Ремонт дежурного питания. Компьютер не включается

Блок питания является важным компонентом системы, и без него компьютер просто не сможет работать. Он обеспечивает требуемой электрической энергией все потребители внутри корпуса компьютера, при этом преобразуя поступающее из розетки переменное напряжение в постоянное. Выбирая блок питания для компьютера, необходимо руководствоваться его мощностью, исходя из количества потребителей, которые будут к нему подключены. Если блок питания выйдет из строя, не будет работать весь компьютер. Именно поэтому, если компьютер перестал включаться, важно проверить блок питания на работоспособность, и имеется несколько способов, как это сделать.

Рекомендуем прочитать:

Признаки неисправности блока питания

Нет конкретного симптома, по которому можно было бы сказать, что из строя в компьютере вышел именно блок питания. Имеется ряд признаков, которые характерны для поведения компьютера при неисправности питающего элемента. Можно констатировать, что блок питания не работает в должном режиме (или имеется другая проблема) при следующем «поведении» компьютера:

  • При нажатии на кнопку включения не происходит ничего, то есть, нет световой, звуковой индикации и кулеры не начинают вращаться. Поскольку блок питания является компонентом, который питает другие элементы постоянным напряжением, велика вероятность, что он вышел из строя или имеются другие проблемы с передачей питания на элементы компьютера – разрывы в проводах, нестабильная подача переменного напряжения из сети;
  • Включение компьютера происходит не всегда с первого раза. В такой ситуации может быть виноват блок питания, плохое соединение разъемов или неисправность кнопки включения;
  • Компьютер самопроизвольно выключается на этапе загрузки операционной системы. Это может происходить из-за прерывистой передачи напряжения от блока питания на другие компоненты компьютера. Так же подобная проблема может указывать на перегрев блока питания и принудительное отключение.

Блок питания – надежный элемент компьютера, который крайне редко приходит в негодность. Если блок питания сломался, причиной тому является его низкое качество изготовления или подача по сети напряжения с постоянными перепадами. Кроме того, блок питания может выйти из строя, если неверно произведен расчет при его подборе для конкретной конфигурации компьютера.

Как проверить блок питания

Если у компьютера появился один из симптомов, перечисленных выше, не следует сразу грешить на блок питания. Неисправность может возникать и по другим причинам. Чтобы точно убедиться в наличии проблем с питающим компонентом системы, необходимо провести диагностические работы. Имеется 3 метода, как проверить блок питания компьютера самостоятельно.

Шаг 1: Проверка передачи напряжения блоком питания

Чтобы убедиться в том, что блок питания включается, необходимо выполнить следующую проверку:


Необходимо отметить, что данная проверка показывает работоспособность блока питания на включение. Но даже в том случае, если по ее результатам кулер блока питания начал вращаться, это еще не значит, что устройство полностью исправно. Перейдите к следующим шагам проверки блока питания.

Шаг 2: Как проверить блок питания мультиметром

Если вы убедились, что блок питания получает напряжение от сети и при этом работает, необходимо проверить, отдает ли он требуемое постоянное напряжение. Для этого:

  1. Подключите к блоку питания любое внешнее сопротивление – дисковод, жесткий диск, кулеры;
  2. Далее возьмите мультиметр, выставленный на измерение напряжения, и подключите отрицательный вывод диагностического прибора к черному контакту 20/24-выводного разъема блока питания. Черный контакт при подобном подключении считается заземлением. Положительный щуп мультиметра подключите поочередно к контактам разъема, к которым подходят провода следующих цветов, а также сравните значения с идеальным напряжением:

В ходе измерения возможны погрешности в ±5%.

Если измеренные значения отличаются от идеальных, можно диагностировать неисправность блока питания и необходимость его замены.

Шаг 3: Как визуально проверить блок питания

При отсутствии мультиметра (или при необходимости дополнительной диагностики) можно визуально проверить блок питание на наличие неисправности. Для этого:


Когда проблем с конденсаторами не наблюдается, рекомендуется удалить всю пыль из блока питания, смазать вентилятор и собрать устройство обратно, а после попробовать подключить.

Диагностика компьютерного блока питания – это первый этап в поиске неисправностей в системном блоке, если тот вообще не подает сигналов жизни.

В жизни каждого радиолюбителя рано или поздно наступает момент, когда ему приходится начинать осваивать мелкий ремонт техники. Это могут быть настольные компьютерные колонки, планшет, мобильный телефон и еще какие-нибудь гаджеты. Не ошибусь, если скажу, что почти каждый радиолюбитель пробовал чинить свой компьютер. Кому-то это удавалось, а кто-то все таки нес его в сервис-центр.

В этой статье мы с вами разберем основы самостоятельной диагностики неисправностей блока питания ПК.

Давайте предположим, что нам в руки попался блок питания (БП) от компьютера. Для начала нам надо убедиться, рабочий ли он?Кстати, нужно учитывать, что дежурное напряжение +5 Вольт присутствует сразу после подключения сетевого кабеля к блоку питания.


Если его нету, то не лишним будет прозвонить шнур питания на целостность жил мультиметром в режиме звуковой прозвонки. Также не забываем прозвонить кнопку и предохранитель. Если с сетевым шнуром все ОК, то включаем блок питания ПК в сеть и запускаем без материнской платы путем замыкания двух контактов: PS-ON и COM . PS-ON сокращенно с англ. – Power Supply On – дословно как “источник питания включить” . COM сокращенно от англ. Сommon – общий. К контакту PS-ON подходит провод зеленого цвета, а “общий” он же минус – это провода черного цвета.


На современных БП идет разъем 24 Pin. На более старых – 20 Pin.

Замкнуть эти два контакта проще всего разогнутой канцелярской скрепкой



Хотя теоретически для этой цели сгодится любой металлический предмет или проводок. Даже можно использовать тот же самый пинцет.


Исправный блок питания у нас должен сразу включиться. Вентилятор начнет вращаться и появится напряжение на всех разъемах блока питания.

Если наш компьютер работает со сбоями, то нелишним будет проверить на его разъемах соответствие величины напряжения на его контактах. Да и вообще, когда компьютер глючит и часто вылазит синий экран, неплохо было бы проверить напряжение в самой системе, скачав небольшую программку для диагностики ПК. Я рекомендую программу AIDA. В ней сразу можно увидеть, в норме ли напряжение в системе, виноват ли в этом блок питания или все-таки “мандит” материнская плата, или даже что-то другое.

Вот скрин с программы AIDA моего ПК. Как мы видим, все напряжения в норме:

Если есть какое-либо приличное отклонение напряжения, то это уже ненормально. Кстати, покупая б/у компьютер, ВСЕГДА закачивайте на него эту программку и полностью проверяйте все напряжения и другие параметры системы. Проверено на горьком опыте:-(.

Если же все-таки величина напряжения сильно отличается на самом разъеме блока питания, то блок надо попытаться отремонтировать. Если вы вообще очень плохо дружите с компьютерной техникой и ремонтами, то при отсутствии опыта его лучше заменить. Нередки случаи, когда НЕисправный блок питания при выходе из строя “утягивал” за собой часть компьютера. Чаще всего при этом выходит из строя материнская плата. Как этого можно избежать?


Рекомендации по выбору блоков питания для ПК

На блоке питания экономить никогда нельзя и нужно всегда иметь небольшой запас по мощности. Желательно не покупать дешевые блоки питания NONAME.


и POWER MAN


Как быть, если вы слабо разбираетесь в марках и моделях блоков питания, а на новый и качественный мамка не дает денег))? Желательно, чтобы в нем стоял вентилятор 12 См, а не 8 См.

Ниже на фото блок питания с вентилятором 12 см.


Такие вентиляторы обеспечивают лучшее охлаждение радиодеталей блока питания. Нужно также помнить еще одно правило: хороший блок питания не может быть легким . Если блок питания легкий, значит в нем применены радиаторы маленького сечения и такой блок питания будет при работе перегреваться при номинальных нагрузках. А что происходит при перегреве? При перегреве некоторые радиоэлементы, особенно полупроводники и конденсаторы, меняют свои номиналы и вся схема в целом работает неправильно, что конечно же, скажется и на работе блока питания.

Самые частые неисправности

Также не забывайте хотя бы раз в год чистить свой блок питания от пыли. Пыль является “одеялом” для радиоэлементов, под которым они могут неправильно функционировать или даже “сдохнуть” от перегрева.


Самая частая поломка БП – это силовые полупроводнки и конденсаторы . Если есть запах горелого кремния, то надо смотреть, что сгорело из диодов или . Неисправные конденсаторы определяются визуальным осмотром. Раскрывшиеся, вздутые, с подтекающим электролитом – это первый признак того, что надо срочно их менять.



