Основные положения специальной теории относительности. Специальная теория относительности

3.5. Специальная теория относительности (СТО)

Введение в СТО

С теорией относительности мы знакомимся еще в средней школе. Эта теория объясняет нам явления окружающего мира таким образом, что это противоречит «здравому смыслу». Правда, еще тот же А. Эйнштейн в свое время заметил: «Здравый смысл – это предрассудки, которые складываются в возрасте до восемнадцати лет».

Еще в XVIII в. ученые пытались ответить на вопросы о том, как передается гравитационное взаимодействие и как распространяется свет (позже вообще любые электромагнитные волны). Поиски ответов на эти вопросы и явились причиной разработки теории относительности.

В XIX в. физики были убеждены, что существует так называемый эфир (мировой эфир, светоносный эфир). По представлениям прошлых столетий, это некая всепроникающая всезаполняющая среда. Развитие физики во второй половине XIX в. требовало от ученых максимально конкретизировать представления об эфире. Если предположить, что эфир подобен газу, то в нем могли бы распространяться только продольные волны, а электромагнитные волны – поперечные. Непонятно, как в таком эфире могли бы двигаться небесные тела. Имелись и другие серьезные возражения против эфира. В то же время шотландский физик Джеймс Максвелл (1831–1879) создал теорию электромагнитного поля, из которой, в частности, следовала величина конечной скорости распространения этого поля в пространстве – 300 000 км/с. Немецкий физик Генрих Герц (1857–1894) доказал опытным путем идентичность света, тепловых лучей и электромагнитного «волнового движения». Он определил, что электромагнитная сила действует со скоростью 300 000 км/с. Больше того, Герц установил, что «электрические силы могут отделяться от весомых тел и существовать далее самостоятельно как состояние или изменение пространства». Однако ситуация с эфиром ставила много вопросов, и для отмены этого понятия требовался прямой эксперимент. Идею его сформулировал еще Максвелл, предложивший использовать в качестве движущегося тела Землю, которая перемещается по орбите со скоростью 30 км/с. Такой опыт требовал крайне высокой точности измерений. Эту труднейшую задачу в 1881 г. решили американские физики А. Майкельсон и Э. Морли. Согласно гипотезе «неподвижного эфира», можно наблюдать «эфирный ветер» при движении Земли сквозь «эфир», а скорость света по отношению к Земле должна зависеть от направления светового луча относительно направления движения Земли в эфире (то есть свет направляется по движению Земли и против). Скорости при наличии эфира должны были быть различными. Но они оказались неизменными. Это показывало, что эфира нет. Этот отрицательный результат стал подтверждением теории относительности. Опыт Майкельсона и Морли по определению скорости света неоднократно повторялся позднее, в 1885–1887 гг., с тем же результатом.

В 1904 г. на научном конгрессе французский математик Анри Пуанкаре (1854–1912) высказал мнение, что в природе не может быть скоростей, больших скорости света. Тогда же А. Пуанкаре сформулировал принцип относительности как всеобщий закон природы. В 1905 г. он писал: «Невозможность доказать путем опытов абсолютное движение Земли является, очевидно, общим законом природы». Здесь же он указывает на преобразования Лоренца и на общую связь пространственных и временных координат.

Альберт Эйнштейн (1879–1955), создавая специальную теорию относительности, о результатах Пуанкаре еще не знал. Позже Эйнштейн напишет: «Я совершенно не понимаю, почему меня превозносят как создателя теории относительности. Не будь меня, через год это бы сделал Пуанкаре, через два года сделал бы Минковский, в конце концов, более половины в этом деле принадлежит Лоренцу. Мои заслуги преувеличены». Однако Лоренц со своей стороны в 1912 г. писал: «Заслуга Эйнштейна состоит в том, что он первым выразил принцип относительности в виде всеобщего, строгого закона».


