Периферический нерв состоит из. Периферические нервы

1. Что относится к периферической нервной системе? Как и где образуются спинномозговые нервы и на какие ветви они делятся?

Периферическая нервная система – это та часть НС, которая связывает ГМ и СМ с чувствительными аппаратами - аффекторами, а также с теми органами и аппаратами, которые отвечают на внешнее и внутреннее раздражение приспособительными реакциями (движение, секреция желез) – эффекторами.

ПНС состоит из:

· Нервов (стволы, сплетения, корешки)

· Нервных узлов

· Периферических окончаний

Спинномозговые нервы образуются при слиянии задних и передних ветвей, которые анатомически и функционально связаны со своими сегментами спинного мозга через эти ветви. Поэтому с/м нервов 31 пара.

Ствол с/м нерва делится на ветви:

· Передняя ветвь

· Задняя ветвь

· Менингеальная ветвь

· Белая соединительная вевть

2. Задние ветви с/м нервов: их зона иннервации и особенность распределения?

Задняя ветвь имеет сегментарное строение. Поэтому иннервирует участки тела, сохранившие сегментарность: глубокие мышцы спины, шеи, кожу над этими участками.

Задние ветви смешанные, делятся на латеральные и медиальные веточки, их диаметр меньше передних ветвей. Исключение составляют: 1). задняя ветвь I шейного с/м нерва (подзатылочный нерв) – двигательный; 2). Задняя ветвь II шейного с/м нерва – чувствительный, больше переднего.

3. Передние ветви с/м нервов: их зона иннервации и отличие от задних?

Передние ветви не сегментированы, иннервируют участки тела, утратившие сегментарность, образуют сплетения, ветвь смешанная.

4. Почему передние ветви с/м нервов образуют сплетения? Передние ветви каких нервов их не образуют? Почему?

ОТВЕТ: сплетения образуются потому, что передние ветви с/м нервов иннервируют несегментированные участки. Метамерность сохраняют лишь передние ветви с/м нервов Th2 – Th11 сегментов, имеют сегментарное строение, они называются межреберными нервами.

5. Какие сплетения вы знаете? Их зона иннервации?

Сплетения:

· Шейное. Из передних ветвей 4-х верхних шейных с/м нервов. Иннервирует кожу в области шеи, диафрагму, мышцы шеи.

· Плечевое. Передними ветвями 4-х нижних шейных с/м нервов. Иннервирует мышцы, кожу верхних конечностей, поверхностные мышцы груди и спины.

· Поясничное сплетение. Передними ветвями поясничных нервов. Иннервирует кожу, мышцы нижней части живота, бедра.

· Крестцовое сплетение. Образовано крестцовыми нервами

6. Черепные нервы: чем они отличаются от спинномозговых и на какие группы по составу волокон они делятся?

ЧН – нервы, отходящие от головного мозга. Отличия от с/м нервов:

· Не имеют сегментарного строения, они разные по ф-ии, форме, местам выхода.

· Разные по составу волокон.

По составу волокон выделяют 4 группы:

ü Чувствительные (1,2,8 пары ЧН)

ü Двигательные (3,4,6,11,12 пары ЧН)

ü Смешанные (5,7,9,10 пары ЧН)

ü Имеющие плюс вегетативные волокна (3,7,9,10 пары ЧН)

7. Из чего состоят периферические нервы? Какие соединительнотканные оболочки они имеют? Что такое периневральное пространство, его значение?

Нерв – это часть нервной системы, представляющая собой вытянутый тяж, образованный пучками нервных волокон и соединительнотканными оболочками.

Имеют соединительнотканные оболочки трех видов:

· Эндоневральный – м/у отдельными нервными волокнами, формирует отдельные пучки нервных волокон;

· Периневрий – окружает несколько пучков нервных волокон, образуется двумя пластинками:

ü Висцеральная

ü Париетальная

· Эпиневрий – имеется у самых крупных нервов, богат кровеносными сосудами – питает нерв, обеспечивает коллатеральное кровообращение.

Между пластинками имеется периневральное пространство, есть у всех ЧН, у СМН спорно, она сообщается с субарахноидальным пространством, содержит спинномозговую жидкость. Клиническое значение представляет продвижение возбудителя бешенства по этому пространству к ГМ и СМ.

8. Что такое нервное волокно? Их классификация по калибру и скорости проведения импульсов.

Нервное волокно – отросток нервной клетки, окруженный оболочкой из леммоцитов.

По калибру и скорости проведения их делят на:

· Гр.А: толстые миелиновые волокна до 100мкм, v=10-120м/с, образуют соматические нервы.

· Гр.В: тонкие миелиновые волокна 1-3мкм, v=3-14м/с, формируют преганглиолярные вегетативные нервы.

· Гр.С: безмиелиновые волокна 0,4-1,2мкм, v=0,6-2,4м/с, формируют постганглиолярные вегетативные нервы (к органам).

9. Внутриствольное строение нервов.

Помимо того, что в состав нерва могут входить разные по ф-ии нервные волокна, окруженные соединительнотканными оболочками, и имеющими периневральное пространство, пучки нервных волокон могут располагаться по разному. По Синельникову выделяют:

· Кабельный тип (вегетативный) – все нервные волокна идут параллельно;

· Сетевидный тип (соматический) – приспособительная ф-ия, особая форма связей м/у пучками нервных волокон.

10. Закономерности расположения экстраорганных нервов.

