сути, благодаря им мы можем видеть в темноте. В условиях сниженной освещенности (поздно вечером, ночью) колбочки не могут «работать». Зато в полную силу начинают действовать палочки. А поскольку они расположены на периферии, в темноте мы лучше улавливаем движения не прямо перед нами, а по бокам.


Да, и еще один момент: палочки реагируют быстрее.

Возьмите на заметку: отправившись куда-либо в темноте, не пытайтесь пристально вглядываться в область прямо перед глазами. Вы все равно ничего не увидите, ведь «кувшинчики», находящиеся в центре сетчатки, сейчас бессильны. А вот если вы «включите» боковое зрение, то сможете гораздо лучше ориентироваться. Это «работают» «цилиндрики».

Несмотря на существенную разницу в выполнении поставленных природой задач, фоторецепторы нельзя рассматривать отдельно друг от друга. Лишь вместе они дают единую целостную картину.

Поглощая кванты света, клетки преобразуют энергию в нервный импульс. Он поступает в головной мозг. Результат – мы видим мир!

Почему кошки лучше нас видят в темноте

Теперь, изучив в общих чертах строение и функции фоторецепторов, мы можем дать ответ на вопрос, почему наши усатые питомцы гораздо лучше нас ориентируются в темноте.

Ларчик открывается просто: строение глаза этого млекопитающего похоже на человеческое. Но если у человека на 1 колбочку приходится около 4 палочек, то у кошки – 25! Неудивительно, что домашний хищник великолепно различает очертания предметов практически в полной тьме.


Палочки и колбочки – наши помощники

«Цилиндрики» и «кувшинчики» – удивительное изобретение природы. Если они функционируют правильно, человек хорошо видит на свету и может ориентироваться в темноте.

Если они перестают выполнять свои функции в полном объеме, наблюдаются:

  • световые блики перед глазами;
  • ухудшение видимости в темноте;
  • становятся уже поля зрения.

Со временем меняется в худшую сторону острота зрения. Дальтонизм, гемералопия (снижение ночного зрения), отслоение сетчатки – вот какие последствия влечет за собой нарушение работы фоторецепторов.

Но не будем заканчивать наш разговор на этой печальной ноте. Современная медицина научилась справляться с большинством заболеваний, которые раньше вызывали слепоту. От пациента требуется лишь ежегодное профилактическое обследование.

Нашли ли вы для себя пользу в нашей статье? Если у вас стало чуть меньше вопросов, связанных со строением и работой органов зрения, мы сможем полагать свою задачу выполненной. И еще: пожалуйста, делитесь полученной информацией со знакомыми, а нам можете присылать свои комментарии и замечания. Ждем откликов. Всегда рады вашим отзывам!

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.