По правилу правой руки. Сила Ампера

— это особый вид материи, посредством которой осуществляется взаимодействие между движущимися электрически заряженными частицами.

СВОЙСТВА (стационарного) МАГНИТНОГО ПОЛЯ

Постоянное (или стационарное) магнитное поле — это магнитное поле, неизменяющееся во времени.

1. Магнитное поле создается движущимися заряженными частицами и телами, проводниками с током, постоянными магнитами.

2. Магнитное поле действует на движущиеся заряженные частицы и тела, на проводники с током, на постоянные магниты, на рамку с током.

3. Магнитное поле вихревое , т.е. не имеет источника.

— это силы, с которыми проводники с током действуют друг на друга.

.

— это силовая характеристика магнитного поля.

Вектор магнитной индукции направлен всегда так, как сориентирована свободно вращающаяся магнитная стрелка в магнитном поле.

Единица измерения магнитной индукции в системе СИ:

ЛИНИИ МАГНИТНОЙ ИНДУКЦИИ

— это линии, касательными к которой в любой её точке является вектор магнитной индукции.

Однородное магнитное поле — это магнитное поле, у которого в любой его точке вектор магнитной индукции неизменен по величине и направлению; наблюдается между пластинами плоского конденсатора, внутри соленоида (если его диаметр много меньше его длины) или внутри полосового магнита.

Магнитное поле прямого проводника с током:

где — направление тока в проводнике на нас перпендикулярно плоскости листа,
— направление тока в проводнике от нас перпендикулярно плоскости листа.

Магнитное поле соленоида:

Магнитное поле полосового магнита:

— аналогично магнитному полю соленоида.

СВОЙСТВА ЛИНИЙ МАГНИТНОЙ ИНДУКЦИИ

— имеют направление;
— непрерывны;
-замкнуты (т.е. магнитное поле является вихревым);
— не пересекаются;
— по их густоте судят о величине магнитной индукции.

НАПРАВЛЕНИЕ ЛИНИЙ МАГНИТНОЙ ИНДУКЦИИ

— определяется по правилу буравчика или по правилу правой руки.

Правило буравчика (в основном для прямого проводника с током):

Если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением линий магнитного поля тока.

Правило правой руки (в основном для определения направления магнитных линий
внутри соленоида):

Если обхватить соленоид ладонью правой руки так, чтобы четыре пальца были направлены вдоль тока в витках, то отставленный большой палец покажет направление линий магнитного поля внутри соленоида.

Существуют другие возможные варианты применения правил буравчика и правой руки.

— это сила, с которой магнитное поле действует на проводник с током.

Модуль силы Ампера равен произведению силы тока в проводнике на модуль вектора магнитной индуции, длину проводника и синус угла между вектором магнитной индукции и направлением тока в проводнике.

Сила Ампера максимальна, если вектор магнитной индукции перпендикулярен проводнику.

Если вектор магнитной индукции параллелен проводнику, то магнитное поле не оказывает никакого действия на проводник с током, т.е. сила Ампера равна нулю.

Направление силы Ампера определяется по правилу левой руки :

Если левую руку расположить так, чтобы перпендикулярная проводнику составляющая вектора магнитной индукции входила в ладонь, а 4 вытянутых пальца были направлены по направлению тока, то отогнутый на 90 градусов большой палец покажет направление силы, действующий на проводник с током.

или

ДЕЙСТВИЕ МАГНИТНОГО ПОЛЯ НА РАМКУ С ТОКОМ

Однородное магнитное поле ориентирует рамку (т.е. создается вращающий момент и рамка поворачивается в положение, когда вектор магнитной индукции перпендикулярен плоскости рамки).

Неоднородное магнитное поле ориентирует + притягивает или отталкивает рамку с током.

Так, в магнитном поле прямого проводника с током (оно неоднородно) рамка с током ориентируется вдоль радиуса магнитной линии и притягивается или отталкивается от прямого проводника с током в зависимости от направления токов.

Вспомни тему «Электромагнитные явления» за 8 класс:

class-fizika.narod.ru

Действие магнитного поля на ток. Правило левой руки.