Два постулата Эйнштейна в СТО

Для описания физических явлений Галилей ввел понятие инерциальной системы. В такой системе тело, на которое не действует какая-либо сила, находится в покое или в состоянии равномерного прямолинейного движения. Законы, описывающие механическое движение, в различных инерциальных системах одинаково справедливы, то есть не изменяются при переходе от одной системы координат к другой. Например, если пассажир идет в движущемся вагоне поезда в направлении его движения со скоростью v 1 = 4 км/ч, а поезд движется со скоростью v 2 = 46 км/ч, то скорость пассажира относительно железнодорожного полотна будет v = v 1 + v 2 = 50 км/ч, то есть здесь имеется сложение скоростей. По «здравому смыслу» это незыблемый факт:

v = v 1 + v 2

Однако в мире больших скоростей, соизмеримых со скоростью света, указанная формула сложения скоростей просто неверна. В природе свет распространяется со скоростью с = 300 000 км/с независимо от того, в какую сторону по отношению к наблюдателю движется источник света.

В 1905 г. в немецком научном журнале «Анналы физики» 26-летний Альберт Эйнштейн опубликовал статью «Об электродинамике движущихся тел». В этой статье он сформулировал два знаменитых постулата, которые легли в основание частной, или специальной, теории относительности (СТО), изменившей классические представления о пространстве и времени.

В первом постулате Эйнштейн развил классический принцип относительности Галилея. Он показал, что этот принцип является всеобщим, в том числе и для электродинамики (а не только для механических систем). Это положение не было однозначным, так как потребовалось отказаться от ньютоновского дальнодействия.

Обобщенный принцип относительности Эйнштейна утверждает, что никакими физическими опытами (механическими и электромагнитными) внутри данной системы отсчета нельзя установить, движется эта система равномерно или покоится. При этом пространство и время являются связанными друг с другом, зависящими друг от друга (у Галилея и Ньютона пространство и время независимы друг от друга).

Второй постулат специальной теории относительности Эйнштейн предложил после анализа электродинамики Максвелла – это принцип постоянства скорости света в вакууме, которая примерно равна 300 000 км/с.

Скорость света – это самая большая скорость в нашей Вселенной. Больше скорости 300 000 км/с в окружающем нас мире быть не может.

В современных ускорителях микрочастицы разгоняются до огромных скоростей. Например, электрон разгоняется до скорости v е = 0,9999999 С, где v е, С – скорости электрона и света соответственно. При этом, с точки зрения наблюдателя, масса электрона возрастает в 2500 раз:


Здесь m e0 – масса покоя электрона, m e – масса электрона на скорости v e .

Достичь скорости света электрон не может Однако существуют микрочастицы, которые имеют скорость света, их называют «люксоны».

К ним относятся фотоны и нейтрино. У них практически нет массы покоя, их нельзя затормозить, они всегда движутся со скоростью света с. Все остальные микрочастицы (тардионы) движутся со скоростями меньше скорости света. Микрочастицы, у которых скорость движения могла бы быть больше скорости света, называют тахионами. Таких частиц в нашем реальном мире нет.

Исключительно важным результатом теории относительности является выявление связи между энергией и массой тела. При малых скоростях


где E = m 0 c 2 – энергия покоя частицы с массой покоя m 0 ,а E K – кинетическая энергия движущейся частицы.

Огромным достижением теории относительности является установленный ею факт эквивалентности массы и энергии (E = m 0 c 2). Однако речь идет не о превращении массы в энергию и наоборот, а о том, что превращение энергии из одного вида в другой соответствует переходу массы из одной формы в другую. Энергию нельзя заменить массой, так как энергия характеризует способность тела выполнять работу, а масса – меру инерции.

При скоростях релятивистских, близких к скорости света:


где E – энергия, m – масса частицы, m – масса покоя частицы, с – скорость света в вакууме.

Из приведенной формулы видно, что для достижения скорости света частице нужно сообщить бесконечно большую энергию. Для фотонов и нейтрино эта формула несправедлива, так как у них v = c.


Релятивистские эффекты

Под релятивистскими эффектами в теории относительности понимают изменения пространственно-временных характеристик тел при скоростях, соизмеримых со скоростью света.