· Нервы являются парными и расходятся симметрично относительно ЦНС;

· Нервы достигают органы по кратчайшему пути, исключение составляют нервы тех органов, которые в процессе своего развития перемещаются, при этом нервы удлиняются и меняют свой путь;

· Нервы иннервируют мышцы из тех сегментов, которые соответствуют миотомам закладки мышц, если мышцы перемещаются, нервы удлиняются.

· Нервы сопровождают крупные артерии, вены, образуя сосудисто-нервные пучки, они расположены в защищенных местах.

11. От чего зависят типы разветвления интраорганных нервов? Какие их типы знаете в мышцах с различной структурой и функцией?

Варианты иннервации мышц:

· Магистральный тип – от одного крупного нерва мелкие ответвления;

Тема. Строение слуховой сенсорной системы

Вопросы:

1. Периферический отдел слуховой системы: строение внешнего, среднего и внутреннего уха.

2. Ход проводящих путей слуховой сенсорной системы.

3. Корковый отдел.

Слуховая сенсорная система состоит из 3 отделов: периферирический, проводниковый, корковый.

Периферический отдел представлен наружным, средним, внутренним ухом (рисунок 1).

Рисунок 1. Строение уха

Наружное ухо состоит из ушной раковины и наружного слухового прохода.

1. Ушная раковина состоит из эластического хряща, покрытого кожей. Особенно кожный этот хрящ у ребёнка, поэтому даже незначительные удары по уху могут привести к образованию гематомы, с последующим её нагноением и деформации раковины. Хрящ имеет множество завитков и углублений - это связано с его защитной функцией. Ухо имеет воронкообразную форму, которая способствует улавливанию звуков и локализацию их в пространстве. В нижней части ушной раковины хрящ отсутствует - точка уха. Она состоит целиком из жировой клетчатки. Величина ушной раковины, её форма, уровень прикрепления к голове у каждого человека индивидуально (наследуется генетически). Однако отлично характерное строение ушной раковины у детей (наследственными заболеваниями, болезнь Дауна). Ушная раковина прикрепляется к голове при помощи мышц и связок, причём мышцы, двигающие ушную раковину, носят рудиментарный характер (недоразвиты).

2. Наружный слуховой проход начинается углублением в центре ушной раковины и направлен вглубь височной кости, заканчивается барабанной перепонкой. Т.о. барабанная перепонка не относится ни к наружному, ни к среднему уху, а лишь отделяет их. У взрослых наружный слуховой проход имеет длину 2,5-3 см. У детей он короче из-за недоразвития костного отдела. У новорождённого слуховой проход имеет вид щели и заполнен слущившимися эпителиальными клетками. Только к 3месяцам этот проход полностью очищается. Наружное ухо по своим параметрам приближается к уху взрослого = 12 годам. Его просвет становится овальным, и диаметр составляет 0,7-1см. Нормальный слуховой проход состоит из 2 частей:

Наружная часть (перепончато-хрящевая) - является продолжением ушного хряща.

Внутренняя часть (костная) - в плотную подходит к барабанной перепонке. Особенностью строения является то, что, самый узкий участок наружного прохода расположен вместе перехода одной части в другую. Поэтому, именно здесь излюбленное место образования серной пробки. В коже наружного слухового прохода имеются волоски и серные железы, которые продуцируют серу.

Причина образования серной пробки:

1. избыточное продукция серы;



2. изменеие свойств серы (повышенная вязкость);

3. анатомическая (врожденная) узость и изогнутость наружного слухового прохода.

Наружный слуховой проход имеет 4 стенки. Его передняя стенка прилегает к головке нижнечелюстного сустава, поэтому при ударах по подбородку происходит травматизация головкой нижнечелюстного сустава наружного слухового прохода и кровотечения.

Барабанная перепонка отделяет наружное ухо от среднего. Представляет собой тонкую, но эластичную мембрану толщиной 0,1 мм., диаметр 0,8-1см. Барабанная перепонка имеет 3 слоя:

1. кожный (эпидермальный);

2. соединительнотканный;

3. слизистый.

Первый слой является продолжением кожи наружного слухового прохода. Второй слой состоит из густо переплетенных циркулярных и радиальных волокон. Третий слой является продолжением слизистой оболочки барабанной полости.

К центру барабанной перепонки прикрепляется рукоятка молоточка. Это место называется пупок. Барабанная перепонка имеет 3 слоя только в наружной части. Во второй её части расслабленной она имеет только 2 слоя без среднего. Осмотр барабанной перепонки называется отоскопия. При осмотре здоровая перепонка имеет перламутрово-белый цвет, форму конуса, выпуклостью обращённой внутрь, т.е. в ухо.

Рисунок 2. Строение барабанной перепонки

Среднее ухо состоит из:

Барабанной полости, в ней находятся слуховые косточки, слуховые мышцы и евстахиевы трубы;

Ячейки воздухоносного сосцевидного отростка;

Барабанная полость имеет вид шестигранника:

а/ верхняя стенка барабанной полости - крыша. У маленьких детей она имеет отверстие. Поэтому очень часто у детей гнойные отиты осложняются прорывом гноя на мозговые оболочки (гнойный менингит);

б/ нижняя стенка - дно, имеет отверстие, что может приводить к прорыву инфекции в кровь, в кровеносные русла. Так как нижняя стенка расположена над луковицей яремной вены. Это может привести к осложнению (сепсис онтогенный);

в/ передняя стенка. На передней стенке расположены отверстия - вход в евстахиеву трубу;

г/ задняя стенка. На ней расположен вход в пещеру сосцевидного отростка. Задней стеной барабанной полости является костная пластинка, которая отделяет средне ухо от внутреннего. На ней имеются 2 отверстия: одно из них называют овальное и круглое окно. Овальное окно закрыто стременем. Круглое прикрыто вторичной барабанной перепонкой. В области задней стенки проходит костный канал лицевого нерва. При воспалении среднего уха инфекция может переходить на этот нерв, вызывая неврит лицевого нерва, и как следствие перекосы лица.