При замене надо учитывать, что в блоках питания стоят конденсаторы с низким эквивалентным последовательным сопротивлением (ESR) . Так что в этом случае вам стоит обзавестись ESR-метром и выбирать конденсаторы как можно более с низким ESR. Вот небольшая табличка сопротивлений для конденсаторов различной емкости и напряжений:


Здесь надо подбирать конденсаторы таким образом, чтобы значение сопротивления было не больше, чем указано в таблице.

При замене конденсаторов важны еще также два параметра: емкость и их рабочее напряжение. Они указываются на корпусе конденсатора:


Как быть, если в магазине есть конденсаторы нужного номинала, но рассчитанные на большее рабочее напряжение? Их также можно ставить в схемы при ремонте, но нужно учитывать, что у конденсаторов, рассчитанных на большее рабочее напряжение обычно и габариты больше.

Если у нас блок питания запускается, то мы меряем напряжение на его выходном разъеме или разъемах мультиметром. В большинстве случаев при измерении напряжения блоков питания ATX, бывает достаточно выбрать предел DCV 20 вольт.



Существуют два способа диагностики:

– проведение измерений на “горячую” во включенном устройстве

– проведение измерений в обесточенном устройстве

Что же мы можем померять и каким способом проводятся эти измерения? Нас интересует измерение напряжения в указанных точках блока питания, измерение сопротивления между определенными точками, звуковая прозвонка на отсутствие или наличие замыкания, а также измерение силы тока. Давайте разберем подробнее.

Измерение напряжения

Если вы ремонтируете какое-либо устройство и имеете принципиальную схему на него, на ней часто указывается, какое напряжение должно быть в контрольных точках на схеме. Разумеется, вы не ограничены только этими контрольными точками и можете померять разность потенциалов или напряжение в любой точке блока питания или любого другого ремонтируемого устройства. Но для этого вы должны уметь читать схемы и уметь их анализировать. Более подробно, как измерять напряжение мультиметром, можно прочитать в этой статье.

Измерение сопротивления

Любая часть схемы имеет какое-то сопротивление. Если при замере сопротивления на экране мультиметра единица, это значит, что в нашем случае сопротивление выше, чем предел измерения сопротивления выбранный нами. Приведу пример, например, мы измеряем сопротивление части схемы, состоящей условно, из резистора известного нам номинала, и дросселя. Как мы знаем, дроссель – это грубо говоря, всего лишь кусок проволоки, обладающий небольшим сопротивлением, а номинал резистора нам известен. На экране мультиметра мы видим сопротивление несколько большее, чем номинал нашего резистора. Проанализировав схему, мы приходим к выводу, что эти радиодетали у нас рабочие и с ними обеспечен на плате хороший контакт. Хотя поначалу, при недостатке опыта, желательно прозванивать все детали по отдельности. Также нужно учитывать, что параллельно подключенные радиодетали влияют друг на друга при измерении сопротивления. Вспомните параллельное подключение резисторов и все поймете. Более подробно про измерение сопротивления можно прочитать .

Звуковая прозвонка

Если раздается звуковой сигнал, это означает, что сопротивление между щупами, а соответственно и участком цепи, подключенных к её концам, рано нулю, или близко к этому. С её помощью мы можем убедиться в наличии или отсутствии замыкания, на плате. Также можно обнаружить есть контакт на схеме, или нет, например, в случае обрыва дорожки или непропая, или подобной неисправности.

Измерение протекающего тока в цепи

При измерениии силы тока в цепи, требуется вмешательство в конструкцию платы, например путем отпаивания одного из выводов радиодетали. Потому что, как мы помним, амперметр у нас подключается в разрыв цепи. Как измерить силу тока в цепи, можно прочитать в этой статье.


Используя эти четыре метода измерения с помощью одного только мультиметра можно произвести диагностику очень большого количества неисправностей в схемах практически любого электронного устройства.

Как говорится, в электрике есть две основных неисправности: контакт есть там, где его не должно быть, и нет контакта там, где он должен быть . Что означает эта поговорка на практике? Например, при сгорании какой-либо радиодетали мы получаем короткое замыкание, являющееся аварийным для нашей схемы. Например, это может быть пробой транзистора. В схемах может случится и обрыв, при котором ток в нашей цепи течь не может. Например, разрыв дорожки или контактов, по которым течет ток. Также это может быть обрыв провода и тому подобное. В этом случае наше сопротивление становится, условно говоря, бесконечности.

Конечно, существует еще третий вариант: изменение параметров радиодетали. Например, как в случае с тем же электролитически м конденсатором, или подгорание контактов выключателя, и как следствие, сильное возрастание их сопротивления. Зная эти три варианта поломок и умея проводить анализ схем и печатных плат, вы научитесь без труда ремонтировать свои электронные устройства. Более подробно про ремонт радиоэлектронных устройств можно прочитать в статье “Основы ремонта “.

Немного о применении и устройстве ИБП

На сайте уже была опубликована статья , в которой рассказано об устройстве ИБП. Эту тему можно несколько дополнить небольшим рассказом о ремонте. Под аббревиатурой ИБП достаточно часто упоминается . Чтобы не было разночтений, условимся, что в данной статье это Импульсный Блок Питания.

Практически все импульсные блоки питания, применяющиеся в электронной аппаратуре построены по двум функциональным схемам.

Рис.1. Функциональные схемы импульсных блоков питания

По полумостовой схеме выполняются, как правило, достаточно мощные блоки питания, например компьютерные. По двухтактной схеме изготавливаются также блоки питания мощных эстрадных УМЗЧ и сварочных аппаратов.

Кому доводилось ремонтировать усилители мощностью 400 и более ватт, прекрасно знает, какой у них вес. Речь идет, естественно, об УМЗЧ с традиционным трансформаторным блоком питания. ИБП телевизоров, мониторов, DVD-проигрывателей чаще всего делаются по схеме с однотактным выходным каскадом.

Хотя реально существуют и другие разновидности выходных каскадов, которые показаны на рисунке 2.

Рис.2. Выходные каскады импульсных блоков питания

Здесь показаны только силовые ключи и первичная обмотка силового трансформатора.

Если внимательно посмотреть на рисунок 1, нетрудно заметить, что всю схему можно разделить на две части — первичную и вторичную. Первичная часть содержит сетевой фильтр, выпрямитель напряжения сети, силовые ключи и силовой трансформатор. Эта часть гальванически связана с сетью переменного тока.

Кроме силового трансформатора в импульсных блоках питания применяются еще развязывающие трансформаторы, через которые управляющие импульсы ШИМ - контроллера подаются на затворы (базы) силовых транзисторов. Таким способом обеспечивается гальваническая развязка от сети вторичных цепей. В более современных схемах эта развязка осуществляется при помощи оптронов.

Вторичные цепи гальванически отвязаны от сети при помощи силового трансформатора: напряжение с вторичных обмоток подается на выпрямитель, и далее в нагрузку. От вторичных цепей питаются также схемы стабилизации напряжения и защиты.

Очень простые импульсные блоки питания

Выполняются на базе автогенератора, когда задающий ШИМ контроллер отсутствует. В качестве примера такого ИБП можно привести схему электронного трансформатора Taschibra.

Рис.3. Электронный трансформатор Taschibra

Подобные электронные трансформаторы выпускаются и другими фирмами. Их основное назначение — . Отличительная особенность подобной схемы — простота и малое количество деталей. Недостатком можно считать то, что без нагрузки эта схема просто не запускается, выходное напряжение нестабильно и имеет высокий уровень пульсаций. Но лампочки все-таки светят! При этом вторичная цепь полностью отвязана от питающей сети.

Совершенно очевидно, что ремонт такого блока питания сводится к замене транзисторов, резисторов R4, R5, иногда VDS1 и резистора R1, выполняющего роль предохранителя. Просто нечему больше в этой схеме сгореть. При небольшой цене электронных трансформаторов чаще просто покупается новый, а ремонт делается, что называется, «из любви к искусству».

Сначала техника безопасности

Коль скоро имеется такое весьма неприятное соседство первичной и вторичной цепей, которые в процессе ремонта обязательно, пусть, даже случайно, придется пощупать руками, то следует напомнить некоторые правила техники безопасности.

Прикасаться к включенному источнику можно только одной рукой, ни в коем случае не сразу обеими. Это известно каждому, кто работает с электрическими установками. Но лучше не касаться вовсе, или, только после отключения от сети путем выдергивания вилки из розетки. Также не следует на включенном источнике что-то паять или просто крутить отверткой.

В целях обеспечения электробезопасности на платах блоков питания «опасная» первичная сторона платы обводится достаточно широкой полосой или заштриховывается тонкими полосками краски, чаще белого цвета. Это предупреждение о том, что трогать руками эту часть платы опасно.