В качестве примера обычно рассматривается космический корабль типа фотонной ракеты, который летит в космосе со скоростью, соизмеримой со скоростью света. При этом неподвижный наблюдатель может заметить три релятивистских эффекта:

1. Увеличение массы по сравнению с массой покоя. С ростом скорости растет и масса. Если бы тело могло двигаться со скоростью света, то его масса возросла бы до бесконечности, что невозможно. Эйнштейн доказал, что масса тела есть мера содержащейся в ней энергии (E= mc 2 ). Сообщить телу бесконечную энергию невозможно.

2. Сокращение линейных размеров тела в направлении его движения. Чем больше будет скорость космического корабля, пролетающего мимо неподвижного наблюдателя, и чем ближе она будет к скорости света, тем меньше будут размеры этого корабля для неподвижного наблюдателя. При достижении кораблем скорости света его наблюдаемая длина будет равна нулю, чего быть не может. На самом же корабле космонавты этих изменений не будут наблюдать. 3. Замедление времени. В космическом корабле, движущемся со скоростью, близкой к скорости света, время течет медленнее, чем у неподвижного наблюдателя.

Эффект замедления времени сказался бы не только на часах внутри корабля, но и на всех процессах, протекающих на нем, а также на биологических ритмах космонавтов. Однако фотонную ракету нельзя рассматривать как инерциальную систему, ибо она во время разгона и торможения движется с ускорением (а не равномерно и прямолинейно).

В теории относительности предложены принципиально новые оценки пространственно-временных отношений между физическими объектами. В классической физике при переходе от одной инерциальной системы (№ 1) к другой (№ 2) время остается тем же – t 2 = t L а пространственная координата изменяется по уравнению x 2 = x 1 – vt. В теории относительности применяются так называемые преобразования Лоренца:


Из отношений видно, что пространственные и временные координаты зависят друг от друга. Что касается сокращения длины в направлении движения, то


а ход времени замедляется:


В 1971 г. в США был поставлен эксперимент по определению замедления времени. Изготовили двое совершенно одинаковых точных часов. Одни часы оставались на земле, а другие помещались в самолет, который летал вокруг Земли. Самолет, летящий по круговой траектории вокруг Земли, движется с некоторых ускорением, и значит, часы на борту самолета находятся в другой ситуации по сравнению с часами, покоящимися на земле. В соответствии с законами теории относительности часы-путешественники должны были отстать от покоящихся на 184 нс, а на самом деле отставание составило 203 нс. Были и другие эксперименты, в которых проверялся эффект замедления времени, и все они подтвердили факт замедления. Таким образом, разное течение времени в системах координат, движущихся относительно друг друга равномерно и прямолинейно, является непреложным экспериментально установленным фактом.


Общая теория относительности

После опубликования специальной теории относительности в 1905 г. А. Эйнштейн обратился к современному представлению тяготения. В 1916 г. он опубликовал общую теорию относительности (ОТО), которая с современных позиций объясняет теорию тяготения. Она основывается на двух постулатах специальной теории относительности и формулирует третий постулат – принцип эквивалентности инертной и гравитационной масс. Важнейшим выводом ОТО является положение об изменении геометрических (пространственных) и временных характеристик в гравитационных полях (а не только при движении с большими скоростями). Этот вывод связывает ОТО с геометрией, то есть в ОТО наблюдается геометризация тяготения. Классическая геометрия Евклида для этого не годилась. Новая геометрия появилась еще в XIX в. в трудах русского математика Н. И. Лобачевского, немецкого – Б. Римана, венгерского – Я. Больяйя.

Геометрия нашего пространства оказалась неевклидовой.

Вы сидите лицом по ходу движению звездолета и смотрите на лампочку, которая находится в его носовой части. Свет от лампочки, не обращая внимания на ее движение, перемещается относительно звезд со скоростью С = 300 000 км/с. Вы движетесь навстречу свету со скоростью , стало быть, относительно вас свет должен иметь скорость

Вы измеряете эту скорость, сопоставляете ее с известным значением С и приходите к выводу, что двигаетесь со скоростью 50 000 км/с, таким образом, электромагнитные явления вроде бы позволяют отличить покой от равномерного прямолинейного движения. То есть получается парадокс: с одной стороны скорость света 300 000 км/с не должна зависеть от того, движется или покоится источник света, с другой стороны, согласно классическому закону сложения скоростей, она должна зависеть от выбора системы отсчета.