Слуховые косточки соединены в определённой последовательности:

Молоточки;

Наковальня;

Рисунок 3. Строение слуховых косточек

Рукоятка молоточка соединяется с центром барабанной перепонки. Головка молоточка соединяется с помощью сустава с телом наковальни. Подножная пластинка стремени вставляется в овальное окно, которое расположено на костной стенке внутреннего уха. Т.о. колебания барабанной перепонки через систему слуховых косточек передаются на внутреннее ухо. Слуховые косточки подвешены в барабанной полости при помощи связок. В полости среднего уха есть слуховые мышцы (их 2):

Мышца, натягивающая барабанную перепонку. Она принадлежит защитной функции. Она предохраняет барабанную перепонку от повреждения при действии сильных раздражителей. Это связано с тем, что при сокращении этой мышцы движение барабанной перепонки ограничено.

Мышца стременная. Она отвечает за подвижность стремени в овальном окне, что имеет большое значение для проведения звуков во внутреннее ухо. Установлено, что при блокаде овального окна развивается глухота.

Слуховая «евстахиева» труба. Это парное образование, которое соединяет носоглотку и полость среднего уха. Вход в евстахиеву трубу расположен на задней стенке барабанной полости. Евстахиева труба состоит из 2 отделов:

Костного 1/3 трубы;

Перепончатого 2/3 трубы.

Костный отдел сообщается с барабанной полостью, а перепончатый - носоглоткой.

Длина слуховой трубы у взрослого человека = 2,5см, диаметр = 2-3мм. У детей она короче и шире чем у взрослого. Это связано с недоразвитием костной кости слуховой трубы. Поэтому у детей инфекция может легко переходить из барабанной перепонки на слизистую слуховой трубы и носоглотку, и наоборот, из носоглотки поступать в среднее ухо. Поэтому дети часто болеют отитом, источником которого является воспалительный процесс в носоглотке. Слуховая труба выполняет вентиляционную функцию. Установлено, что в спокойном состоянии её стенки прилегают друг к другу. Открытие труб происходит во время глотания, зевания. В этот момент воздух из носоглотки поступает в полость среднего уха - дренажная функция трубы. Она является той трубой, которая способствует оттоку гноя или другого ээксудата из полости среднего уха при воспалении. Если этого не происходит, возможен прорыв инфекции через крышу на мозговые оболочки, либо разрыв барабанной перепонки (прободение).

Воздухоносные ячейки сосцевидного отростка.

Сосцевидный отросток находится на безволосом пространстве позади ушной раковины. На разрезе сосцевидный отросток напоминает «пористый шоколад». Самая большая воздухоносная ячейка сосцевидной кости называется пещера. Она имеется уже у новорождённого. Она выстлана слизистой оболочкой, которая является продолжением слизистой оболочки барабанной полости. Благодаря соединению пещеры и барабанной полости, инфекция может переходить из среднего уха в пещеру, а затем на костное вещество сосцевидного отростка, вызывая его воспаление - мастоидит.

Рисунок 4. Строение среднего уха.

Внутреннее ухо (лабиринт) – 2 части:

1. Костный лабиринт.

2. Перепончатый лабиринт, который находится в костном как в футляре.

Между ними есть пространство, которое называется перелимфотическое. В нём находится ушная жидкость - перилимфа. Внутри перепончатого лабиринта также есть лимфа - эндолимфа. Т.о. во внутреннем ухе имеется 2 ушные жидкости, которые отличаются по составу и функциям. Лабиринт имеет 3 части:

Преддверие;

Полукружные каналы;

Преддверие и полукружные каналы относятся к вестибулярному аппарату. Улитка относится к слуховой сенсорной системе. Она по форме напоминает садовую улитку, образована спиральным каналом, который закруглён в 2,5 оборота. Диаметр канала уменьшается от основания к вершине улитки. В центре улитки находится спиральный гребень, вокруг которого закручена спиральная пластина. Эта пластина выдаётся в просвет спирального канала. На разрезе этот канал имеет следующее строение: двумя мембранами основной и вестибулярный аппарат делится на 3 части, в центре образуя улитковый вход. Верхняя мембрана называется вестибулярная, нижняя - основная. На основной мембране периферический рецептор уха - кортиев орган. Т.о кортиев орган расположен в улитковом ходу, на основной мембране.

Основная мембрана - это наиболее значимая стенка улиткового хода, состоит из множества натянутых струн, которые называются слуховые струны. Установлено, что длина струн и их степень натяжения зависит от того, на каком завитке улитки они находятся. Выделяют 3 завитка улитки:

1. основной (нижний);

2. средний;

3. верхний.

Установлено, что в нижнем завитке находятся короткие и тугонатянутые струны. Они резонируют на высокие звуки. На верхнем завитке находятся длинные и слабонатянутые струны. Они резонируют на низкие звуки.

Кортиев орган является периферическим рецептором слуха. Состоит из 2 видов клеток:

1.Опорные клетки (столбовые) - имеют вспомогательное значение.

