Последняя цифра числа. Расчет среднего значения в программе Microsoft Excel

Оказывается, что целый ряд практических задач можно решить с помощью немногих характеристик распределения, а знание точной функции распределения случайной величины оказывается необязательным. К таким определяющим характеристикам случайной величины относятся, например, ее среднее и среднее квадратичное значения, а также среднее квадратичное отклонение.

Находить средние значения случайных величин можно из опыта, а также зная функции распределения случайных величин. Рассмотрим, как находить эти средние значения в различных случаях.

Пусть случайная величина может принимать: значения с вероятностью или это значение выпадает раз из

значение с вероятностью или это значение выпадает раз из наконец,

значение с вероятностью или это значение выпадает раз из

Тогда сумма значений случайной величины при испытаниях будет:

Чтобы найти среднее значение случайной величины т. е. значение, приходящееся на одно испытание, нужно сумму разделить на полное число испытаний:

Если мы имеем некоторую среднюю величину найденную по формуле (2.11), то, вообще говоря, при различных значениях полного числа испытаний значения средней величины также будут различными, так как рассматриваемые величины носят случайный характер. Однако при увеличении числа среднее значение данной величины будет стремиться к определенному пределу а. И чем больше будет число испытаний, тем ближе определенное по формуле (2.11), будет приближаться к этому предельному значению:

Последнее равенство представляет собой так называемый закон больших чисел или теорему Чебышева: среднее значение случайной величины будет стремиться к постоянному числу при очень большом числе измерений.

Итак, среднее значение случайной величины равна сумме произведений случайной величины на вероятность ее появления.

Если случайная величина меняется непрерывно, то ее среднее значение можно найти с помощью интегрирования:

Средние величины обладают рядом важных свойств:

1) среднее значение постоянной величины равно самой постоянной величине т. е.

2) среднее значение некоторой случайной величины есть величина постоянная, т. е.

3) среднее значение суммы нескольких случайных величин равно сумме средних значений этих величин, т. е.

4) среднее значение произведения двух взаимно независимых случайных величин равно произведению средних значений каждой из них, т. е.

Распространяя это правило на большее число независимых величин, имеем:

Иногда по тем или иным причинам знание среднего значения случайной величины оказывается недостаточным. В таких случаях ищется не просто среднее значение случайной величины, а среднее значение квадрата этой величины (квадратичное). При этом имеют место аналогичные формулы:

для дискретных значений и

в случае непрерывного изменения случайной величины.

Среднее квадратичное значение случайной величины оказывается всегда положительным и не обращается в нуль.

Часто приходится интересоваться не только средними значениями самой случайной величины, но и с редними значениями некоторых функций от случайной величины.

Например, имея распределение молекул по скоростям, мы можем найти среднюю скорость. Но также нас может интересовать средняя кинетическая энергия теплового движения, являющаяся квадратичной функцией скорости. В таких случаях можно воспользоваться следующими общими формулами, определяющими среднее значение произвольной функции случайной величины для случая дискретного распределения

для случая непрерывного распределения

Для нахождения средних значений случайной величины или функции от случайной величины с помощью ненормированной функции распределения пользуются формулами:

Здесь везде интегрирование производится по всей области возможных значений случайной величины

Отклонение от средних. В ряде случаев знание среднего и среднего квадратичного значения случайной величины оказывается недостаточным для характеристики случайной величины. Интерес представляет также распределение случайной величины около своего среднего значения. Для этого исследуется отклонение случайной величины от среднего значения.

Однако, если мы возьмем среднее отклонение случайной величины от ее среднего значения т. е. среднее значение чисел:

то получим, как в случае дискретного, так и в случае непрерывного распределения, нуль. Действительно,

Иногда можно находить среднее значение модулей отклонений случайной величины от среднего значения, т. е. величину:

Однако вычисления с абсолютными значениями часто сложны, а иногда и невозможны.