Выходы предлагались разные, одно из мнений, сторонником, которого был Лоренц, гласило: инерциальные системы отсчета, равноправные в механических явлениях, не являются равноправными в законах электродинамики.

То есть в электродинамике существует некая привилегированная, главная, абсолютная система отсчета, которую ученые связывали с так называемым эфиром.

Проверить справедливость наличия системы отсчета, связанной с эфиром, и наличие собственно этого эфира попытались американские ученые Майкельсон и Морли. Они проверяли, существует ли так называемая абсолютная система отсчета, связанная с эфиром, и движущиеся относительно нее все остальные системы отсчета, то есть так называемый эфирный ветер, которые могли влиять на величину скорости света. И, как вы только что убедились, никакого эфирного ветра не существует. Физика того времени столкнулась с неразрешимым парадоксом: что же справедливо - классическая механика, электродинамика Максвелла или что-то другое.

На момент публикации своей работы Альберт Эйнштейн не был признанным мировым ученым, идеи, которые он высказал, казались настолько революционными, что в первое время у них практически не было сторонников. Тем не менее огромное количество экспериментов и измерений, которые были проведены после этого, показали справедливость точки зрения Альберта Эйнштейна.

Сформулируем еще раз проблемы, с которыми столкнулась физика того времени и поговорим о тех решениях, которые предложил Эйнштейн.

Не удается обнаружить привилегированную систему отсчета, связанную с неподвижным мировым эфиром.

Значит, ее нет вовсе, нет этой привилегированной абсолютной системы отсчета? Альберт Эйнштейн расширил действие принципа Галилея в механике на всю физику, и так получился принцип относительности от Эйнштейна: всякое физическое явление при одних и тех же начальных условиях протекает одинаково в любой инерциальной системе отсчета .

То есть не всякое механическое явление, а любое физическое явление.

Следующая трудность: электродинамика противоречит механике в том, что уравнения Максвелла не инвариантны относительно преобразований Галилея, то есть это как раз та трудность, связанная со скоростью света.

Может, Максвелл неправ? Ничего подобного, электродинамика Максвелла вполне справедлива. Значит, все остальные области физики несправедливы, неверны преобразования Галилея, которые связывают эти части физики? Ведь из них вытекает классический закон сложения скоростей, который мы используем при решении задач, таких как: поезд едет со скоростью 40 км/ч, а пассажир идет по вагону со скоростью 5 км/ч и относительно наблюдателя на земле, этот пассажир будет двигаться со скоростью 45 км/ч (рис. 2).

Рис. 2. Пример классического сложения скоростей ()

Эйнштейн фактически заявляет: раз преобразования Галилея несправедливы, то и этот закон сложения скоростей несправедлив. Полный слом устоев, абсолютно очевидный жизненный пример, абсолютно очевидный жизненный закон оказывается несправедливым, в чем же здесь проблема? Проблема глубоко внутри тех основ классической механики, которые закладывались еще Ньютоном. Оказывается, что главная проблема классической механики состоит в том, что предполагается, что все взаимодействия в рамках механики распространяются мгновенно. Рассмотрим, например, гравитационное притяжение тел.

Если сместить одно из тел в сторону, то, согласно закону всемирного тяготения, второе тело почувствует этот факт мгновенно, как только изменится расстояние от него до первого тела, то есть взаимодействие передается с бесконечной скоростью. В реальности механизм взаимодействия состоит в следующем: изменение положения первого тела меняет гравитационное поле вокруг него. Это изменение поля начинает бежать с какой-то скоростью во все точки пространства, и, когда достигает точки, в которой находится второе тело, соответствующим образом изменяется и взаимодействие первого и второго тел. То есть скорость распространения взаимодействия обладает какой-то конечной величиной. Но если взаимодействия передаются с какой-то конечной скоростью, значит, в природе должна существовать какая-то предельно допустимая скорость распространения этих взаимодействий, максимальная скорость, с которой взаимодействие может передаваться. Об этом гласит второй постулат, который отводит исключительную роль скорости света, принцип инвариантности скорости света: в каждой инерциальной системе отсчета свет движется в вакууме с одной и той же скоростью. Величина этой скорости не зависит от того, покоится или движется источник света .