Даже выключенный импульсный блок питания можно касаться руками только через некоторое время, не менее 2…3 минут после выключения: на высоковольтных конденсаторах заряд сохраняется достаточно долго, хотя в любом нормальном блоке питания параллельно конденсаторам установлены разрядные резисторы. Помните, как в школе предлагали друг другу заряженный конденсатор! Убить, конечно, не убьет, но удар получается достаточно чувствительный.

Но самое страшное даже не в этом: ну, подумаешь, чуть щипнуло. Если сразу после выключения прозвонить электролитический конденсатор мультиметром, то вполне возможно пойти в магазин за новым.

Когда такое измерение предвидится, конденсатор нужно разрядить, хотя бы пинцетом. Но лучше это сделать с помощью резистора сопротивлением в несколько десятков КОм. В противном случае разряд сопровождается кучей искр и достаточно громким щелчком, да и для конденсатора такое КЗ не очень полезно.

И все же, при ремонте приходится касаться включенного импульсного блока питания, хотя бы для проведения каких-то измерений. В этом случае максимально обезопасить себя любимого от поражения электричеством поможет развязывающий трансформатор, часто его называют трансформатор безопасности. Как его изготовить, можно прочитать в статье .

Если же в двух словах, то это трансформатор с двумя обмотками на 220В, мощностью 100…200Вт (зависит от мощности ремонтируемого ИБП), электрическая схема показана на рисунке 4.

Рис.4. Трансформатор безопасности

Левая по схеме обмотка включается в сеть, к правой обмотке через лампочку подключается неисправный импульсный блок питания. Самое главное при таком включении это то, что ОДНОЙ рукой прикасаться к любому концу вторичной обмотки можно безбоязненно, равно как и ко всем элементом первичной цепи блока питания.

О роли лампочки и ее мощности

Чаще всего ремонт импульсного блока питания выполняется без развязывающего трансформатора, но в качестве дополнительной меры безопасности включение блока производится через лампочку мощностью 60…150Вт. По поведению лампочки можно, в общем, судить о состоянии блока питания. Конечно, такое включение не обеспечит гальванической развязки от сети, трогать руками не рекомендуется, но от дыма и взрывов вполне может защитить.

Если при включении в сеть лампочка зажигается в полный накал, то следует искать неисправность в первичной цепи. Как правило, это пробитый силовой транзистор или выпрямительный мост. При нормальной работе блока питания лампочка сначала вспыхивает достаточно ярко (), а потом нить накала продолжает слабо светиться.

Насчет этой лампочки существует несколько мнений. Кто-то говорит, что она не помогает избавиться от непредвиденных ситуаций, а кто-то считает, что намного снижается риск спалить только что запаянный транзистор. Будем придерживаться этой точки зрения, и лампочку для ремонта использовать.

О разборных и неразборных корпусах

Чаще всего импульсные блоки питания выполняются в корпусах. Достаточно вспомнить компьютерные блоки питания, различные адаптеры, включаемые в розетку, зарядные устройства для ноутбуков, мобильных телефонов и т.п.

В случае компьютерных блоков питания все достаточно просто. Из металлического корпуса выкручиваются несколько винтиков, снимается металлическая же крышка и, пожалуйста, вся плата с деталями уже в руках.

Если корпус пластмассовый, то следует поискать на обратной стороне, где находится сетевая вилка, маленькие шурупчики. Тогда все просто и понятно, отвернул и снял крышку. В этом случае можно сказать, что просто повезло.

Но в последнее время все идет по пути упрощения и удешевления конструкций, и половинки пластмассового корпуса просто склеиваются, причем достаточно прочно. Один товарищ рассказывал, как возил в какую-то мастерскую подобный блок. На вопрос, как же его разобрать мастера сказали: «Ты, что не русский?». После чего взяли молоток и быстренько раскололи корпус на две половинки.

На самом деле это единственный способ для разборки пластиковых клееных корпусов. Вот только колотить надо аккуратно и не очень фанатично: под действием ударов по корпусу могут оборваться дорожки, ведущие к массивным деталям, например, трансформаторам или дросселям.

Помогает также вставленный в шов нож, и легкое постукивание по нему все тем же молотком. Правда, после сборки остаются следы этого вмешательства. Но пусть уж будут незначительные следы на корпусе, зато не придется покупать новый блок.

Как найти схему

Если в прежние времена практически ко всем устройствам отечественного производства прилагались принципиальные электрические схемы, то современные иностранные производители электроники делиться своими секретами не хотят. Вся электронная техника комплектуется лишь руководством пользователя, где показывается, какие надо нажимать кнопки. Принципиальные схемы к пользовательскому руководству не прилагаются.

Предполагается, что устройство будет работать вечно или ремонт будет производиться в авторизованных сервисных центрах, где имеются руководства по ремонту, именуемые сервис мануалами (service manual). Сервисные центры не имеют права делиться со всеми желающими этой документацией, но, хвала интернету, на многие устройства эти сервис мануалы находить удается. Иногда это может получиться безвозмездно, то есть, даром, а иногда нужные сведения можно получить за незначительную сумму.

Но даже если нужную схему найти не удалось, отчаиваться не стоит, тем более при ремонте блоков питания. Практически все становится понятно при внимательном рассмотрении платы. Вот этот мощный транзистор — не что иное как выходной ключ, а эта микросхема — ШИМ контроллер.

В некоторых контроллерах мощный выходной транзистор «спрятан» внутри микросхемы. Если эти детали достаточно габаритные, то на них имеется полная маркировка, по которой можно найти техническую документацию (data sheet) микросхемы, транзистора, диода или стабилитрона. Именно эти детали составляют основу импульсных блоков питания.

Несколько сложнее найти даташиты на малогабаритные компоненты SMD. Полная маркировка на маленьком корпусе не помещается, вместо нее на корпусе ставится кодовое обозначение из нескольких (три, четыре) букв и цифр. По этому коду с помощью таблиц или специальных программ, добытых опять-таки в интернете, удается, правда не всегда, найти справочные данные неведомого элемента.

Измерительные приборы и инструмент

Для ремонта импульсных блоков питания потребуется тот инструмент, который должен быть у каждого радиолюбителя. В первую очередь это несколько отверток, кусачки-бокорезы, пинцет, иногда пассатижи и даже упомянутый выше молоток. Это для слесарно-монтажных работ.

Для паяльных работ, конечно же, понадобится паяльник, лучше несколько, различной мощности и габаритов. Вполне подойдет обычный паяльник мощностью 25…40Вт, но лучше, если это будет современный паяльник с терморегулятором и стабилизацией температуры.

Для отпаивания многовыводных деталей хорошо иметь под руками если не супердорогую , то хотя бы простенький недорогой паяльный фен. Это позволит без особых усилий и разрушения печатных плат выпаивать многовыводные детали.

Для измерения напряжений, сопротивлений и несколько реже токов понадобится цифровой мультиметр, пусть даже не очень дорогой, или старый добрый стрелочный тестер. О том, что стрелочный прибор еще рано списывать со счетов, какие он дает дополнительные возможности, которых нет у современных цифровых мультиметров, можно прочитать в статье .

Неоценимую помощь в ремонте импульсных блоков питания может оказать . Тут тоже вполне возможно воспользоваться стареньким, даже не очень широкополосным электронно-лучевым осциллографом. Если конечно есть возможность приобрести современный цифровой осциллограф, то это еще лучше. Но, как показывает практика, при ремонте импульсных блоков питания можно обойтись и без осциллографа.

Собственно при ремонте возможны два исхода: либо отремонтировать, либо сделать еще хуже. Тут уместно вспомнить закон Хорнера: «Опыт растет прямо пропорционально числу выведенной из строя аппаратуры». И хотя закон этот содержит изрядную долю юмора, в практике ремонта дела обстоят именно таким образом. Особенно в начале пути.

Поиск неисправностей

Импульсные блоки питания выходят из строя намного чаще, чем другие узлы электронной аппаратуры. В первую очередь сказывается то, что присутствует высокое сетевое напряжение, которое после выпрямления и фильтрации становится еще выше. Поэтому силовые ключи и весь инверторный каскад работают в очень тяжелом режиме, как электрическом, так и тепловом. Чаще всего неисправности кроются именно в первичной цепи.

Неисправности можно разделить на два типа. В первом случае отказ импульсного блока питания сопровождается дымом, взрывами, разрушением и обугливанием деталей, иногда дорожек печатной платы.

Казалось бы, что вариант простейший, достаточно только поменять сгоревшие детали, восстановить дорожки, и все заработает. Но при попытке определить тип микросхемы или транзистора выясняется, что вместе с корпусом улетучилась и маркировка детали. Что тут было, без схемы, которой чаще под рукой нет, узнать невозможно. Иногда ремонт на этой стадии и заканчивается.