Поэтому гораздо чаще для характеристики распределения случайной величины около своего среднего значения используют так называемое среднее квадратичное отклонение или средний квадрат отклонения. Средний квадрат отклонения иначе называют дисперсией случайной величины. Дисперсия определяется по формулам:

которые преобразуются к одному виду (см. задачи 5, 9).

где величина представляет квадрат отклонения случайной величины от ее среднего значения.

Квадратный корень из дисперсии случайной величины называется средним квадратичным отклонением случайной величины, а для физических величин - флуктуацией:

Иногда вводится относительная флуктуация, определяемая по формуле

Таким образом, зная закон распределения случайной величины, можно определить все интересующие нас характеристики случайной величины: среднее значение, среднее квадратичное, среднее значение произвольной функции от случайной величины, средний квадрат отклонения или дисперсию и флуктуацию случайной величины.

Поэтому одной из основных задач статистической физики является отыскание законов и функций распределения тех или иных физических случайных величин и параметров в различных физических системах.

В вычислении среднего значения теряется.

Среднее значение набора чисел равно сумме чисел S, деленной на количество этих чисел. То есть получается, что среднее значение равно: 19/4 = 4.75.

Обратите внимание

Если потребуется найти среднее геометрическое всего для двух чисел, то инженерный калькулятор вам не понадобится: извлечь корень второй степени (квадратный корень) из любого числа можно при помощи самого обычного калькулятора.

Полезный совет

В отличие от среднего арифметического, на геометрическое среднее не так сильно влияют большие отклонения и колебания между отдельными значениями в исследуемом наборе показателей.

Источники:

  • Онлайн-калькулятор, рассчитывающий среднее геометрическое
  • среднее геометрическое формула

Среднее значение - это одна из характеристик набора чисел. Представляет собой число, которое не может выходить за пределы диапазона, определяемого наибольшим и наименьшим значениями в этом наборе чисел. Среднее арифметическое значение - наиболее часто используемая разновидность средних.

Инструкция

Сложите все числа множества и разделите их на количество слагаемых, чтобы получить среднее арифметическое значение. В зависимости от конкретных условий вычисления иногда проще делить каждое из чисел на количество значений множества и суммировать результат.

Используйте, например, входящий в состава ОС Windows , если вычислить среднее арифметическое значение в уме не представляется возможным. Открыть его можно с помощью диалога запуска программ. Для этого нажмите «горячие клавиши» WIN + R или щелкните кнопку «Пуск» и выберите в главном меню команду «Выполнить». Затем напечатайте в поле ввода calc и нажмите на Enter либо щелкните кнопку «OK». Это же можно сделать через главное меню - раскройте его, перейдите в раздел «Все программы» и в секции «Стандартные» и выберите строку «Калькулятор».

Введите последовательно все числа множества, нажимая после каждого из них (кроме последнего) клавишу «Плюс» или щелкая соответствующую кнопку в интерфейсе калькулятора. Вводить числа тоже можно как с клавиатуры, так и щелкая соответствующие кнопки интерфейса.

Нажмите клавишу с косой (слэш) или щелкните этот в интерфейсе калькулятора после ввода последнего значения множества и напечатайте количество чисел в последовательности. Затем нажмите знак равенства, и калькулятор рассчитает и покажет среднее арифметическое значение.

Можно для этой же цели использовать табличный редактор Microsoft Excel. В этом случае запустите редактор и введите в соседние ячейки все значения последовательности чисел. Если после ввода каждого числа вы будете нажимать Enter или клавишу со стрелкой вниз или вправо, то редактор сам будет перемещать фокус ввода в соседнюю ячейку.

Щелкните следующую за последним введенным числом ячейку, если вам не достаточно только увидеть среднее арифметическое значение. Раскройте выпадающий с изображением греческой сигма (Σ) команд «Редактирование» на вкладке «Главная». Выберите в нем строку «Среднее » и редактор вставит нужную формулу для вычисления среднеарифметического значения в выделенную ячейку. Нажмите клавишу Enter, и значение будет рассчитано.