Поместим между полюсами магнита проводник, по кото­рому протекает постоянный электрический ток. Мы тотчас же заметим, что проводник будет выталкиваться полем магнита из междуполюсного пространства.

Объяснить это можно следующим образом. Вокруг провод­ника с током (Рисунок 1.) образуется собственное магнитное поле, силовые линии которого по одну сторону проводника направ­лены так же, как и силовые линии магнита, а по другую сто­рону проводника - в противопо­ложную сторону. Вследствие это­го с одной стороны проводника (на рисунке 1 сверху) маг­нитное поле оказывается сгущен­ным, а с другой его стороны (на рисунке 1 снизу) — разрежен­ным. Поэтому проводник испыты­вает силу, давящую на него вниз. И если проводник не закреплен, то он будет перемещаться.

Рисунок 1. Действие магнитного поля на ток.

Правило левой руки

Для быстрого определения направления движения провод­ника с током в, магнитном поле существует так называемое правило левой руки (рисунок 2.).

Рисунок 2. Правило левой руки.

Правило левой руки состоит в следую­щем: если поместить левую руку между полюсами маг­нита так, чтобы магнитные силовые линии входили в ладонь, а четыре пальца ру­ки совпадали с направлением тока в проводнике, то боль­шой палец покажет направ­ление движения проводника.

Итак, на проводник, по которому протекает электри­ческий ток, действует сила, стремящаяся перемещать его перпендикулярно магнитным силовым линиям. Опытным путем можно определить величину этой силы. Оказы­вается, что сила, с которой магнитное поле действует на проводник с током, прямо пропорциональна силе тока в проводнике и длине той части проводника, которая нахо­дится в магнитном поле (рисунок 3 слева).

Это правило справедливо, если проводник расположен под прямым углом к магнитным силовым линиям.

Рисунок 3. Сила взаимодействия магнитного поля и тока.

Если же проводник расположен не под прямым углом к магнитным силовым линиям, а, например, так, как изобра­жено на рисунке 3 справо, то сила, действующая на проводник, будет пропорциональна силе тока в проводнике и длине проекции части проводника, находящейся в магнитном поле, на плос­кость, перпендикулярную магнитным силовым ли­ниям. Отсюда следует, что если проводник паралле­лен магнитным силовым линиям, то сила, дейст­вующая на него, равна нулю. Если же проводник перпендикулярен направ­лению магнитных силовых линий, то сила, действую­щая на него, достигает наибольшей величины.

Сила, действующая на проводник с током, зави­сит еще и от магнитной индукции. Чем гуще рас­положены магнитные си­ловые линии, тем больше сила, действующая на проводник с током.

Подводя итог всему изложенному выше, мы можем действие магнитного поля на проводник с током выразить следующим правилом:

Сила, действующая на проводник с током, прямо пропорциональна магнитной индукции, силе тока в проводнике и длине проекции части проводника, находящейся в магнитном поле, на плоскость, перпендикулярную маг­нитному потоку.

Необходимо отметить, что действие магнитного поля на ток не зависит ни от вещества проводника, ни от его сечения. Дей­ствие магнитного поля на ток можно наблюдать даже при от­сутствии проводника, пропуская, например, между полюсами магнита поток быстро несущихся электронов.

Действие магнитного поля на ток широко используется в науке и технике. На использовании этого действия основано устройство электродвигателей, превращающих электрическую энергию в механическую, устройство магнитоэлектрических приборов для измерения напряжения и силы тока, электроди­намических громкоговорителей, превращающих электрические колебания в звук, специальных радиоламп - магнетронов, катодно-лучевых трубок и т. д. Действием магнитного поля на ток пользуются для измерения массы и заряда электрона и даже для изучения строения вещества.

Правило правой руки

При движении проводника в магнитном поле в нем создается направленное движение электронов, то есть электрический ток, что обусловлено явлением электромагнитной индукции.

Для определения на­правления движения элек­тронов воспользуемся из­вестным нам правилом ле­вой руки.