Таким образом, описанный выше пример с лампочкой в звездолете в реальности нам провести не удастся, это будет противоречить этому постулату теории Эйнштейна. Скорость света относительно наблюдателя в звездолете будет равна С, а не С +V, как мы говорили до этого, и наблюдатель не сможет заметить факт движения звездолета. Классический закон сложения скоростей применительно скорости света не работает, как это ни странно для нас, но скорость света для наблюдателя на Земле и для космонавта будет совершенно одинаковой и равной 300 000 км/с. Именно это положение лежит в основе теории относительности и было вполне успешно доказано огромным количеством экспериментов.

Механика, которая была построена на основании этих двух постулатов, носит название релятивистской механики (от английского relativity - «относительность»). Может показаться, что релятивистская механика отменяет классическую механику Ньютона, поскольку в ее основе лежат другие постулаты, но дело в том, что классическая механика Ньютона - это частный случай релятивистской механики Эйнштейна, который проявляется при скоростях, значительно меньших, чем скорость света. В окружающем нас мире мы и живем в таких скоростях, скорости, с которыми мы сталкиваемся, гораздо меньше скорости света. Поэтому для описания нашей жизни достаточно классической механики Ньютона.

Для небольших скоростей, значительно меньших скорости света, мы вполне успешно пользуемся классической механикой, если же мы работаем со скоростями, близкими к скорости света, или хотим большой точности в описании явлений - мы должны пользоваться специальной теорией относительности, то есть релятивистской механикой.

Список литературы

  1. Тихомирова С.А., Яворский Б.М. Физика (базовый уровень) - М.: Мнемозина, 2012.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. - М.: Мнемозина, 2014.
  3. Кикоин И.К., Кикоин А.К. Физика - 9, Москва, Просвещение, 1990.
  1. Pppa.ru ().
  2. Sfiz.ru ().
  3. Eduspb.com ().

Домашнее задание

  1. Дать определение принципу относительности Эйнштейна.
  2. Дать определение принципу относительности Галилея.
  3. Дать определение принципу инвариантности Эйнштейна.

В сентябре 1905г. появилась работа А.Эйнштейна «К электродинамике движущихся тел», в которой были изложены основные положения Специальной теории относительности (СТО). Эта теория означала пересмотр классических представлений физики о свойствах пространства и времени. Поэтому данная теория по своему содержанию может быть названа физическим учением о пространстве и времени. Физическим потому, что свойства пространства и времени в этой теории рассматриваются в тесной связи с законами совершающихся в них физических явлений. Термин «специальная » подчеркивает то обстоятельство, что эта теория рассматривает явления только в инерциальных системах отсчета.

В качестве исходных позиций специальной теории относительности Эйнштейн принял два постулата, или принципа:

1) принцип относительности;

2) принцип независимости скорости света от скорости источника света.

Первый постулат представляет собой обобщение принципа относительности Галилея на любые физические процессы: все физические явления протекают одинаковым образом во всех инерциальных системах отсчета. Все законы природы и уравнения, описывающие их, инвариантны, т.е. не меняются, при переходе от одной инерциальной системы отсчета к другой.

Другими словами, все инерциальные системы отсчета эквивалентны (неразличимы) по своим физическим свойствам. Никаким опытом нельзя выделить ни одну из них как предпочтительную.

Второй постулат утверждает, что скорость света в вакууме не зависит от движения источника света и одинакова во всех направлениях.

Это значит, что скорость света в вакууме одинакова во всех инерциальных системах отсчета. Таким образом, скорость света занимает особое положение в природе.