Среднее арифметическое - одна из мер центральной тенденции, широко используемая в математике и статистических расчетах. Найти среднее арифметическое число для нескольких значений очень просто, но у каждой задачи есть свои нюансы, знать которые для выполнения верных расчетов просто необходимо.

Что такое среднее арифметическое число

Среднее арифметическое число определяет усредненное значение для всего исходного массива чисел. Другими словами, из некоторого множества чисел выбирается общее для всех элементов значение, математическое сравнение которого со всеми элементами носит приближенно равный характер. Среднее арифметическое число используется, преимущественно, при составлении финансовых и статистических отчетов или для расчетов результатов проведенных подобных опытов.

Как найти среднее арифметическое число

Поиск среднего арифметического числа для массива чисел следует начинать с определения алгебраической суммы этих значений. К примеру, если в массиве присутствуют числа 23, 43, 10, 74 и 34, то их алгебраическая сумма будет равна 184. При записи среднее арифметическое обозначается буквой μ (мю) или x (икс с чертой). Далее алгебраическую сумму следует разделить на количество чисел в массиве. В рассматриваемом примере чисел было пять, поэтому среднее арифметическое будет равно 184/5 и составит 36,8.

Особенности работы с отрицательными числами

Если в массиве присутствуют отрицательные числа, то нахождение среднего арифметического значения происходит по аналогичному алгоритму. Разница имеется только при рассчетах в среде программирования, или же если в задаче есть дополнительные условия. В этих случаях нахождение среднего арифметического чисел с разными знаками сводится к трем действиям:

1. Нахождение общего среднего арифметического числа стандартным методом;
2. Нахождение среднего арифметического отрицательным чисел.
3. Вычисление среднего арифметического положительных чисел.

Ответы каждого из действий записываются через запятую.

Натуральные и десятичные дроби

Если массив чисел представлен десятичными дробями, решение происходит по методу вычисления среднего арифметического целых чисел, но сокращение результата производится по требованиям задачи к точности ответа.

При работе с натуральными дробями их следует привести к общему знаменателю, который умножается на количество чисел в массиве. В числителе ответа будет сумма приведенных числителей исходных дробных элементов.

  • Инженерный калькулятор.

Инструкция

Учитывайте, что в общем случае среднее геометрическое чисел находится путем перемножения этих чисел и извлечения из них корня степени, которая соответствует количеству чисел. Например, если нужно найти среднее геометрическое пяти чисел, то из произведения нужно будет извлекать корень степени.

Для нахождения среднего геометрического двух чисел используйте основное правило. Найдите их произведение, после чего извлеките из него квадратный корень, поскольку числа два, что соответствует степени корня. Например, для того чтобы найти среднее геометрическое чисел 16 и 4, найдите их произведение 16 4=64. Из получившегося числа извлеките квадратный корень √64=8. Это и будет искомая величина. Обратите внимание на то, что среднее арифметическое этих двух чисел больше и равно 10. Если корень не извлекается нацело, произведите округление результата до нужного порядка.

Чтобы найти среднее геометрическое более чем двух чисел, тоже используйте основное правило. Для этого найдите произведение всех чисел, для которых нужно найти среднее геометрическое. Из полученного произведения извлеките корень степени, равной количеству чисел. Например, чтобы найти среднее геометрическое чисел 2, 4 и 64, найдите их произведение. 2 4 64=512. Поскольку нужно найти результат среднего геометрического трех чисел, что из произведения извлеките корень третей степени. Сделать это устно затруднительно, поэтому воспользуйтесь инженерным калькулятором. Для этого в нем есть кнопка "x^y". Наберите число 512, нажмите кнопку "x^y", после чего наберите число 3 и нажмите кнопку "1/х", чтобы найти значение 1/3, нажмите кнопку "=". Получим результат возведения 512 в степень 1/3, что соответствует корню третьей степени. Получите 512^1/3=8. Это и есть среднее геометрическое чисел 2,4 и 64.