2.Волосковые (наружные и внутренние).

Главное значение имеют внутренние волосковые клетки. В них происходит трансформация звуковой энергии в физиологический процесс нервного возбуждения, т.е. образование нервных импульсов.

Опорные клетки расположены под углом друг к другу, образуя тоннель. В нём, в один ряд, располагаются внутренние волосковые клетки. По своей функции эти клетки являются вторичночувствующими. Их головной конец закруглён и имеет волоски. Сверху волоски покрывает мембрана, которая называется покровной. Установлено, что при смещении покровной мембраны относительно волосков, возникают ионные токи.

Ушные жидкости.

Перилимфа - по своему составу напоминает спинномозговую жидкость, но содержит при этом больше белка и ферментов. Её основная функция - это приведение в колебательное состояние основной мембраны.

Эндолимфа - по своему составу похожа на внутриклеточную жидкость. В ней много растворимого кислорода, и поэтому она служит питательной средой для кортиевого органа.

Введение

Периферическая нервная система состоит из нервов, соединяющих центральную нервную систему (ЦНС) с органами чувств, мышцами, железами. Нервы делятся на спинномозговые и черепномозговые. По их ходу могут располагаться нервные узлы (ганглии) - небольшие скопления нейронов вне ЦНС. Нервы, соединяющие ЦНС с органами чувств и мышцами, относят к соматической нервной системе, а с внутренними органами, кровеносными сосудами, железами - к вегетативной нервной системе.

Цель нашей работы: охарактеризовать строение, свойства и функции периферической нервной системы.

Для реализации поставленной цели предстояло решить ряд задач:

1. Определить отделы периферической нервной системы.

2. Дать морфологическую характеристику периферической нервной системе.

3. Выявить функциональные особенности периферической нервной системы.

Строение периферической нервной системы

Периферическая нервная система -- это часть нервной системы. Она находится вне головного и спинного мозга, обеспечивает двустороннюю связь центральных отделов нервной системы с органами и системами организма.

К периферической нервной системе относятся черепные и спинномозговые нервы, чувствительные узлы черепных и спинномозговых нервов, узлы (ганглии) и нервы вегетативной (автономной) нервной системы и, кроме того, ряд элементов нервной системы, при помощи которых воспринимаются внешние и внутренние раздражители (рецепторы и эффекторы).

Нервы образуются отростками нервных клеток, тела которых лежат в пределах головного и спинного мозга, а также в нервных узлах периферической нервной системы. Снаружи нервы покрыты рыхлой соединительнотканной оболочкой -- эпиневрием. В свою очередь нерв состоит из пучков нервных волокон, покрытых тонкой оболочкой -- периневрием, а каждое нервное волокно -- эндоневрием.

Периферические нервы могут быть различные по длине и толщине. Самым длинным черепным нервом является блуждающий нерв. Известно, что периферическая нервная система соединяет головной и спинной мозг с другими системами при помощи двух видов нервных волокон -- центростремительных и центробежных. Первая группа волокон проводит импульсы от периферии к ЦНС и называется чувствительными (эфферентными) нервными волокнами, вторая несет импульсы от ЦНС к иннервируемому органу - это двигательные (афферентные) нервные волокна.

В зависи?о?ти от иннервируемых органов эфферентные волокна периферических нервов могут выполнять двигательную функцию -иннервируют мышечную ткань; секреторную -- иннервируют железы; трофическую -- обеспечивают обменные процессы в тканях. Выделяют нервы двигательные, чувствительные и смешанные.

Двигательный нерв образуется отростками нервных клеток, находящихся в ядрах передних рогов спинного мозга или в двигательных ядрах черепных нервов.

Чувствительный нерв состоит из отростков нервных клеток, которые формируют спинномозговые узлы черепных нервов.

Смешанные нервы содержат как чувствительные, так и двигательные нервные волокна.

Вегетативные нервы и их ветви сформированы отростками клеток боковых рогов спинного мозга или вегетативными ядрами черепных нервов. Отростки этих клеток являются предузловыми нервными волокнами и идут до вегетативных (автономных) узлов, которые входят в состав вегетативных нервных сплетений. Отростки клеток узлов направляются к иннервируемым органам и тканям и называются послеузловыми нервными волокнами.

  • I. Средства, уменьшающие стимулирующее влияние адренергической иннервации на сердечно-сосудистую систему (нейротропные средства)
  • III, IV, VI пары черепных нервов, области иннервации. Пути зрачкового рефлекса.
  • IX пара черепных нервов, ее ядер, топография и области иннервации.
  • V пара черепных нервов, ее ветви, топография и области иннервации.
  • Каждый периферический нерв, состоит из большого числа нервных
    волокон, объединенных соединительнотканными оболочками (рис. 265-А).
    В нервном волокне, независимо от его природы и функционального назна-
    чения, различают «зевой цилиндр - cylindroaxis, покрытый собственной
    оболочкой - axolemma -^ и нервной оболочкой - neurolemma. При на-
    личии в последней жироподобного вещества - миелина нервное волокно
    называется мякотным или миелиновым-*■ neurofibra myelinate, а при его"
    отсутствии -- безмякотным или амиелиновым - neurofibra amyelinata (го-
    лые нервные волокна-neurofibria nuda).