Второй тип неисправности тихий, как говорил Лёлик, без шума и пыли. Просто бесследно пропали выходные напряжения. Если этот импульсный блок питания представляет собой простой сетевой адаптер вроде зарядника для сотового или ноутбука, то в первую очередь следует проверить исправность выходного шнура.

Чаще всего происходит обрыв либо около выходного разъема, либо у выхода из корпуса. Если блок включается в сеть при помощи шнура с вилкой, то в первую очередь следует убедиться в его исправности.

После проверки этих простейших цепей уже можно лезть в дебри. В качестве этих дебрей возьмем схему блока питания 19-дюймового монитора LG_flatron_L1919s. Собственно неисправность была достаточно простой: вчера включался, а сегодня не включается.

При кажущейся серьезности устройства — как-никак монитор, схема блока питания достаточно проста и наглядна.

После вскрытия монитора было обнаружено несколько вздутых электролитических конденсаторов (C202, C206, C207) на выходе блока питания. В таком случае лучше поменять сразу все конденсаторы, всего шесть штук. Стоимость этих деталей копеечная, поэтому не стоит ждать, когда они тоже вспучатся. После такой замены монитор заработал. Кстати, такая неисправность у мониторов LG достаточно частая.

Вспученные конденсаторы вызывали срабатывание схемы защиты, о работе которой будет рассказано чуть позже. Если после замены конденсаторов блок питания не заработал, придется искать другие причины. Для этого рассмотрим схему более подробно.

Рис 5. Блок питания монитора LG_flatron_L1919s (для увеличения нажмите на рисунок)

Сетевой фильтр и выпрямитель

Сетевое напряжение через входной разъем SC101, предохранитель F101, фильтр LF101 поступает на выпрямительный мост BD101. Выпрямленное напряжение через термистор TH101 поступает на сглаживающий конденсатор C101. На этом конденсаторе получается постоянное напряжение 310В, которое поступает на инвертор.

Если это напряжение отсутствует или намного меньше указанной величины, то следует проверить сетевой предохранитель F101, фильтр LF101, выпрямительный мост BD101, конденсатор C101, и термистор TH101. Все указанные детали легко проверить с помощью мультиметра. Если возникает подозрение на конденсатор C101, то лучше поменять его на заведомо исправный.

Кстати, сетевой предохранитель просто так не сгорает. В большинстве случаев его замена не приводит к восстановлению нормальной работы импульсного блока питания. Поэтому следует искать другие причины, приводящие к перегоранию предохранителя.

Предохранитель следует ставить на тот же ток, который указан на схеме, и ни в коем случае не «умощнять» предохранитель. Это может привести к еще более серьезным неисправностя.

Инвертор

Инвертор выполнен по однотактной схеме. В качестве задающего генератора используется микросхема ШИМ-контроллера U101 к выходу которой подключен силовой транзистор Q101. К стоку этого транзистора через дроссель FB101 подключена первичная обмотка трансформатора T101 (выводы 3-5).

Дополнительная обмотка 1-2 с выпрямителем R111, D102, C103 используется для питания ШИМ контроллера U101 в установившемся режиме работы блока питания. Запуск ШИМ контроллера при включении производится резистором R108.

Выходные напряжения

Блок питания вырабатывает два напряжения: 12В/2А для питания инвертора ламп подсветки и 5В/2А для питания логической части монитора.

От обмотки 10-7 трансформатора T101 через диодную сборку D202 и фильтр C204, L202, C205 получается напряжение 5В/2А.

Последовательно с обмоткой 10-7 соединена обмотка 8-6, от которой с помощью диодной сборки D201 и фильтра C203, L201, C202, C206, C207 получается постоянное напряжение 12В/2А.

Защита от перегрузок

В исток транзистора Q101 включен резистор R109. Это датчик тока, который через резистор R104 подключен к выводу 2 микросхемы U101.

При перегрузке на выходе ток через транзистор Q101 увеличивается, что приводит к падению напряжения на резисторе R109, которое через резистор R104 подается на вывод 2CS/FB микросхемы U101 и контроллер перестает вырабатывать управляющие импульсы (вывод 6OUT). Поэтому напряжения на выходе блока питания пропадают.

Именно эта защита и срабатывала при вспученных электролитических конденсаторах, о которых было упомянуто выше.

Уровень срабатывания защиты 0,9В. Этот уровень задается источником образцового напряжения внутри микросхемы. Параллельно резистору R109 подключен стабилитрон ZD101 с напряжением стабилизации 3,3В, что обеспечивает защиту входа 2CS/FB от повышенного напряжения.

К выводу 2CS/FB через делитель R117, R118, R107 подается напряжение 310В с конденсатора С101, что обеспечивает срабатывание защиты от повышенного напряжения сети. Допустимый диапазон сетевого напряжения, при котором монитор нормально работает находится в диапазоне 90…240В.

Стабилизация выходных напряжений

Выполнена на регулируемом стабилитроне U201 типа A431. Выходное напряжение 12В/2А через делитель R204, R206 (оба резистора с допуском 1%) подается на управляющий вход R стабилитрона U201. Как только выходное напряжение становится равным 12В, стабилитрон открывается и засвечивается светодиод оптрона PC201.

В результате открывается транзистор оптрона, (выводы 4, 3) и напряжение питания контроллера через резистор R102 подается на вывод 2CS/FB. Импульсы на выводе 6OUT пропадают, и напряжение на выходе 12В/2А начинает падать.

Напряжение на управляющем входе R стабилитрона U201 падает ниже опорного напряжения (2,5В), стабилитрон запирается и выключает оптрон PC201. На выходе 6OUT появляются импульсы, напряжение 12В/2А начинает возрастать и цикл стабилизации повторяется снова. Подобным образом цепь стабилизации построена во многих импульсных блоков питания, например, в компьютерных.

Таким образом, получается, что на вход 2CS/FB контроллера с помощью проводного ИЛИ подключены сразу три сигнала: защита от перегрузок, защита от превышения напряжения сети и выход схемы стабилизатора выходных напряжений.

Вот тут как раз уместно вспомнить, как можно проверить работу этой петли стабилизации. Для этого достаточно при ВЫКЛЮЧЕННОМ!!! из сети блоке питания подать на выход 12В/2А напряжение от регулируемого блока питания.

На выход оптрона PC201 зацепиться лучше стрелочным тестером в режиме измерения сопротивлений. Пока напряжение на выходе регулируемого источника ниже 12В, сопротивление на выходе оптрона будет большим.

Теперь будем увеличивать напряжение. Как только напряжение станет больше 12В, стрелка прибора резко упадет в сторону уменьшения сопротивления. Это говорит о том, что стабилитрон U201 и оптопара PC201 исправны. Следовательно, стабилизация выходных напряжений должна работать нормально.

В точности так же можно проверить работу петли стабилизации у компьютерных импульсных блоков питания. Главное разобраться в том, к какому напряжению подключен стабилитрон.

Если все указанные проверки прошли удачно, а блок питания не запускается, то следует проверить транзистор Q101, выпаяв его из платы. При исправном транзисторе виновата, скорей всего, микросхема U101 или ее обвязка. В первую очередь это электролитический конденсатор C105, который лучше всего проверить заменой на заведомо исправный.


Ремонт Блока Питания ATX персонального компьютера.


Выполнение данных работ требуют знания и соблюдения норм техники безопасности при работе с силовыми цепями, имеющими потенциалы опасные для жизни человека.


· Большинство цепей БП находятся под напряжением сети, перед поиском неисправности отключите БП от сети и разрядите высоковольтные конденсаторы в фильтре!
· Для того чтобы обезопасить себя от поражения электрическим током при отладке и тестировании рекомендуется подключать ремонтируемый блок в сеть через разделительный трансформатор.
· Чтобы исключить порчу силовых транзисторов ремонтируемый БП рекомендуется включать через лампу 220V-60W(100W), которую можно подключить вместо сетевого предохранителя или в разрыв питающего шнура.
Желательно также зашунтировать цепи +310V резистором 75-100 кОм мощностью 2W – при выключении у вас будут быстрее разряжаться входные конденсаторы.
Когда плата вынута из блока, проверьте, нет ли под ней металлических предметов.
На радиаторах силовых транзисторов может присутствовать более 300V, поэтому ни в коем случае не трогайте руками плату и не касайтесь радиаторов во время работы блока, а после выключения подождите, пока разрядятся конденсаторы.
Обратите внимание, что на корпус БП земля с платы подаётся через проводники отверстий для крепежных винтов. При измерении напряжений в высоковольтной части блока (на силовых транзисторах, в дежурке) за «общий» провод принимается минус диодного моста и входных конденсаторов.
Все измерения в высоковольтной части производятся относительно этого провода.