С помощью инженерного калькулятора можно найти среднее геометрическое другим способом. Найдите на клавиатуре кнопку log. После этого возьмите логарифм для каждого из чисел, найдите их сумму и поделите ее на количество чисел. Из полученного числа возьмите антилогарифм. Это и будет среднее геометрическое чисел. Например, для того чтобы найти среднее геометрическое тех же чисел 2, 4 и 64, сделайте на калькуляторе набор операций. Наберите число 2, после чего нажмите кнопку log, нажмите кнопку "+", наберите число 4 и снова нажмите log и "+", наберите 64, нажмите log и "=". Результатом будет число, равное сумме десятичных логарифмов чисел 2, 4 и 64. Полученное число разделите на 3, поскольку это количество чисел, по которым ищется среднее геометрическое. Из результата возьмите антилогарифм, переключив кнопку регистра, и используйте ту же клавишу log. В результате получится число 8, это и есть искомое среднее геометрическое.

В математике среднее арифметическое значение чисел (или просто среднее) — это сумма всех чисел в данном наборе, разделенная на их количество. Это наиболее обобщенное и распространенное понятие средней величины. Как вы уже поняли, чтобы найти нужно суммировать все данные вам числа, а полученный результат разделить на количество слагаемых.

Что такое среднее арифметическое?

Давайте рассмотрим пример.

Пример 1 . Даны числа: 6, 7, 11. Нужно найти их среднее значение.

Решение.

Для начала найдем сумму всех данных чисел.

Теперь разделим получившуюся сумму на количество слагаемых. Так как у нас слагаемых три, соответственно, мы будем делить на три.

Следовательно, среднее значение чисел 6, 7 и 11 — это 8. Почему именно 8? Да потому, что сумма 6, 7 и 11 будет такая же, как трех восьмерок. Это отлично видно на иллюстрации.

Среднее значение чем-то напоминает «выравнивание» ряда чисел. Как видите, кучки карандашей стали одного уровня.

Рассмотрим еще один пример, чтобы закрепить полученные знания.

Пример 2. Даны числа: 3, 7, 5, 13, 20, 23, 39, 23, 40, 23, 14, 12, 56, 23, 29. Нужно найти их среднее арифметическое значение.

Решение.

Находим сумму.

3 + 7 + 5 + 13 + 20 + 23 + 39 + 23 + 40 + 23 + 14 + 12 + 56 + 23 + 29 = 330

Делим на количество слагаемых (в этом случае — 15).

Следовательно, среднее значение данного ряда чисел равно 22.

Теперь рассмотрим отрицательные числа. Вспомним, как их суммировать. Например, у вас есть два числа 1 и -4. Найдем их сумму.

1 + (-4) = 1 - 4 = -3

Зная это, рассмотрим еще один пример.

Пример 3. Найти среднее значение ряда чисел: 3, -7, 5, 13, -2.

Решение.

Находим сумму чисел.

3 + (-7) + 5 + 13 + (-2) = 12

Так как слагаемых 5, разделим получившуюся сумму на 5.

Следовательно, среднее арифметическое значение чисел 3, -7, 5, 13, -2 равно 2,4.

В наше время технологического прогресса гораздо удобнее использовать для нахождения среднего значения компьютерные программы. Microsoft Office Excel — одна из них. Искать среднее значение в Excel быстро и просто. Тем более, эта программа входит в пакет программ от Microsoft Office. Рассмотрим краткую инструкцию, значение с помощью этой программы.

Для того чтобы посчитать среднее значение ряда чисел, необходимо использовать функцию AVERAGE. Синтаксис для этой функции:
= Average (argument1, argument2, ... argument255)
где argument1, argument2, ... argument255 — это либо числа, либо ссылки на ячейки (под ячейками подразумеваются диапазоны и массивы).

Чтобы было более понятно, опробуем полученные знания.