    Значение мякотной оболочки заключается в том, что она способствует
    лучшему проведению нервного возбуждения. В безмякотных нервных волок-
    нах возбуждение проводится со скоростью 0,5-2 м/с, в то время как в мя-
    котных волокнах - 60-120 м/с". По диаметру отдельные нервные волокна
    подразделяются на толстые мякотные (от 16-26 мкм у лошади, жвачных
    до 10-22 мкм у собаки)>-эфферентные соматические; средние мякотные
    (от 8-15 мкм у лошади, жвачных до 6-^-8 мкм у собаки) - афферентные
    соматические; тонкие (4--8 мкм) -у эфферентные вегетативные (рис. 265-Б).

    Безмякотные нервные волокна входят в состав как соматических, так
    и висцеральных нервов, но в количественном отношений их больше в веге-
    тативных нервах. Они различаются как по диаметру, так и по форме ядер
    невролеммы: 1) маломякотные, или безмякотные, волокна с округлой
    формой ядер (диаметр волокна 4-2,5 мкм, размер ядра 8X4,6 мкм, рас-
    стояние между ядрами 226т-345 мкм); 2) маломякотные или безмякотные
    волокна с овальновытянутой формой ядер невролеммы (диаметр волокна
    1-2,5 мкм, размер ядра 12,8 X 4 мкм, расстояние между ядрами 85-
    180 мкм); 3) безмякотные волокна с веретенообразной формой ядер невроз
    леммы (диаметр волокна 0,5-1,5 мкм, размер.ядра 12,8 х 1,2 мкм, рас-


    Рис- 265. Строение периферического нерва!

    А - нерв на поперечном срезе: 1 - epineurium; 2 - perineurium; 3 - endoneurium!
    4 - neurofibra myelinata; 5 - cylindraxis; Б - состав нервны» волокон в-сомати-
    ческом нерве овцы; 1, 2, 3 - neurofibra myelinata; 4 - neurofibra amyelinata; 5,
    6,7 - neurofibra nuda; a - lemmocytus; n- incisio myelini; о - isthmus nodi.

    стояние между волокнами 60-120 мкм). У животных разных видов эти по-,
    казатели могут быть неодинаковыми.

    Оболочки нерва. Нервные волокна, отходящие от мозга, посредством
    соединительной ткани объединяются в пучки, составляющие основу пери-
    ферических нервов. В каждом нерве соединительнотканные элементы участ-
    вуют в образовании: а) внутри пучковой основы - endoneurium, распола-
    гающейся в виде рыхлой соединительной ткани между отдельными нервными
    волокнами; б) соединительнотканной оболочки, покрывающей отдельные
    группы нервных волокон, или периневрий - perineurium. В этой оболочке
    снаружи различают двойной слой плоских эпителиальных клеток эпенди-
    моглиальной природы, которые образуют вокруг нервного пучка перине-
    вральное влагалище, или периневральное пространство - spatium peri-
    neurii. 0т базйлярного внутреннего слоя выстилки периневрального вла-
    галища в глубь нервного пучка отходят соединительнотканные волокна,
    образующие внутрипучковые периневральные перегородки - septum peri-
    neurii; последние служат местом прохождения кровеносных сосудов, а так-
    же участвуют в образовании эндоневриума. > .

    Периневральные влагалища сопровождают пучки нервных волокон на
    всем их протяжении и делятся по мере деления нерва на более мелкие ветви.
    Полость периневрального влагалища сообщается с субарахноидальным
    и субдуральным пространствами спинного или головного мозга и^ содер-
    жит небольшое количество ликвора (нейрогенный путь проникновения ви-
    руса бешенства в центральные отделы нервной системы).

    Группы первичных нервных пучков посредством плотной неоформлен-
    ной соединительной ткани объединяются в более крупные вторичные и
    третичные пучки нервных стволов и составляют в них наружную соедини-
    тельнотканную оболочку, ижэпиневрий - epineurium. В эпиневрий по срав-
    нению с эндоневрием проходят более крупные кровеносные и лимфатиче-
    ские сосуды - vasa nervorum. Вокруг нервных стволйв имеется то или иное
    количество (в зависимости от места прохождения) рыхлой соединительной
    ткани, образующей по периферии нервного ствола дополнительную около-
    Нервную (защитную) оболочку - paraneural т. В непосредственной бли-
    зости к нервным пучкам она преобразуется в эпиневральную оболочку.

    Дата добавления: 2015-08-06 | Просмотры: 379 | Нарушение авторских прав


    | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

    16-09-2012, 21:50

    Описание

    В периферической нервной системе различают следующие компоненты:
    1. Ганглии.
    2. Нервы.
    3. Нервные окончания и специализированные органы чувств.

    Ганглии

    Ганглии представляют собой скопление нейронов, формирующих в анатомическом смысле небольшие узелки различного размера, разбросанные в различных участках тела. Различают два типа ганглиев - цереброспинальные и вегетативные. Тела нейронов спинномозговых ганглиев, как правило, округлой формы и различного размера (от 15 до 150 мкм). Ядро располагается в центре клетки и содержит четкое круглое ядрышко (рис. 1.5.1).

    Рис. 1.5.1. Микроскопическое строение интрамурального ганглия (а) и цитологические особенности ганглиозных клеток (б): а - группы ганглиозных клеток, окруженные волокнистой соединительной тканью. Снаружи ганглий покрыт капсулой, к которой прилежит жировая клетчатка; б-нейроны ганглия (1- влючение в цитоплазме ганглиозной клетки; 2 - гипертрофированое ядрышко; 3 - клетки-сателлиты)

    Каждое тело нейрона отделено от окружающей соединительной ткани прослойкой уплощенных капсулярных клеток (амфицитов). Их можно отнести к клеткам глиальной системы. Проксимальный отросток каждой ганглиозной клетки в заднем корешке разделяется на две ветви. Одна из них вливается в спинномозговой нерв, в котором проходит к рецепторному окончанию. Вторая входит в задний корешок и достигает заднего столба серого вещества на той же стороне спинного мозга.