Внутреннее устройство блока питания ATX PC.
Блок питания формата ATX в большинстве случаев использует двухтактный полумостовой инвертор, работающий на частоте в несколько десятков килогерц. Инвертор состоит из генератора импульсов с промежуточным каскадом усиления мощности и мощного выходного каскада, нагруженного на высокочастотный силовой трансформатор.
Выходные напряжения получают с помощью выпрямителей, подключенных к вторичным обмоткам этого трансформатора. Стабилизация напряжений производится с помощью широтно-импульсной модуляции (ШИМ) импульсов, генерируемых инвертором, обычно это один или два выходных канала, как правило, +5V и +12V.

Широко распространённая схема импульсного источника питания состоит из следующих частей:
Входного фильтра, предотвращающего распространение импульсных помех в питающую сеть. Также, входной фильтр предотвращает повреждение входного выпрямительного моста током заряда электролитических конденсаторов при включении БП в электрическую сеть.
Входного выпрямительного моста, преобразующего переменное напряжение в постоянное пульсирующее.
Фильтра, сглаживающего пульсации выпрямленного напряжения
Полумостового преобразователя на транзисторах
Цепей управления преобразователем и защиты компьютера от превышения/снижения питающих напряжений.
Импульсного высокочастотного трансформатора, который служит для формирования необходимых номиналов напряжения, а также для гальванической развязки цепей (входных от выходных, а также, при необходимости, выходных друг от друга). Пиковые напряжения на выходе высокочастотного трансформатора пропорциональны входному питающему напряжению и значительно превышают требуемые выходные.
Выходные выпрямители. Положительные и отрицательные напряжения (5V и 12V) используют одни и те же выходные обмотки трансформатора, с разным направлением включения диодов выпрямителя. Для снижения потерь, по цепи 5V используют диоды Шоттки, обладающие малым прямым падением напряжения.
Дросселя выходной групповой стабилизации. Дроссель сглаживает импульсы, накапливая энергию между импульсами с выходных выпрямителей. Вторая его функция - перераспределение энергии между цепями выходных напряжений. Так если по какому-либо каналу увеличится потребляемый ток, что снизит напряжение в этой цепи, дроссель групповой стабилизации как трансформатор снизит напряжение по другим цепям. Цепь обратной связи обнаружит снижение выходных цепей, увеличит общую подачу энергии, и восстановит требуемые значения напряжений.
Выходных фильтрующих конденсаторов. Выходные конденсаторы, вместе с дросселем групповой стабилизации интегрирует импульсы, тем самым получая необходимые значения напряжений, которые значительно ниже напряжений с выхода трансформатора
Цепи обратной связи, которая поддерживает стабильное напряжение на выходе блока питания.
Отдельного маломощного блока питания +5 Вольт дежурного режима на дискретных элементах или TOPSwitch. Данный источник питания выполнен в виде обратноходового преобразователя.

Сетевой выпрямитель.
Как правило, этот узел выполняют по схеме, показанной на рисунке, различия лишь в типе выпрямительного моста VD1 и в количестве защитных и предохранительных элементов.


Контакты выключателя S1 (разомкнутые) соответствует питанию блока от сети 220...230V, выпрямитель - мостовой, напряжение на его выходе (конденсаторы С4, С5) близко к амплитуде сетевого.
Резисторы R1, R4 и R5 предназначены для разрядки конденсаторов выпрямителя после его отключения от сети, кроме того они выравнивают напряжения на конденсаторах С4 и С5. Терморезистор R2 с отрицательным температурным коэффициентом ограничивает амплитуду броска тока зарядки конденсаторов С4, С5 только в момент включения блока.
Варистор R3 защищает от выбросов сетевого напряжения максимальной амплитуды.
Конденсаторы С1-СЗ и дроссель L1 образуют фильтр, защищающий компьютер от проникновения помех из сети, а сеть - от помех, создаваемых самим компьютером.

Мощный каскад инвертора.
Импульсы, сформированные узлом управления, через трансформатор Т1 поступают на базы транзисторов VT1 и VT2, поочередно открывая их. Диоды VD4, VD5 защищают транзисторы от напряжения обратной полярности. Выходные напряжения получают выпрямляя снятые с вторичных обмоток трансформатора Т2. Один из выпрямителей (VD6, VD7 с фильтром L1C5) показан на схеме выше.
Большинство мощных каскадов БП отличаются лишь типом транзисторов, которые могут быть, например, полевыми или содержать встроенные защитные диоды. Существует несколько вариантов исполнения базовых цепей (для биполярных) или цепей затвора (для полевых транзисторов) с разным числом, номиналами и схемами включения элементов. Например, резисторы R4, R6 могут быть подключены непосредственно к базам соответствующих транзисторов.



На рисунке показана часть схемы БП, где в рабочем режиме узел управления инвертором питают выходным напряжением БП, но в момент включения оно отсутствует.
Один из основных способов получить необходимое для пуска инвертора напряжение питания в представленной на рисунке схеме выглядит так:
Сразу после включения блока выпрямленное сетевое напряжение поступает через резистивный делитель R3-R6 в базовые цепи транзисторов VT1 и VT2, приоткрывая их, причем диоды VD1 и VD2 предотвращают шунтирование участков база-эмиттер транзисторов обмотками II и III трансформатора Т1.
В это же время происходит зарядка конденсаторов С4, С6 и С7, причем ток зарядки конденсатора С4, протекая по обмотке I трансформатора Т2 и по части обмотки II трансформатора Т1, наводит в обмотках II и III напряжение, открывающее один из транзисторов и закрывающее другой.
Какой из транзисторов закроется, а какой - откроется, зависит от асимметрии характеристик элементов каскада.
В результате действия положительной ОС процесс протекает лавинообразно, а наведенный в обмотке II трансформатора Т2 импульс через один из диодов VD6, VD7, резистор R9 и диод VD3 заряжает конденсатор СЗ до напряжения, достаточного для начала работы узла управления. В дальнейшем он питается по той же цепи, а выпрямленное диодами VD6, VD7 напряжение после сглаживания фильтром L1C5 поступает на выход +12V БП.
Данный вариант цепей начального запуска может, отличается тем, что напряжение на делитель, аналогичный R3-R6, подают от отдельного однополупериодного выпрямителя сетевого напряжения с конденсатором фильтра небольшой емкости. В результате транзисторы инвертора приоткрываются раньше, чем зарядятся конденсаторы фильтра основного выпрямителя (С6, С7, см. рис.), что обеспечивает более уверенный запуск.

Выходные выпрямители.
На рисунке показана типовая схема четырехканального выпрямительного узла БП. Чтобы не нарушать симметрии перемагничивания магнитопровода силового трансформатора выпрямители строят только по двухполупериодным схемам, причем мостовые выпрямители, для которых характерны повышенные потери, почти не применяют.
Главная особенность выпрямителей в БП - сглаживающие фильтры, начинающиеся с индуктивности (дросселя).



Напряжение на выходе выпрямителя с подобным фильтром зависит не только от амплитуды, но и от скважности (отношения длительности к периоду повторения) поступающих на вход импульсов.
Это дает возможность стабилизировать выходное напряжение, изменяя скважность входного напряжения.
Применяемые во многих других случаях выпрямители с фильтрами, начинающимися с конденсатора, подобным свойством не обладают. Процесс изменения скважности импульсов обычно называют ШИМ - широтно-импульсной модуляцией.
Так как амплитуда импульсов, пропорциональная напряжению в питающей сети, на входах всех имеющихся в блоке выпрямителей изменяется по одинаковому закону, стабилизация с помощью ШИМ одного из выходных напряжений стабилизирует и все остальные.
Чтобы усилить этот эффект, дроссели фильтров L1.1-L1.4 всех выпрямителей намотаны на общем магнитопроводе. Магнитная связь между ними дополнительно синхронизирует происходящие в выпрямителях процессы. Для правильной работы выпрямителя с L-фильтром необходимо, чтобы ток его нагрузки превышал некоторое минимальное значение, зависящее от индуктивности дросселя фильтра и частоты импульсов. Эту начальную нагрузку создают резисторы R4-R7, подключенные параллельно выходным конденсаторам С5-С8.
Они же служат для ускорения разрядки конденсаторов после выключения БП.
Для устранения опасных выбросов напряжения, возникающих в обмотках трансформатора на фронтах импульсов, предусмотрены демпфирующие цепи R1C2, R2C3.

Узел управления.
Большинство блоков построены на базе микросхемы ШИМ контроллера TL494CN или ее модификаций IR3M02, uА494, КА7500, МВ3759 и т.д., TL594 - аналог TL494 с улучшенной точностью усилителей ошибки и компаратора.
Основная часть схемы и элементы внутреннего устройства упомянутой микросхемы показаны на рисунке.