Если, например, про­водник, расположенный перпендикулярно чертежу (рисунок 1), перемещается вместе с содержащимися в нем электронами сверху вниз, то это перемещение электронов будет эквивалентно элек­трическому току, направленному снизу вверх. Если при этом магнитное поле, в котором движется проводник, направлено слева направо, то для определения направления силы, дей­ствующей на электроны, мы должны будем поставить левую руку ладонью влево, чтобы магнитные силовые линии входили в ладонь, а четырьмя пальцами вверх (против направления движения проводника, т. е. по направлению «тока»); тогда на­правление большого пальца покажет нам, что на электроны, находящиеся в проводнике, будет действовать сила, направ­ленная от нас к чертежу. Следовательно, перемещение элек­тронов будет происходить вдоль проводника, т. е. от нас к чертежу, а индукционный ток в проводнике будет направлен от чертежа к нам.

Рисунок 1. Механизм электромагнитной индукции. Перемещая проводник, мы перемещаем вместе с проводчиком все электроны, заключенные в нем, а при перемещении в магнитном поле электрических зарядов на них будет действовать сила по правилу левой руки.

Однако, правило левой руки, примененное нами лишь для объяснения явления электромагнитной индукции, оказывается неудобным на практике. Практически направление индукцион­ного тока определяется по правилу правой руки (рисунок 2).

Рисунок 2. Правило правой руки. Правая рука повернута ладонью навстречу магнит­ным силовым линиям, большой палец направлен в сторону движения проводника, а четыре пальца по­казывают, в каком направлении будет течь индук­ционный ток.

Правило правой руки состоит в том, что, если по­местить правую руку в магнитное поле так, чтобы магнитные силовые линии входили в ладонь, а большой палец указывал направле­ние движения проводника, то остальные четыре пальца покажут направление ин­дукционного тока, возникающего в провод­нике .

www.sxemotehnika.ru

Направление тока и направление линий его магнитного поля. Правило левой руки. Учитель физики: Мурнаева Екатерина Александровна. — презентация

Презентация на тему: » Направление тока и направление линий его магнитного поля. Правило левой руки. Учитель физики: Мурнаева Екатерина Александровна.» - Транскрипт:

1 Направление тока и направление линий его магнитного поля. Правило левой руки. Учитель физики: Мурнаева Екатерина Александровна

2 Способы определения направления магнитной линии Определение направления магнитной линии При помощи магнитной стрелки По правилу Буравчика или по правилу правой руки По правилу левой руки

3 Направление магнитных линий Направление магнитных линий магнитного поля тока связано с направлением тока и определяется с помощью правила правого винта или правила буравчика

4 Правило правой руки Обхватить соленоид ладонью правой руки, направив четыре пальца по направлению тока в витках, то отставленный большой палец покажет направление линий магнитного поля внутри соленоида

5 Правило буравчика Если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением линий магнитного поля тока

6 BB B В каком направлении течет ток в проводнике? вверх неверно вниз верно вверх верно вниз неверно влево неверно вправо верно

7 Как направлен вектор магнитной индукции в центре кругового тока? + – вверх неверно вниз верно + – вверх верно вниз неверно + – вправо верно влево неверно _ + вправо неверно влево верно

8 Правило левой руки Если левую руку расположить так, чтобы линии магнитного поля входили в ладонь перпендикулярно к ней, а четыре пальца были направлены по току, то отставленный на 90° большой палец покажет направление действующей на проводник силы.

9 Применение Ориентирующее действие МП на контур с током используют в электроизмерительных приборах: 1)электродвигателях 2)электродинамическом громкоговорителе (динамике) 3)магнитоэлектрической системы – амперметрах и вольтметрах

10 Собраны три установки приборов по схемам, указанным на рисунке. В каком из них: а, б или в — рамка повернется вокруг оси, если замкнуть цепь?

11 11 Собраны три установки приборов а, б, в. В какой из них проводник АВ придет в движение, если замкнуть ключ К?