    Ганглии вегетативной нервной системы по строению сходны с цереброспинальными ганглиями. Наиболее существенное отличие сводится к тому, что нейроны вегетативных ганглиев мультиполярны. В области глазницы обнаруживаются различные вегетативные ганглии, обеспечивающие иннервацию глазного яблока.

    Периферические нервы

    Периферические нервы являются четко определяемыми анатомическими образованиями и довольно прочны. Нервный ствол окутывается снаружи соединительнотканным футляром на всем протяжении. Этот наружный футляр называют эпинервием. Группы из нескольких пучков нервных волокон окружаются периневрием. От периневрия отделяются тяжи рыхлой волокнистой соединительной ткани, окружающие отдельные пучки нервных волокон. Это эндоневрий (рис. 1.5.2).

    Рис. 1.5.2. Особенности микроскопического строения периферического нерва (продольный срез): 1- аксоны нейронов: 2- ядра шванновских клеток (леммоциты); 3-перехват Ранвье

    Периферические нервы обильно снабжены кровеносными сосудами.

    Периферический нерв состоит из различного количества плотно упакованных нервных волокон, являющихся цитоплазматическими отростками нейронов. Каждое периферическое нервное волокно покрыто тонким слоем цитоплазмы - неврилеммой, или шванновской оболочкой . Шванновские клетки (леммоциты), участвующие в формировании этой оболочки, происходят из клеток нервного гребня.

    В некоторых нервах между нервным волокном и шванновской клеткой располагается слой миелина . Первые называются миелинизированными, а вторые - немиелинизированными нервными волокнами.

    Миелин (рис. 1.5.3)

    Рис. 1.5.3. Периферический нерв. Перехваты Ранвье: а - светооптическая микроскопия. Стрелкой указан перехват Ранвье; б-ультраструктурные особенности (1-аксоплазма аксона; 2- аксолемма; 3 - базальная мембрана; 4 - цитоплазма леммоцита (шванновская клетка); 5 - цитоплазматическая мембрана леммоцита; 6 - митохондрия; 7 - миелиновая оболочка; 8 - нейрофилламенты; 9 - нейротрубочки; 10 - узелковая зона перехвата; 11 - плазмолемма леммоцита; 12 - пространство между соседними леммоцитами)

    покрывает нервное волокно не сплошь, а через определенное расстояние прерывается. Участки прерывания миелина обозначаются перехватами Ранвье. Расстояние между последовательными перехватами Ранвье варьирует от 0,3 до 1,5 мм. Перехваты Ранвье имеются и в волокнах центральной нервной системы, где миелин образует олигодендроциты (см. выше). Нервные волокна разветвляются именно в перехватах Ранвье.

    Каким образом формируется миелиновая оболочка периферических нервов ? Первоначально шванновская клетка обхватывает аксон, так что он располагается в желобке. Затем эта клетка как бы наматывается на аксон. При этом участки цитоплазматической мембраны по краям желобка вступают в контакт друг с другом. Обе части цитоплазматической мембраны остаются соединенными, и тогда видно, что клетка продолжает обматывать аксон по спирали. Каждый виток на поперечном разрезе имеет вид кольца, состоящего из двух линий цитоплазматической мембраны. По мере наматывания цитоплазма шванновской клетки выдавливается в тело клетки.

    Некоторые афферентные и вегетативные нервные волокна не имеют миелиновой оболочки. Тем не менее они защищены шванновскими клетками. Это происходит благодаря вдавливанию аксонов в тело шванновских клеток.

    Механизм передачи нервного импульса в немиелинизированном волокне освещен в руководствах по физиологии. Здесь мы лишь кратко охарактеризуем основные закономерности процесса.

    Известно, что цитоплазматическая мембрана нейрона поляризованна , т. е. между внутренней и наружной поверхностью мембраны существует электростатический потенциал, равный - 70 мВ. Причем внутренняя поверхность обладает отрицательным, а наружная положительным зарядом. Подобное состояние обеспечивается действием натрий-калиевого насоса и особенностями белкового состава внутрицитоплазматического содержимого (преобладание отрицательно заряженных белков). Поляризованное состояние называют потенциалом покоя.

    При стимуляции клетки, т. е. нанесении раздражения цитоплазматической мембраны самыми разнообразными физическими, химическими и др. факторами, первоначально наступает деполяризация, а затем реполяризация мембраны . В физико-химическом смысле при этом наступает обратимое изменение в цитоплазме концентрации ионов К и Na. Процесс реполяризации активный с использованием энергетических запасов АТФ.

    Волна деполяризации - реполяризации распространяется вдоль цитоплазматической мембраны (потенциал действия). Таким образом, передача нервного импульса есть не что иное, как распространяющаяся волна потенциала действи я.