Микросхема TL494/5 включает в себя усилитель ошибки, встроенный регулируемый генератор, компаратор регулировки мертвого времени, триггер управления, прецизионный ИОН на 5V и схему управления выходным каскадом. Усилитель ошибки выдает синфазное напряжение в диапазоне от –0,3…(Vcc-2) V. Компаратор регулировки мертвого времени имеет постоянное смещение, которое ограничивает минимальную длительность мертвого времени величиной порядка 5%. Независимые выходные формирователи на транзисторах обеспечивают возможность работы выходного каскада по схеме с общим эмиттером либо по схеме эмиттерного повторителя.
Частота генератора пилообразного напряжения G1, определяется номиналами внешних компонентов R8 и СЗ подключенных к 5-му и 6-му выводам и обычно выбирается равной примерно 60 кГц.
Напряжение с генератора пилообразного напряжения G1 поступает на два компаратора A3 и А4, выходные импульсы которых суммирует элемент ИЛИ D1. Далее импульсы через элементы ИЛИ-НЕ D5 и D6 подают на выходные транзисторы микросхемы V3, V4.
Импульсы с выхода элемента D1 поступают также на вход триггера D2, и каждый из них изменяет состояние триггера. Таким образом, если на вывод 13 микросхемы подана логическая «1» или он, как в данном случае, оставлен свободным, импульсы на выходах элементов D5 и D6 чередуются, что и необходимо для управления двухтактным инвертором.
Если микросхему TL494 применяют в однотактном преобразователе напряжения, вывод 13 соединяют с общим проводом, в результате триггер D2 больше не участвует в работе, а импульсы на всех выходах появляются одновременно.
Элемент А1 - усилитель сигнала ошибки в контуре стабилизации выходного напряжения БП. Это напряжение (в данном случае +5V) через резистивный делитель R1R2 поступает на один из входов усилителя. На втором его входе - образцовое напряжение, полученное от встроенного в микросхему стабилизатора А5 с помощью резистивного делителя R3-R5.
Напряжение на выходе А1, пропорциональное разности входных, задает порог срабатывания компаратора А4 и, следовательно, скважность импульсов на его выходе. Так как выходное напряжение БП зависит от скважности (см. выше), в замкнутой системе автоматически поддерживается его равенство образцовому с учетом коэффициента деления R1 и R2. Цепь R7C2 необходима для устойчивости стабилизатора. Второй усилитель А2 в данном случае отключен подачей соответствующих напряжений на его входы и в работе не участвует.
Функция компаратора A3 - это гарантировать наличие паузы между импульсами на выходе элемента D1, даже если выходное напряжение усилителя А1 вышло за допустимые пределы. Минимальный порог срабатывания A3 (при соединении вывода 4 с общим проводом) задан внутренним источником напряжения GV1. С увеличением напряжения на выводе 4 минимальная длительность паузы растет, следовательно, максимальное выходное напряжение БП падает.
Это свойство используют для плавного пуска БП. Дело в том, что в начальный момент работы блока конденсаторы фильтров его выпрямителей полностью разряжены, что эквивалентно замыканию выходов на общий провод. Пуск инвертора сразу же "на полную мощность" приведет к большой перегрузке транзисторов мощного каскада, что может привести к выходу их из строя. Цепь C1R6 обеспечивает плавный, без перегрузок, пуск инвертора.
В первый после включения момент конденсатор С1 разряжен, а напряжение на выводе 4 DA1 близко к +5V, получаемым от стабилизатора А5. Это гарантирует паузу максимально возможной длительности, вплоть до полного отсутствия импульсов на выходе микросхемы. По мере зарядки конденсатора С1 через резистор R6 напряжение на выводе 4 уменьшается, а с ним и длительность паузы.
Одновременно растет выходное напряжение БП. Так продолжается, пока напряжение не приблизится к образцовому и не вступит в действие стабилизирующая обратная связь. Дальнейшая зарядка конденсатора С1 на процессы в БП не влияет. Так как перед каждым включением БП конденсатор С1 должен быть полностью разряжен, во многих случаях предусматривают цепи его принудительной разрядки (на рисунке не показаны).

Промежуточный каскад.
Задача этого каскада - усиление импульсов перед их подачей на мощные транзисторы. Иногда промежуточный каскад отсутствует как самостоятельный узел, входя в состав микросхемы задающего генератора.

На рисунке показана схема такого каскада.
Если же мощности транзисторов микросхемы TL494CN недостаточно для непосредственного управления выходным каскадом инвертора, применяют схему, подобную приведенной на рис. 4.



Рис.4.

Половины обмотки I трансформатора Т1 служат коллекторными нагрузками транзисторов VT1 и VT2, поочередно открываемых импульсами, поступающими от микросхемы DA1. Резистор R5 ограничивает коллекторный ток транзисторов приблизительно до 20 мА.
С помощью диодов VD1, VD2 и конденсатора С1 на эмиттерах транзисторов VT1 и VT2 поддерживают необходимое для их надежного закрывания напряжение +1,6V.
Диоды VD4 и VD5 демпфируют колебания, возникающие в моменты переключения транзисторов в контуре, образованном индуктивностью обмотки I трансформатора Т1 и ее собственной емкостью.
Диод VD3 закрывается, если выброс напряжения на среднем выводе обмотки I превышает напряжение питания каскада.
Еще один вариант схемы промежуточного каскада показан на рис. 5.



Рис.5.

В данном случае выходные транзисторы микросхемы DA1 включены по схеме с общим коллектором.
Конденсаторы С1 и С2 - форсирующие. Обмотка I трансформатора Т1 не имеет среднего вывода, здесь в зависимости от того, какой из транзисторов VT1, VT2 в данный момент открыт, цепь обмотки замыкается на источник питания через резистор R7 или R8, подключенный к коллектору закрытого транзистора.

Поиск и устранение неисправностей.


Визуальный осмотр блока.
Снимаем крышку и начинаем осмотр с целью выявить явно неисправные детали, например: изменившие свой цвет, подгоревшие, или имеющие трещины на корпусе, также обращаем внимание на качество пайки выводов.




1. Предохранитель , как правило, стеклянный и его перегорание хорошо заметно, но если он обтянут термоусадкой или керамический – тогда проверяем его омметром. Перегорание предохранителя свидетельствует о неисправности диодов входного выпрямителя, ключевых транзисторов или схемы дежурного режима.
2. Диоды или диодная сборка входного выпрямителя, проверяем на обрыв и короткое замыкание каждый диод. При обнаружении пробоя хотя бы одного диода рекомендуется проверить входные электролитические конденсаторы, и силовые транзисторы, т.к. велика вероятность их неисправности. Маломощные двухамперные диоды, которые часто встречающиеся в дешевых блоках, рекомендуется заменить на более мощные, в зависимости от мощности БП диоды должны быть рассчитаны на ток 4...8 Ампер.
3. Входные электролитические конденсаторы , проверяем внешним осмотром (на вздутие), также желательно проверить емкость - она не должна быть ниже обозначенной на маркировке и отличаться у двух конденсаторов более чем на 5%.
4. Варисторы , стоящие параллельно конденсаторам и выравнивающие резисторы (сопротивление одного не должно отличаться от сопротивления другого более чем на 5%).
5. Ключевые (силовые) транзисторы . Проверяем мультиметром падение напряжения на переходах «база-коллектор» и «база-эмиттер» в обоих направлениях, в исправном биполярном транзисторе переходы должны вести себя как диоды. После этого проверяем отсутствие пробоя в переходе «коллектор-эмиттер» При обнаружении неисправности транзистора необходимо проверить всю его «обвязку»: диоды, резисторы и электролитические конденсаторы. Конденсаторы, стоящие в цепи базы лучше заменить новыми большей емкости, например: вместо 2.2х50V ставим 4,7х50V. Также желательно зашунтировать их керамическими конденсаторами емкостью 1.0...2.2 мкФ.
6. Выходные диодные сборки , проверяем мультиметром, наиболее частая неисправность - пробой. Замену лучше ставить в корпусе ТО-247. Обычно для блоков 300-350W диодные сборки на 30А, типа MBR3045 или аналогичные.
7. Выходные электролитические конденсаторы . Неисправность проявляется в виде вздутия, следов коричневого налета или потеков на плате (при выделении электролита). Меняем на конденсаторы нормальной емкости, 2200...4700 мкФ, рабочая температура - 105° С. Желательно серии LowESR.