12 В ситуации, изображенной на рисунке, действие силы Ампера направлено: А. Вверх Б. Вниз В. Влево Г. Вправо

13 В ситуации, изображенной на рисунке, действие силы Ампера направлено: А. Вверх Б. Вниз В. Влево Г. Вправо

14 В ситуации, изображенной на рисунке, действие силы Ампера направлено: А. Вверх Б. Вниз В. Влево Г. Вправо

15 По рисунку определите, как направлены магнитные ­ линии магнитного поля прямого тока А. По часовой стрелке Б. Против часовой стрелки

16 Какие магнитные полюса изображены на рисунке? А. 1 северный, 2 южный Б. 1 южный, 2 южный В. 1 южный, 2 северный Г. 1 северный, 2 северный

17 Стальной магнит разломили на три части. Будут ли обладать магнитными свойствами концы А и В? А. Не будут Б. Конец А имеет северный магнитный полюс, В — южный В. Конец В имеет северный магнитный полюс, А — южный

18 По рисунку определите, как направлены магнитные ­ линии МП прямого тока. А. По часовой стрелке Б. Против часовой стрелки

19 На каком из рисунков правильно изображено положение магнитной стрелки в МП постоянного магнита? А Б В Г

20 §§45,46. Упражнение 35, 36. Домашнее задание:

Направление тока правило левой руки

Если проводник, по которому проходит электрический ток, внести в магнитное поле, то в результате взаимодействия магнитного поля и проводника с током проводник будет перемещаться в ту или иную сторону.
Направление перемещения проводника зависит от направления тока в нем и от направления магнитных линий поля.

Допустим, что в магнитном поле магнита N S находится проводник, расположенный перпендикулярно плоскости рисунка; по проводнику протекает ток в направлении от нас за плоскость рисунка.

Ток, идущий от плоскости рисунка к наблюдателю, обозначается условно точкой, а ток, направляющийся за плоскость рисунка от наблюдателя,- крестом.

Движение проводника с током в магнитном поле
1 - магнитное поле полюсов и тока проводника,
2 - результирующее магнитное поле.

Всегда всё уходящее на изображениях обозначается крестом,
а направленное на смотрящего — точкой.

Под действием тока вокруг проводника образуется свое магнитное поле рис.1 .
Применяя правило буравчика, легко убедиться, что в рассматриваемом нами случае направление магнитных линий этого поля совпадает с направлением движения часовой стрелки.

При взаимодействии магнитного поля магнита и поля, созданного током, образуется результирующее магнитное поле, изображенное на рис.2 .
Густота магнитных линий результирующего поля с обеих сторон проводника различна. Справа от проводника магнитные поля, имея одинаковое направление, складываются, а слева, будучи направленными встречно, частично взаимно уничтожаются.

Следовательно, на проводник будет действовать сила, большая справа и меньшая слева. Под действием большей силы проводник будет перемещаться по направлению силы F.

Перемена направления тока в проводнике изменит направление магнитных линий вокруг него, вследствие чего изменится и направление перемещения проводника.

Для определения направления движения проводника в магнитном поле можно пользоваться правилом левой руки, которое формулируется следующим образом:

Если расположить левую руку так, чтобы магнитные линии пронизывали ладонь, а вытянутые четыре пальца указывали направление тока в проводнике, то отогнутый большой палец укажет направление движения проводника.

Сила, действующая на проводник с током в магнитном поле, зависит как от тока в проводнике, так и от интенсивности магнитного поля.

Основной величиной, характеризующей интенсивность магнитного поля, является магнитная индукция В . Единицей измерения магнитной индукции является тесла (Тл=Вс/м2 ).

О магнитной индукции можно судить по силе действия магнитного поля на проводник с током, помещенный в это поле. Если на проводник длиной 1 м и с током 1 А , расположенный перпендикулярно магнитным линиям в равномерном магнитном поле, действует сила в 1 Н (ньютон), то магнитная индукция такого поля равна 1 Тл (тесла).

Магнитная индукция является векторной величиной, ее направление совпадает с направлением магнитных линий, причем в каждой точке поля вектор магнитной индукции направлен по касательной к магнитной линии.

Сила F , действующая на проводник с током в магнитном поле, пропорциональна магнитной индукции В , току в проводнике I и длине проводника l , т. е.
F=BIl .

Эта формула верна лишь в том случае, когда проводник с током расположен перпендикулярно магнитным линиям равномерного магнитного поля.
Если проводник с током находится в магнитном поле под каким-либо углом а по отношению к магнитным линиям, то сила равна:
F=BIl sin a .
Если проводник расположить вдоль магнитных линий, то сила F станет равной нулю, так как а=0 .