    Каково же значение в передаче нервного импульса миелиновой оболочки? Выше указано, что миелин прерывается в перехватах Ранвье. Поскольку только в перехватах Ранвье цитоплазматическая мембрана нервного волокна контактирует с тканевой жидкостью, только в этих местах возможна деполяризация мембраны таким же образом, как в немиелинизированных волокнах. На остальном протяжении этот процесс невозможен в связи с изолирующими свойствами миелина. В результате этого между перехватами Ранвье (от одного участка возможной деполяризации до другого) передача нервного импульса осуществляется внутрицитоплазматическими местными токами . Поскольку электрический ток проходит гораздо быстрее, чем непрерывная волна деполяризации, передача нервного импульса в миелинизированном нервном волокне происходит значительно быстрее (в 50 раз), причем скорость увеличивается с увеличением диаметра нервного волокна, что обусловлено снижением внутреннего сопротивления. Подобный тип передачи нервного импульса называется сальтаторным. т. е. прыгающим. Исходя из изложенного, видно важное биологическое значение миелиновых оболочек.

    Нервные окончания

    Афферентные (чувствительные) нервные окончания (рис. 1.5.5, 1.5.6).

    Рис. 1.5.5. Особенности строения различных рецепторных окончаний: а - свободные нервные окончания; б- тельце Мейснера; в - колба Краузе; г - тельце Фатер-Пачини; д - тельце Руффини

    Рис. 1.5.6. Строение нервно-мышечного веретена: а-моторная иннервация интрафузальных и экстрафузальных мышечных волокон; б спиральные афферентные нервные окончания вокруг интрафузальных мышечных волокон в области ядерных сумок (1 - нервно-мышечные эффекторные окончания экстрафузальных мышечных волокон; 2 - моторные бляшки интрафузальных мышечных волокон; 3 - соединительнотканная капсула; 4 - ядерная сумка; 5 - чувствительные кольцеспиральные нервные окончания вокруг ядерных сумок; 6 - скелетные мышечные волокна; 7 - нерв)

    Афферентные нервные окончания представляют собой концевые аппараты дендритов чувствительных нейронов, повсеместно располагающихся во всех органах человека и дающие информацию центральной нервной системе об их состоянии. Воспринимают они раздражения, исходящие и из внешней среды, преобразуя их в нервный импульс. Механизм возникновения нервного импульса характеризуется уже описанными явлениями поляризации и деполяризации цитоплазматической мембраны отростка нервной клетки.

    Существует ряд классификаций афферентных окончаний - в зависимости от специфичности раздражения (хеморецепторы, барорецепторы, механорецепторы, терморецепторы и др.), от особенностей строения (свободные нервные окончания и несвободные).

    Обонятельные, вкусовые, зрительные и слуховые рецепторы, а также рецепторы, воспринимающие движение частей тела относительно направления силы тяжести, называют специальными органами чувств . В последующих главах этой книги мы подробно остановимся только на зрительных рецепторах.

    Рецепторы разнообразны по форме, строению и функциям . В данном разделе нашей задачей не является подробное описание различных рецепторов. Упомянем лишь о некоторых из них в разрезе описания основных принципов строения. При этом необходимо указать на различия свободных и несвободных нервных окончаний. Первые характеризуются тем, что они состоят только из ветвления осевых цилиндров нервного волокна и клетки глии. При этом они контактируют разветвлениями осевого цилиндра с клетками, возбуждающими их (рецепторы эпителиальных тканей). Несвободные нервные окончания отличаются тем, что в своем составе они содержат все компоненты нервного волокна. Если они покрыты соединительнотканной капсулой, они называются инкапсулированными (тельце Фатер-Пачини, осязательное тельце Мейснера, терморецепторы колбы Краузе, тельца Руффини и др.).

    Разнообразно строение рецепторов мышечной ткани, часть которых обнаруживается в наружных мышцах глаза. В этой связи на них мы остановимся более подробно. Наиболее распространенным рецептором мышечной ткани является нервно-мышечное веретено (рис. 1.5.6). Это образование регистрирует растяжение волокон поперечно-полосатых мышц. Представляют они собой сложные инкапсулированные нервные окончания, обладающие как чувствительной, так и двигательной иннервацией. Число веретен в мышце зависит от ее функции и тем выше, чем более точными движениями она обладает. Нервно-мышечное веретено располагается вдоль мышечных волокон. Веретено покрыто тонкой соединительнотканной капсулой (продолжение периневрия), внутри которой находятся тонкие поперечнополосатые интрафузальные мышечные волокна двух видов:

    • волокна с ядерной сумкой - в расширенной центральной части которых содержатся скопления ядер (1-4- волокна/веретено);
    • волокна с ядерной цепочкой - более тон кие с расположением ядер в виде цепочки в центральной части (до 10 волокон/веретено).

    Чувствительные нервные волокна образуют кольцеспиральные окончания на центральной части интрафузальных волокон обоих типов и гроздьевидные окончания у краев волокон с ядерной цепочкой.

    Двигательные нервные волокна - тонкие, образуют мелкие нервно-мышечные синапсы по краям интрафузальных волокон, обеспечивая их тонус.

    Рецепторами растяжения мышцы являются также нервно-сухожильные веретена (сухожильные органы Гольджи). Это веретеновидные инкапсулированные структуры длиной около 0,5-1,0 мм. Располагаются они в области соединения волокон поперечнополосатых мышц с коллагеновыми волокнами сухожилий. Каждое веретено образовано капсулой из плоских фиброцитов (продолжение периневрия), которая охватывает группу сухожильных пучков, оплетенных многочисленными терминальными веточками нервных волокон, частично покрытых леммоцитами. Возбуждение рецепторов возникает при растяжении сухожилия во время мышечного сокращения.