Из постулатов Эйнштейна следует, что скорость света в вакууме является предельной: никакой сигнал, никакое воздействие одного тела на другое не могут распространяться со скоростью, превышающей скорость света в вакууме. Именно предельный характер этой скорости объясняет одинаковость скорости света во всех системах отсчета. Наличие предельной скорости автоматически предполагает ограничение скорости движения частиц величиной «с». Иначе эти частицы могли бы осуществлять передачу сигналов (или взаимодействий между телами) со скоростью, превышающей предельную. Таким образом, согласно постулатам Эйнштейна, значение всех возможных скоростей движения тел и распространения взаимодействий ограничено величиной «с». Этим отвергается принцип дальнодействия ньютоновской механики.

Из СТО следуют интересные выводы:

1) СОКРАЩЕНИЕ ДЛИНЫ: движение любого объекта влияет на измеренную величину его длины.

2) ЗАМЕДЛЕНИЕ ВРЕМЕНИ: с появлением СТО возникло утверждение, что абсолютное время не имеет абсолютного смысла, оно лишь идеальное математическое представление, ибо в природе нет реального физического процесса, пригодного для измерения абсолютного времени.


Течение времени зависит от скорости движения системы отсчета. При достаточно большой скорости, близкой к скорости света, время замедляется, т.е. возникает релятивистское замедление времени.

Таким образом, в быстро движущейся системе время течет медленнее, чем в лаборатории неподвижного наблюдателя: если бы наблюдатель, находящийся на Земле, мог следить за часами в летящей на большой скорости ракете, то он пришел бы к выводу, что они идут медленнее его собственных. Эффект замедления времени означает, что обитатели космического корабля стареют медленнее. Если бы один из двух близнецов совершил длительное космическое путешествие, то по возвращении на Землю он обнаружил бы, что оставшийся дома его брат-близнец намного старше его.

В некоторой системе можно говорить только о локальном времени. В этой связи время не есть сущность, не зависящая от материи, оно течет с различной скоростью в различных физических условиях. Время всегда относительно.

3) УВЕЛИЧЕНИЕ МАССЫ: масса тела также является относительной величиной, зависящей от скорости его движения. Чем больше скорость тела, тем больше становится его масса.

Эйнштейн нашел также связь между массой и энергией. Он формулирует следующий закон: «масса тела есть мера содержащейся в нем энергии: Е=mс 2 » . Если в эту формулу подставить m=1 кг и с=300000 км/с, то мы получаем огромную энергию 9·10 16 Дж, которой хватило бы для горения электрической лампочки в течение 30 млн. лет. Но количество энергии в массе вещества ограничено величиной скорости света и количеством массы вещества.

Окружающий нас мир имеет три измерения. СТО утверждает, что время нельзя рассматривать как нечто отдельно взятое и неизменное. В 1907 году немецкий математик Минковский разработал математический аппарат СТО. Он высказал предположение, что три пространственные и одна временная размерности тесно связаны между собой. Все события во Вселенной происходят в четырехмерном пространстве-времени. С математической точки зрения СТО есть геометрия четырехмерного пространства-времени Минковского.

СТО подтверждена на обширном материале, многими фактами и экспериментами (например, замедление времени наблюдается при распадах элементарных частиц в космических лучах или в ускорителях высоких энергий) и лежит в основе теоретических описаний всех процессов, протекающих с релятивистскими скоростями.

Итак, описание физических процессов в СТО существенно связано с системой координат. Физическая теория описывает не физический процесс сам по себе, а результат взаимодействия физического процесса со средствами исследования. Поэтому впервые в истории физики непосредственно проявилась активность субъекта познания, неотрывное взаимодействие субъекта и объекта познания.