(Подробно и доходчиво в видеокурсе «В мир электричества — как в первый раз!»)

Вступив во взрослую жизнь, мало кто вспоминает школьный курс физики. Однако иногда необходимо покопаться в памяти, ведь некоторые знания, полученные в юности, могут существенно облегчить запоминание сложных законов. Одним из таких является правило правой и левой руки в физике. Применение его в жизни позволяет понять сложные понятия (к примеру, определить направление аксиального вектора при известном базисном). Сегодня попробуем объяснить эти понятия, и как они действуют языком, доступным простому обывателю, закончившему учёбу давно и забывшему ненужную (как ему казалось) информацию.

Читайте в статье:

Формулировка правила буравчика

Пётр Буравчик – это первый физик, сформулировавший правило левой руки для различных частиц и полей. Оно применимо как в электротехнике (помогает определить направление магнитных полей), так и в иных областях. Оно поможет, к примеру, определить угловую скорость.


Правило буравчика (правило правой руки) – это название не связано с фамилией физика, сформулировавшего его. Больше название опирается на инструмент, имеющий определённое направление шнека. Обычно у буравчика (винта, штопора) т.н. резьба правая, входит в грунт бур по часовой стрелке. Рассмотрим применение этого утверждения для определения магнитного поля.


Нужно сжать правую руку в кулак, подняв вверх большой палец. Теперь немного разжимаем остальные четыре. Именно они указывают нам направление магнитного поля. Если же говорить кратко, правило буравчика имеет следующий смысл – вкручивая буравчик вдоль направления тока, увидим, что рукоять вращается по направлению линии вектора магнитной индукции.

Правило правой и левой руки: применение на практике

Рассматривая применение этого закона, начнём с правила правой руки. Если известно направление вектора магнитного поля, при помощи буравчика можно обойтись без знания закона электромагнитной индукции. Представим, что винт передвигается вдоль магнитного поля. Тогда направление течения тока будет «по резьбе», то есть вправо.


Обратим внимание на постоянный управляемый магнит, аналогом которого является соленоид. По своей сути он является катушкой с двумя контактами. Известно, что ток движется от «+» к «-». Опираясь на эту информацию, берём в правую руку соленоид в таком положении, чтобы 4 пальца указывали направление течения тока. Тогда вытянутый большой палец укажет вектор магнитного поля.


Правило левой руки: что можно определить, воспользовавшись им

Не стоит путать правила левой руки и буравчика – они предназначены для совершенно разных целей. При помощи левой руки можно определить две силы, вернее, их направление. Это:

  • сила Лоренца;
  • сила Ампера.

Попробуем разобраться, как это работает.


Правило левой руки для силы Ампера: в чём оно заключается

Расположим левую руку вдоль проводника так, чтобы пальцы были направлены в сторону протекания тока. Большой палец будет указывать в сторону вектора силы Ампера, а в направлении руки, между большим и указательным пальцем будет направлен вектор магнитного поля. Это и будет правило левой руки для силы ампера, формула которой выглядит так:

Правило левой руки для силы Лоренца: отличия от предыдущего

Располагаем три пальца левой руки (большой, указательный и средний) так, чтобы они находились под прямым углом друг к другу. Большой палец, направленный в этом случае в сторону, укажет направление силы Лоренца, указательный (направлен вниз) – направление магнитного поля (от северного полюса к южному), а средний, расположенный перпендикулярно в сторону от большого, – направление тока в проводнике.


Формулу расчёта силы Лоренца можно увидеть на рисунке ниже.

Заключение

Разобравшись один раз с правилами правой и левой руки, уважаемый читатель поймёт, насколько легко ими пользоваться. Ведь они заменяют знание многих законов физики, в частности, электротехники. Главное здесь – не забыть направление течения тока.


Надеемся, что сегодняшняя статья была полезна нашим уважаемым читателям. При возникновении вопросов их можно оставить в обсуждениях ниже. Редакция сайт с удовольствием на них ответит в максимально сжатые сроки. Пишите, общайтесь, спрашивайте. А мы, в свою очередь, предлагаем вам посмотреть короткое видео, которое поможет более полно понять тему нашего сегодняшнего разговора.