    Эфферентные нервные окончания несут информацию от центральной нервной системы к исполнительному органу. Это окончания нервных волокон на мышечных клетках, железах и др. Более подробное их описание будет приведено в соответствующих разделах. Здесь мы подробно остановимся лишь на нервно-мышечном синапсе (моторная бляшка). Моторная бляшка располагается на волокнах поперечнополосатых мышц. Состоит она из концевого ветвления аксона, образующего пресинаптическую часть, специализированного участка на мышечном волокне, соответствующего постсинаптической части, и разделяющей их синаптической щели. В крупных мышцах один аксон иннервирует большое количество мышечных волокон, а в небольших мышцах (наружные мышцы глаза) каждое мышечное волокно или их небольшая группа иннервируется одним аксоном. Один мотонейрон в совокупности с иннервируемыми им мышечными волокнами образует двигательную единицу.

    Пресинаптическая часть формируется следующим образом . Вблизи мышечного волокна аксон утрачивает миелиновую оболочку и дает несколько веточек, которые сверху покрыты уплощенными леммоцитами и базальной мембраной, переходящей с мышечного волокна. В терминалах аксона имеются митохондрии и синаптические пузырьки, содержащие ацетилхолин.

    Синаптическая щель имеет ширину 50 нм. Располагается она между плазмолеммой ветвлений аксона и мышечного волокна. Содержит она материал базальной мембраны и отростки глиальных клеток, разделяющих соседние активные зоны одного окончания.

    Постсинаптическая часть представлена мембраной мышечного волокна (сарколеммой), образующей многочисленные складки (вторичные синаптические щели). Эти складки увеличивают общую площадь щели и заполнены материалом, являющимся продолжением базальной мембраны. В области нервно-мышечного окончания мышечное волокно не имеет исчерченности. содержит многочисленные митохондрии, цистерны шероховатого эндоплазматического ретикулума и скопление ядер.

    Механизм передачи нервного импульса на мышечное волокно сходен с таковым в химическом межнейронном синапсе. При деполяризации пресинаптической мембраны происходит выделение ацетилхолина в синаптическую щель. Связывание ацетилхолина с холинорецепторами в постсинаптической мембране вызывает ее деполяризацию и последующее сокращение мышечного волокна. Медиатор отщепляется от рецептора и быстро разрушается ацетил-холинэстеразой.

    Регенерация периферических нервов

    При разрушении участка периферического нерва в течение недели наступает восходящая дегенерация проксимальной (ближайшей к телу нейрона) части аксона с последующим некрозом как аксона, так и шванновской оболочки. На конце аксона формируется расширение (ретракционная колба). В дистальной части волокна после его перерезки отмечается нисходящая дегенерация с полным разрушением аксона, распадом миелина и последующим фагоцитозом детрита макрофагами и глией (рис. 1.5.8).

    Рис. 1.5.8. Регенерация миелинового нервного волокна: а - после перерезки нервного волокна проксимальная часть аксона (1) подвергается восходящей дегенерации, миелиновая оболочка (2) в области повреждения распадается, перикарион (3) нейрона набухает, ядро смещается к периферии, хромафильная субстанция (4) распадается; б-дистальная часть, связанная с иннервируемым органом, претерпевает нисходящую дегенерацию с полным разрушением аксона, распадом миелиновой оболочки и фагоцитозом детрита макрофагами (5) и глией; в - леммоциты (6) сохраняются и митотически делятся, формируя тяжи - ленты Бюгнера (7), соединяющиеся с аналогичными образованиями в проксимальной части волокна (тонкие стрелки). Через 4-6 недель структура и функция нейрона восстанавливается, от проксимальной части аксона дистально отрастают тонкие веточки (жирная стрелка), растущие вдоль ленты Бюгнера; г - в результате регенерации нервного волокна восстанавливается связь с органом-мишенью и регрессирует ее атрофия: д - при возникновении преграды (8) на пути регенерирующего аксона компоненты нервного волокна формируют травматическую неврому (9), которая состоит из разрастающихся веточек аксона и леммоцитов

    Начало регенерации характеризуется сначала пролиферацией шванновских клеток , их передвижением вдоль распавшегося волокна с образованием клеточного тяжа, лежащего в эндоневральных трубках. Таким образом, шванновские клетки восстанавливают структурную целостность в месте разреза . Фибробласты также пролиферируют, но медленнее шванновских клеток. Указанный процесс пролиферации шванновских клеток сопровождается одновременной активацией макрофагов, которые первоначально захватывают, а затем лизируют оставшийся в результате разрушения нерва материал.

    Следующий этап характеризуется прорастанием аксонов в щели , образованные шванновскими клетками, проталкиваясь от проксимального конца нерва к дистальному. При этом от ретракционной колбы в направлении дистальной части волокна начинают отрастать тонкие веточки (конусы роста). Регенерирующий аксон растет в дистальном направлении со скоростью 3-4 мм сут вдоль лент из шванновских клеток (ленты Бюгнера), которые играют направляющую роль. В последующем наступает дифференциация шванновских клеток с образованием миелина и окружающей соединительной ткани. Коллатерали и терминали аксонов восстанавливаются в течение нескольких месяцев. Регенерация нервов происходит только при условии отсутствия повреждения тела нейрона , небольшом расстоянии между поврежденными концами нерва, отсутствии между ними соединительной ткани. При возникновении преграды на пути регенерирующего аксона развивается ампутационная нейрома. Регенерация нервных волокон в центральной нервной системе отсутствует.

    Статья из книги: .

    Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.