  1. Введите числа 11, 12, 13, 14, 15, 16 в ячейки С1 - С6.
  2. Выделите ячейку С7, нажав на нее. В этой ячейке у нас будет отображаться среднее значение.
  3. Щелкните на вкладке «Формулы».
  4. Выберите More Functions > Statistical для того, чтобы открыть
  5. Выберите AVERAGE. После этого должно открыться диалоговое окно.
  6. Выделите и перетащите туда ячейки С1-С6, чтобы задать диапазон в диалоговом окне.
  7. Подтвердите свои действия клавишей «ОК».
  8. Если вы все сделали правильно, в ячейке С7 у вас должен появиться ответ - 13,7. При нажатии на ячейку C7 функция (= Average (C1: C6)) будет отображаться в строке формул.

Очень удобно использовать эту функцию для ведения учета, накладных или когда вам просто нужно найти среднее значение из очень длинного ряда чисел. Поэтому ее часто используют в офисах и крупных компаниях. Это позволяет сохранять порядок в записях и дает возможность быстро посчитать что-либо (например, средний доход за месяц). Также с помощью Excel можно найти среднее значение функции.

При многократных измерениях какой-то величины, истинное значение которой a , проделывают n измерений. В результате получают ряд приближенных значений

Истинные абсолютные погрешности представим как

Тогда можем записать:

Складывая почленно, имеем:

,

среднее арифметическое отдельных измерений.

Истинное значение а, выразится

истинная абсолютная погрешность, которая остается неизвестной.

Задача нахождения случайных погрешностей была решена Гауссом. В основе рассмотрения лежат две аксиомы:

    Погрешности равной абсолютной величины и противоположных знаков равновероятны.

    Чем больше абсолютная величина погрешности, тем она менее вероятна.

Из первой аксиомы следует, что при бесконечном числе измерений (при
)

и тогда

Но практически осуществить можно лишь конечное число измерений. И этого оказывается достаточно, так как на основе второй аксиомы маловероятны большие погрешности.

Отсюда следует, что
многих измерений, и встает задача оценить степень приближения среднего значения к истинному.

3. Погрешности прямых или непосредственных измерений

Если в результате измерения величины b получены значения
то среднее арифметическое значение

Абсолютные погрешности отдельных измерений
равны по модулю разностям среднего значенияи результатов отдельных измерений

,
,…,

средняя абсолютная погрешность измерений.

Результат измерения представляют так:

Расчеты проводятся с учетом правил приближенных вычислений.

Относительная погрешность показывает, какую долю составляет абсолютная погрешность от среднего значения и выражается обычно в процентах

Наименьшая погрешность измерения не может быть меньше погрешности прибора. Последняя указывается в паспорте, либо за нее принимаем половину цены деления прибора.

Если измерение проведено один раз или при многократных повторениях получается один и тот же результат, то погрешностью измерения считают погрешность прибора (по паспорту или классу точности прибора) или ее принимают равной половине цены наименьшего деления прибора.

Класс точности прибора определяется максимальной погрешностью прибора, выраженной в процентах от полной величины шкалы. Например, класс точности 0,5 означает погрешность 0,5% при отклонении стрелки на всю шкалу. При отклонении стрелки на половину шкалы погрешность возрастает в два раза, при отклонении стрелки на треть шкалы – втрое.

4. Погрешности косвенных измерений

При косвенных измерениях величину x находят как функцию непосредственно измеренных величин а , b , с . Абсолютные погрешности
непосредственных измерений обуславливают абсолютную погрешность
При нахождении
используют следующие теоремы:

1. Абсолютная погрешность суммы (разности) равна сумме абсолютных погрешностей слагаемых (уменьшаемого и вычитаемого)


,

2. Абсолютная погрешность произведения равна сумме произведений первого сомножителя на абсолютную погрешность второго и второго сомножителя на абсолютную погрешность первого


,

3. Абсолютная погрешность частного равна сумме произведений делимого на абсолютную погрешность делителя и делителя на абсолютную погрешность делимого, деленной на квадрат делителя


,

Относительная погрешность

В математическом анализе показано, что

При этом x – есть какая-то функция
и т. д. в явном виде, и, следовательно, можно вычислить ее дифференциал от логарифма, который будет содержать
и т. д.