С помощью правила буравчика определяют направления магнитных линий (по-другому их еще называют линии магнитной индукции) вокруг проводника с током.

Правило буравчика: определение

Само правило звучит так: когда направление буравчика, двигающегося поступательно, совпадает с направлением тока в исследуемом проводнике, направление вращения ручки этого буравчика такое же, как и направление магнитного поля тока.

Его же называют - правило правой руки и в этом контексте определение куда понятней. Если обхватить провод правой рукой так, чтобы четыре пальца были сжаты в кулак, а большой указывал вверх (то есть так, как мы обычно показываем рукой «класс!»), то большой палец укажет, по какому направлению движется ток, а другие четыре пальца – направление линий магнитного поля

Под буравчком подразумевают винт с правой резьбой. Они в технике являются стандартом, потому как представляют совершенное большинство. К слову, это же правило можно было бы сформулировать и на примере движения часовой стрелки, потому как винт с правой резьбой закручивается именно в этом направлении.

Применение правила буравчика

В физике правило буравчика применяют не только для определения направления магнитного поля тока. Так, например, оно относится и к вычислению направления аксиальных векторов, вектора угловой скорости, вектора магнитной индукции B, направления индукционного тока при известном векторе магнитной индукции и многих других вариантах. Но для каждого такого случая правило имеет свою формулировку.

Так, например, для вычисления вектора произведения оно гласит: если изобразить векторы так, чтобы они совпадали в начале, и двигать первый вектор-сомножитель ко второму вектору-сомножителю, то буравчик, двигающийся таким же образом, завинтится в сторону вектора-произведения.

Или вот так будет звучать правило буравчика для механического вращения скорости: если вращать винт в том же направлении, в каком вращается тело, он завинтится в сторону направления угловой скорости.

Так выглядит правило буравчика для момента сил: при вращении винта в том же направлении, в каком силы поворачивают тело, буравчик завинтится в сторону направления этих сил.

Тем, кому в школе плохо давалась физика, правило буравчика и сегодня - самая настоящая «терра инкогнита». Особенно если попытаться найти определение известного закона в Сети: поисковые системы тут же выдадут множество мудрёных научных объяснений со сложными схемами. Однако вполне возможно кратко и понятно объяснить, в чём же оно состоит.

В чём состоит правило буравчика

Буравчик - инструмента для сверления отверстий

Оно звучит так: в случаях, когда направление буравчика совпадает с направлением тока в проводнике во время поступательных движений, то одновременно идентичным ему будет и направление вращения ручки буравчика.

В поисках направления

Чтобы разобраться, придётся всё-таки вспомнить школьные уроки. На них учителя физики рассказывали нам о том, что электроток - это движение элементарных частиц, которые при этом несут свой заряд по проводящему материалу. Благодаря источнику движение частиц в проводнике - направленное. Движение, как известно, жизнь, а потому вокруг проводника возникает не что иное, как магнитное поле, и оно тоже вращается. Но как?

Ответ даёт именно это правило (без использования каких-либо специальных инструментов), и результат оказывается весьма ценным, ведь в зависимости от направления магнитного поля парочка проводников начинает действовать по совершенно разным сценариям: либо отталкиваться друг от друга, либо, напротив, устремляться навстречу.

Использование

Самый простой способ определения пути движений линий магнитного поля - применение правила буравчика

Представить это можно и так - на примере собственной правой руки и самого обычного провода. Провод кладём в руку. Четыре пальца крепко сжимаем в кулак. Большой палец указывает вверх - наподобие жеста, которым мы демонстрируем, что нам что-то нравится. В данной «раскладке» большой палец чётко укажет направление движения тока, тогда как остальные четыре - путь движений линий магнитного поля.

Правило вполне применимо в жизни. Физикам оно необходимо для того, чтобы определить направление магнитного поля тока, рассчитать механическое вращение скорости, вектор магнитной индукции и момент сил.

Кстати, о том, что правило применимо к самым разным ситуациям говорит и то, что существует сразу несколько его толкований - в зависимости от рассматриваемого каждого конкретного случая.