Проверка блока:
БП ATX имеют вход дистанционного управления (PS-ОN), при соединении которого с общим проводом (СОМ) включенный в сеть блок начинает работать. Если цепь PS-ON - COM разорвана, напряжения на выходах БП (за исключением дежурных +5V в цепи +5VSB) отсутствуют.
Основные цепи блока питания формата АТХ сосредоточены в разъеме, показанном на рисунке.
Вид со стороны гнезд розетки:




Для того чтобы локализовать неисправность, подключаем БП к сети и пробуем его запустить:
1. Нет дежурного напряжения – проблема с дежуркой, либо КЗ в силовой части,
2. Есть дежурка, но нет запуска, то проблема с раскачкой или ШИМ.
3. БП уходит в защиту тогда чаще всего - проблема в выходных цепях: конденсаторах либо диодных сборках.




Завышенное напряжение дежурки в 90% - вздутые конденсаторы, и часто - убитый ШИМ.
Потемнение или выгорание печатной платы под резисторами и диодами свидетельствует о том, что компоненты схемы работали в нештатном режиме, и требуется анализ схемы для выяснения причины. Обнаружение такого места возле ШИМа означает, что греется резистор питания ШИМ 22 Ома от превышения дежурного напряжения и, как правило, часто ШИМ в этом случае тоже умирает, так что проверяем микросхему.

Проверка высоковольтной части блока на короткое замыкание.
Берём лампочку от 60 до 100W и подключаем вместо предохранителя или в разрыв сетевого провода.
Если при включении блока лампа вспыхивает и гаснет - все в порядке, короткого замыкания в высоковольтной части нет.
Если при включении блока лампа зажигается и не гаснет - в высоковольтной части блока есть короткое замыкание.

Для обнаружения и устранения замыкания делаем следующее:
1. Выпаиваем транзисторы (силовые и дежурки) и включаем БП через лампу без замыкания PS-ON.
2. Если лампа горит - ищем причину в диодном мосте, варисторах, конденсаторах, переключателе 110/220V.
3. Если короткого нет - запаиваем транзистор дежурки и повторяем процедуру включения.
4. Если короткое есть - ищем неисправность в дежурке.

Проверка схемы дежурного режима:
Источник питания дежурного режима служит для питания микросхемы ШИМ контроллера БП, и узлов дежурного режима системной платы ПК. Чаще всего выполняется в виде однотактного импульсного преобразователя по схеме блокинг-генератора, со стабилизацией выходного напряжения с помощью обратной связи с применением оптопары.



В первую очередь проверяем ключевой транзистор и всю его обвязку резисторы, стабилитроны, диоды. Далее проверяем стабилитрон, стоящий в базовой цепи (цепь затвора) транзистора, в схемах на биполярных транзисторах номинал от 6V до 6.8V, на полевых, как правило, 18V. Если всё в норме, обращаем внимание на резистор (порядка 4,7 Ом) питания обмотки трансформатора дежурного режима от +310V часто перегорает как предохранитель, но бывает, сгорает и трансформатор дежурки и оттуда, же 150~450kом на базу ключевого транзистора дежурного режима - смещение на запуск. Резисторы часто уходят в обрыв от токовой перегрузки. Замеряем сопротивление первичной обмотки дежурного транса - должно быть порядка 3 или 7 Ом. Если обмотка трансформатора в обрыве (бесконечность) - меняем или перематываем транс. Бывают случаи, когда при нормальном сопротивлении первичной обмотки трансформатор оказывается нерабочим (короткозамкнутые витки).
Такой вывод можно сделать, если вы уверены в исправности всех остальных элементов дежурки.



Проверяем выходные диоды и конденсаторы. При наличии обязательно меняем электролит в «дежурке» на новый, припаиваем параллельно ему керамический или пленочный конденсатор 0.15...1.0 мкФ (доработка для предотвращения его «высыхания»). Отпаиваем резистор, ведущий на питание ШИМ. Далее на выход +5VSB (фиолетовый) вешаем нагрузку в виде лампочки 0.3Ах6.3V, включаем блок в сеть и проверяем выходные напряжения дежурки.
На выходе должно быть +12...30V и +5V, если напряжения в норме - запаиваем резистор на место.

Проверка дежурки под нагрузкой:
Измеряем напряжение дежурного источника, нагруженного вначале на лампочку, а потом - током до 2А, если напряжение дежурки не просаживается - включаем БП, замыкая PS-ON (зеленый) на землю, измеряем напряжения на всех выходах БП. Если все напряжения в допуске, собираем блок в корпус и проверяем БП при полной нагрузке. Смотрим пульсации.
На выходе блока при нормальной работе блока формируется сигнал «PG» или «PW-OK» (Power OK) (серый провод) высокого уровня (от +3,5 до +5V), который свидетельствует, что все выходные напряжения находятся в допустимых пределах.
На "материнской" плате компьютера этот сигнал участвует в формировании сигнала системного сброса Reset. После включения БП уровень сигнала «PG» (PW-OK) некоторое время остается низким, запрещая работу процессора, пока в цепях питания не завершатся переходные процессы.
При отключении сетевого напряжения или внезапно возникшей неисправности БП логический уровень сигнала «PG» (PW-OK) изменяется прежде, чем выходные напряжения блока упадут ниже допустимых значений. Это вызывает остановку процессора, предотвращая искажение данных, хранящихся в памяти, и другие необратимые операции.

Проверка резисторов.
Резисторы, потемневшие от перегрева номинал которых еще можно прочитать, лучше сразу заменить новыми с отклонением от оригинала не более +/-5%.
В случае, когда номинал резистора не читается или маркировка осыпалась, измеряем сопротивление мультиметром. Если сопротивление равно нулю или бесконечности - резистор неисправен и для определения его номинала потребуется принципиальная схема блока питания, либо изучение типовой схемы включения.

Проверка диодов.
Если ваш мультиметр имеет режим измерения падения напряжения на диоде - можно проверять, не выпаивая. Падение должно быть от 0,02 до 0,7V. Если падение - ноль или около того (до 0,005) – выпаиваем сборку и проверяем. Если показания те же – диод пробит. Если же прибор не имеет такой функции, установите прибор на измерение сопротивления (обычно предел в 20кОм). Тогда в прямом направлении исправный диод Шотки будет иметь сопротивление порядка 1 - 2 кОм, а обычный кремниевый - порядка 3 - 6 кОм. В обратном направлении сопротивление будет равно бесконечности.

Проверка микросхемы ШИМ TL494 и аналогов типа КА7500.
1. Включаем блок в сеть. На 12 ноге должно быть порядка 12-30V.
2. Если нет - проверяйте дежурку. Есть - проверяем напряжение на 14 ноге - должно быть +5V (+/-5%).
3. Если нет - меняем микросхему. Если есть - проверяем поведение 4 ноги при замыкании PS-ON на землю.
До замыкания должно быть порядка 3...5V, после - около 0.
4. Устанавливаем перемычку с 16 ноги (токовая защита) на землю (если не используется - то уже сидит на земле).
Таким образом, временно отключаем защиту МС по току.
5. Замыкаем PS-ON на землю и осциллографом смотрим импульсы на 8 и 11 ногах ШИМ и далее на базах ключевых транзисторов.
6. Если импульсов на 8 или 11 ногах нет или ШИМ греется – меняем микросхему.
7. Если картинка красивая – ШИМ и каскад раскачки можно считать живым.
8. Если нет импульсов на ключевых транзисторах - проверяем промежуточный каскад (раскачку) – обычно 2 штуки C945 с коллекторами на трансе раскачки, два 1N4148 и емкости 1...10мкф на 50V, диоды в их обвязке, сами ключевые транзисторы, пайку ног силового трансформатора и разделительного конденсатора.

Параметры некоторых элементов используемых в БП PC


Транзисторы

Режим изм.

Iпр имп.max, мкА

Iобр. max, мкА

Uобр. имп. max, В

Uпр max, В (при Iпр, А)

fр, кГц (при Iпр, А)

tвос. обр. max, нс

12CTQ040 (2Шотки)

(диод Шотки)

Диагностика компьютерного блока питания – это первый этап в поиске неисправностей в системном блоке, если тот вообще не подает сигналов жизни.

В жизни каждого радиолюбителя рано или поздно наступает момент, когда ему приходится начинать осваивать мелкий ремонт техники. Это могут быть настольные компьютерные колонки, планшет, мобильный телефон и еще какие-нибудь гаджеты. Не ошибусь, если скажу, что почти каждый радиолюбитель пробовал чинить свой компьютер. Кому-то это удавалось, а кто-то все таки нес его в сервис-центр.

В этой статье мы с вами разберем основы самостоятельной диагностики неисправностей блока питания ПК.

Давайте предположим, что нам в руки попался блок питания (БП) от компьютера. Для начала нам надо убедиться, рабочий ли он?Кстати, нужно учитывать, что дежурное напряжение +5 Вольт присутствует сразу после подключения сетевого кабеля к блоку питания.