Если заменить в полученном выражении все дифференциалы малыми конечными разностями
и т.д., то получим формулу для относительной погрешности

для конечных разностей

.

Если
есть абсолютные погрешности при непосредственных измеренияха , b , с , то
–абсолютная погрешностьвеличины x .

Формула для нахождения относительной погрешности будет записана так: (все члены берутся по абсолютной величине)

.

Для выражения в процентах нужно правую и левую части умножить на 100%.

Эту формулу удобно использовать и для нахождения абсолютной погрешности.

Действительно,

.

Результаты представляют так:
.

Если функция x представляет сложную сумму или разность, то погрешности находятся для каждого члена отдельно, а затем суммируются. В тех случаях, когда в формулы для нахождения величины x входят физические или математические справочные величины, выраженные приближенными числами, их погрешностями считают половину единицы низшего ряда. Например,

Самым распространенным видом средней является средняя арифметическая.

Средняя арифметическая простая

Простая среднеарифметическая величина представляет собой среднее слагаемое, при определении которого общий объем данного признака в данных поровну распределяется между всеми единицами, входящими в данную совокупность. Так, среднегодовая выработка продукции на одного работающего — это такая величина объема продукции, которая приходилась бы на каждого работника, если бы весь объем выпущенной продукции в одинаковой степени распределялся между всеми сотрудниками организации. Среднеарифметическая простая величина исчисляется по формуле:

Простая средняя арифметическая — Равна отношению суммы индивидуальных значений признака к количеству признаков в совокупности

Пример 1. Бригада из 6 рабочих получает в месяц 3 3,2 3,3 3,5 3,8 3,1 тыс.руб.

Найти среднюю заработную плату
Решение: (3 + 3,2 + 3,3 +3,5 + 3,8 + 3,1) / 6 = 3,32 тыс. руб.

Средняя арифметическая взвешенная

Если объем совокупности данных большой и представляет собой ряд распределения, то исчисляется взвешенная среднеарифметическая величина. Так определяют средневзвешенную цену за единицу продукции: общую стоимость продукции (сумму произведений ее количества на цену единицы продукции) делят на суммарное количество продукции.

Представим это в виде следующей формулы:

Взвешенная средняя арифметическая — равна отношению (суммы произведений значения признака к частоте повторения данного признака) к (сумме частот всех признаков).Используется, когда варианты исследуемой совокупности встречаются неодинаковое количество раз.

Пример 2. Найти среднюю заработную плату рабочих цеха за месяц

Средняя заработная плата может быть получена путем деления общей суммы заработной платы на общее число рабочих:

Ответ: 3,35 тыс.руб.

Средняя арифметическая для интервального ряда

При расчете средней арифметической для интервального вариационного ряда сначала определяют среднюю для каждого интервала, как полусумму верхней и нижней границ, а затем — среднюю всего ряда. В случае открытых интервалов значение нижнего или верхнего интервала определяется по величине интервалов, примыкающих к ним.

Средние, вычисляемые из интервальных рядов являются приближенными.

Пример 3 . Определить средний возраст студентов вечернего отделения.

Средние, вычисляемые из интервальных рядов являются приближенными. Степень их приближения зависит от того, в какой мере фактическое распределение единиц совокупности внутри интервала приближается к равномерному.

При расчете средних в качестве весов могут использоваться не только абсолютные, но и относительные величины (частость):

Средняя арифметическая обладает целым рядом свойств, которые более полно раскрывают ее сущность и упрощают расчет:

1. Произведение средней на сумму частот всегда равно сумме произведений вариант на частоты, т.е.

2.Средняя арифметическая суммы варьирующих величин равна сумме средних арифметических этих величин:

3.Алгебраическая сумма отклонений индивидуальных значений признака от средней равна нулю:

4.Сумма квадратов отклонений вариантов от средней меньше, чем сумма квадратов отклонений от любой другой произвольной величины , т.е.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.