Первым, кто сформулировал правило буравчика, был Петр Буравчик. Это правило очень удобно, если нужно определить такую характеристику магнитного поля, как направленность .
Правило буравчика можно задействовать только в том случае, если магнитное поле расположено прямолинейно по отношению к проводнику с током.

Правило буравчика гласит, что направленность магнитного поля совпадет с направленностью рукоятки самого буравчика, если буравчик с правой нарезкой вкручивается по направлению тока.

Применение данного правила возможно и в соленоиде. Тогда правило буравчика звучит так: большой оттопыренный палец правой руки укажет направление линий магнитной индукции, если обхватить соленоид так, чтобы пальцы указывали на направление тока в витках.

Соленоид - представляет собой катушку с плотно намотанными витками. Обязательное условие - длина катушки должна быть значительно больше, чем диаметр.

Правило правой руки является обратным к правилу буравчику, но с более удобной и понятной формулировкой из-за чего употребляется намного чаще.

Правило правой руки звучит так - обхватите исследуемый элемент правой рукой так, чтобы пальцы сжатого кулака указывали направление , в таком случае при поступательном движении по направлению магнитных линий большой отогнутый на 90 градусов относительно ладони палец укажет направление тока.

Если в задаче описан движущийся проводник, то правило правой руки сформулируется так: расположите руку так, чтобы силовые линии поля перпендикулярно входили в ладонь, а большой палец руки, вытянутый перпендикулярно, должен указывать направление движения проводника, тогда оттопыренные четыре оставшихся пальца будут направлены так же, как и индукционный ток.

Правило левой руки

Расположите левую ладонь так, чтобы четыре пальца указывали направление электрического тока в проводнике, при этом линии индукции должны входить в ладонь под углом 90 градусов, тогда отогнутый большой палец укажет направление действующей на проводник силы.
Чаще всего это правило используют для определения направления, по которому будет отклоняться проводник. Имеется в виду ситуация, когда проводник располагают между двумя магнитами и пускают по нему ток.

Выпишите из учебника закон Био-Савара-Лапласа. Данный закон позволяет рассчитывать величину и направление вектора магнитной индукции в любом общем случае. Основой расчета магнитного поля по данному правилу являются токи, создающие данное поле. Причем длины участков, по которым течет ток, можно делать сколь угодно малыми вплоть до элементарных значений, увеличивая таким образом точность расчета.

Видео по теме

Правило правого винта используется в терминологии одного из разделов физики, изучающего электромагнитные явления. Данное правило применяют для определения направления магнитного поля.

Вам понадобится

  • Учебник по физике, карандаш, лист бумаги.

Инструкция

Прочитайте в учебнике по восьмого класса то, как звучит правила правого винта. Данное правило иначе еще называют правилом буравчика или правилом правой руки, что говорит о его смысловом характере. Итак, одна из формулировок правила правого винта гласит, что для того чтобы понять, как направлено магнитное поле, расположенное вокруг проводника с током, необходимо представить, что поступательного движение некоторого вращающегося винта совпадает с направлением тока в проводнике. Направление вращения головки винта в этом случае должно указать на направление магнитного поля прямого проводника с током.

Обратите внимание, что формулировка и понимание данного правила становятся более понятны, если представить вместо винта буравчик. Тогда за направление магнитного поля принимается направление вращения рукоятки буравчика.

Вспомните, соленоид. Как известно, он представляет собой катушку индуктивности, намотанную на магнитный сердечник. Катушка подключается к источнику тока, в результате чего внутри нее образуется равномерное магнитное поле определенного направления.

Нарисуйте на листе бумаги схематично соленоид со стороны его торца. Фактически, вы получите изображение окружности. Укажите на окружности, представляющей витки катушки, направление тока в проводнике в виде стрелки (по часовой стрелке). Теперь остается понять по направлению тока, куда направлены линии магнитного поля. В данном случае они могут быть направлены либо от вас, либо к вам.

Представьте, что вы закручиваете некий шуруп или винт, вращая его в направлении движения тока в соленоиде. Поступательное движение шурупа показывает направление магнитного поля внутри соленоида. Если направление тока по часовой стрелке, то вектор индукции магнитного поля направлен от вас.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.