Если его нету, то не лишним будет прозвонить шнур питания на целостность жил мультиметром в режиме звуковой прозвонки. Также не забываем прозвонить кнопку и предохранитель. Если с сетевым шнуром все ОК, то включаем блок питания ПК в сеть и запускаем без материнской платы путем замыкания двух контактов: PS-ON и COM . PS-ON сокращенно с англ. – Power Supply On – дословно как “источник питания включить” . COM сокращенно от англ. Сommon – общий. К контакту PS-ON подходит провод зеленого цвета, а “общий” он же минус – это провода черного цвета.


На современных БП идет разъем 24 Pin. На более старых – 20 Pin.

Замкнуть эти два контакта проще всего разогнутой канцелярской скрепкой



Хотя теоретически для этой цели сгодится любой металлический предмет или проводок. Даже можно использовать тот же самый пинцет.


Исправный блок питания у нас должен сразу включиться. Вентилятор начнет вращаться и появится напряжение на всех разъемах блока питания.

Если наш компьютер работает со сбоями, то нелишним будет проверить на его разъемах соответствие величины напряжения на его контактах. Да и вообще, когда компьютер глючит и часто вылазит синий экран, неплохо было бы проверить напряжение в самой системе, скачав небольшую программку для диагностики ПК. Я рекомендую программу AIDA. В ней сразу можно увидеть, в норме ли напряжение в системе, виноват ли в этом блок питания или все-таки “мандит” материнская плата, или даже что-то другое.

Вот скрин с программы AIDA моего ПК. Как мы видим, все напряжения в норме:

Если есть какое-либо приличное отклонение напряжения, то это уже ненормально. Кстати, покупая б/у компьютер, ВСЕГДА закачивайте на него эту программку и полностью проверяйте все напряжения и другие параметры системы. Проверено на горьком опыте:-(.

Если же все-таки величина напряжения сильно отличается на самом разъеме блока питания, то блок надо попытаться отремонтировать. Если вы вообще очень плохо дружите с компьютерной техникой и ремонтами, то при отсутствии опыта его лучше заменить. Нередки случаи, когда НЕисправный блок питания при выходе из строя “утягивал” за собой часть компьютера. Чаще всего при этом выходит из строя материнская плата. Как этого можно избежать?


Рекомендации по выбору блоков питания для ПК

На блоке питания экономить никогда нельзя и нужно всегда иметь небольшой запас по мощности. Желательно не покупать дешевые блоки питания NONAME.


и POWER MAN


Как быть, если вы слабо разбираетесь в марках и моделях блоков питания, а на новый и качественный мамка не дает денег))? Желательно, чтобы в нем стоял вентилятор 12 См, а не 8 См.

Ниже на фото блок питания с вентилятором 12 см.


Такие вентиляторы обеспечивают лучшее охлаждение радиодеталей блока питания. Нужно также помнить еще одно правило: хороший блок питания не может быть легким . Если блок питания легкий, значит в нем применены радиаторы маленького сечения и такой блок питания будет при работе перегреваться при номинальных нагрузках. А что происходит при перегреве? При перегреве некоторые радиоэлементы, особенно полупроводники и конденсаторы, меняют свои номиналы и вся схема в целом работает неправильно, что конечно же, скажется и на работе блока питания.

Самые частые неисправности

Также не забывайте хотя бы раз в год чистить свой блок питания от пыли. Пыль является “одеялом” для радиоэлементов, под которым они могут неправильно функционировать или даже “сдохнуть” от перегрева.


Самая частая поломка БП – это силовые полупроводнки и конденсаторы . Если есть запах горелого кремния, то надо смотреть, что сгорело из диодов или . Неисправные конденсаторы определяются визуальным осмотром. Раскрывшиеся, вздутые, с подтекающим электролитом – это первый признак того, что надо срочно их менять.



При замене надо учитывать, что в блоках питания стоят конденсаторы с низким эквивалентным последовательным сопротивлением (ESR) . Так что в этом случае вам стоит обзавестись ESR-метром и выбирать конденсаторы как можно более с низким ESR. Вот небольшая табличка сопротивлений для конденсаторов различной емкости и напряжений:


Здесь надо подбирать конденсаторы таким образом, чтобы значение сопротивления было не больше, чем указано в таблице.

При замене конденсаторов важны еще также два параметра: емкость и их рабочее напряжение. Они указываются на корпусе конденсатора:


Как быть, если в магазине есть конденсаторы нужного номинала, но рассчитанные на большее рабочее напряжение? Их также можно ставить в схемы при ремонте, но нужно учитывать, что у конденсаторов, рассчитанных на большее рабочее напряжение обычно и габариты больше.

Если у нас блок питания запускается, то мы меряем напряжение на его выходном разъеме или разъемах мультиметром. В большинстве случаев при измерении напряжения блоков питания ATX, бывает достаточно выбрать предел DCV 20 вольт.



Существуют два способа диагностики:

– проведение измерений на “горячую” во включенном устройстве

– проведение измерений в обесточенном устройстве

Что же мы можем померять и каким способом проводятся эти измерения? Нас интересует измерение напряжения в указанных точках блока питания, измерение сопротивления между определенными точками, звуковая прозвонка на отсутствие или наличие замыкания, а также измерение силы тока. Давайте разберем подробнее.

Измерение напряжения

Если вы ремонтируете какое-либо устройство и имеете принципиальную схему на него, на ней часто указывается, какое напряжение должно быть в контрольных точках на схеме. Разумеется, вы не ограничены только этими контрольными точками и можете померять разность потенциалов или напряжение в любой точке блока питания или любого другого ремонтируемого устройства. Но для этого вы должны уметь читать схемы и уметь их анализировать. Более подробно, как измерять напряжение мультиметром, можно прочитать в этой статье.

Измерение сопротивления

Любая часть схемы имеет какое-то сопротивление. Если при замере сопротивления на экране мультиметра единица, это значит, что в нашем случае сопротивление выше, чем предел измерения сопротивления выбранный нами. Приведу пример, например, мы измеряем сопротивление части схемы, состоящей условно, из резистора известного нам номинала, и дросселя. Как мы знаем, дроссель – это грубо говоря, всего лишь кусок проволоки, обладающий небольшим сопротивлением, а номинал резистора нам известен. На экране мультиметра мы видим сопротивление несколько большее, чем номинал нашего резистора. Проанализировав схему, мы приходим к выводу, что эти радиодетали у нас рабочие и с ними обеспечен на плате хороший контакт. Хотя поначалу, при недостатке опыта, желательно прозванивать все детали по отдельности. Также нужно учитывать, что параллельно подключенные радиодетали влияют друг на друга при измерении сопротивления. Вспомните параллельное подключение резисторов и все поймете. Более подробно про измерение сопротивления можно прочитать .

Звуковая прозвонка

Если раздается звуковой сигнал, это означает, что сопротивление между щупами, а соответственно и участком цепи, подключенных к её концам, рано нулю, или близко к этому. С её помощью мы можем убедиться в наличии или отсутствии замыкания, на плате. Также можно обнаружить есть контакт на схеме, или нет, например, в случае обрыва дорожки или непропая, или подобной неисправности.

Измерение протекающего тока в цепи

При измерениии силы тока в цепи, требуется вмешательство в конструкцию платы, например путем отпаивания одного из выводов радиодетали. Потому что, как мы помним, амперметр у нас подключается в разрыв цепи. Как измерить силу тока в цепи, можно прочитать в этой статье.


Используя эти четыре метода измерения с помощью одного только мультиметра можно произвести диагностику очень большого количества неисправностей в схемах практически любого электронного устройства.

Как говорится, в электрике есть две основных неисправности: контакт есть там, где его не должно быть, и нет контакта там, где он должен быть . Что означает эта поговорка на практике? Например, при сгорании какой-либо радиодетали мы получаем короткое замыкание, являющееся аварийным для нашей схемы. Например, это может быть пробой транзистора. В схемах может случится и обрыв, при котором ток в нашей цепи течь не может. Например, разрыв дорожки или контактов, по которым течет ток. Также это может быть обрыв провода и тому подобное. В этом случае наше сопротивление становится, условно говоря, бесконечности.

Конечно, существует еще третий вариант: изменение параметров радиодетали. Например, как в случае с тем же электролитически м конденсатором, или подгорание контактов выключателя, и как следствие, сильное возрастание их сопротивления. Зная эти три варианта поломок и умея проводить анализ схем и печатных плат, вы научитесь без труда ремонтировать свои электронные устройства. Более подробно про ремонт радиоэлектронных устройств можно прочитать в статье “Основы ремонта “.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.