«Московский институт предпринимательства и права»

Дисциплина: концепции современного естествознания

Реферат по теме: « основные положения специальной теории относительности »

Выполнил: Таланухин Даниил Сергеевич
Группа №103
Специальность менеджмент организаций

Москва 2011
Содержание

1. Создание специальной теории относительности………………………….3
2. Сущность специальной теории относительности…………………………5
3. Аксиоматические основания СТО…………………………………………. 7
4. Экспериментальные основания СТО………………………………………15
Список литературы…………………………………………………… ……….19

1. Создание специальной теории относительности

Специальная теория относительности (СТО) (частная теория относительности; релятивистская механика) - теория, описывающая движение, законы механики и пространственно-временные отношения при скоростях движения, близких к скорости света. В рамках специальной теории относительности классическая механика Ньютона является приближением низких скоростей. Обобщение СТО для гравитационных полей называется общей теорией относительности.
Отклонения в протекании физических процессов, описываемые теорией относительности, от эффектов, предсказываемых классической механикой, называют релятивистскими эффектами. Скорости, при которых такие эффекты становятся существенными - релятивистскими скоростями.
Создание СТО
Предпосылкой к созданию теории относительности явилось развитие в XIX веке электродинамики. Результатом обобщения и теоретического осмысления экспериментальных фактов и закономерностей в областях электричества и магнетизма стали уравнения Максвелла, описывающие эволюцию электромагнитного поля и его взаимодействие с зарядами и токами. В электродинамике Максвелла скорость распространения электромагнитных волн в вакууме не зависит от скоростей движения как источника этих волн, так и наблюдателя, и равна скорости света. Таким образом, уравнения Максвелла оказались неинвариантными относительно преобразований Галилея, что противоречило классической механике.
Специальная теория относительности была разработана в начале XX века усилиями Г. А. Лоренца, А. Пуанкаре, А. Эйнштейна и других учёных. Экспериментальной основой для создания СТО послужил опыт Майкельсона. Его результаты оказались неожиданными для классической физики своего времени: независимость скорости света от системы отсчёта. Попытка интерпретировать этот результат в начале XX века вылилась в пересмотр классических представлений, и привела к созданию специальной теории относительности.
При движении с околосветовыми скоростями видоизменяются законы динамики. Второй закон Ньютона, связывающий силу и ускорение, должен быть модифицирован при скоростях тел, близких к скорости света. Кроме этого, выражение для импульса и кинетической энергии тела имеет более сложную зависимость от скорости, чем в нерелятивистском случае.
Специальная теория относительности получила многочисленные подтверждения на опыте и является безусловно верной теорией в своей области применимости. По меткому замечанию Л. Пэйджа, «в наш век электричества вращающийся якорь каждого генератора и каждого электромотора неустанно провозглашает справедливость теории относительности - нужно лишь уметь слушать».

2. Сущность специальной теории относительности

СТО полностью выводится на физическом уровне строгости из трёх постулатов (предположений):
1. Справедлив принцип относительности Эйнштейна - расширение принципа относительности Галилея.
2. Скорость света не зависит от скорости движения источника во всех инерциальных системах отсчёта.
3. Пространство и время однородны, пространство является изотропным.
Иногда в постулаты СТО также добавляют условие синхронизации часов по А. Эйнштейну, но принципиального значения оно не имеет: при других условиях синхронизации лишь усложняется математическое описание экспериментальной ситуации без изменения предсказываемых и измеряемых эффектов.
Тем не менее, опора на достижения экспериментальной физики позволяет утверждать, что в пределах своей области применимости - при пренебрежении эффектами гравитационного взаимодействия тел - СТО является справедливой с очень высокой степенью точности. По меткому замечанию Л. Пэйджа: «В наш век электричества, вращающийся якорь каждого генератора и каждого электромотора неустанно провозглашает справедливость теории относительности -- нужно лишь уметь слушать».
Сущность СТО
Следствием постулатов СТО являются преобразования Лоренца, заменяющие собой преобразования Галилея для нерелятивистского, «классического» движения. Эти преобразования связывают между собой координаты и времена одних и тех же событий, наблюдаемых из различных инерциальных систем отсчёта.
При движении с околосветовыми скоростями видоизменяются также и законы динамики. Так, можно вывести, что второй закон Ньютона, связывающий силу и ускорение, должен быть модифицирован при скоростях тел, близких к скорости света. Кроме того, можно показать, что и выражение для импульса и кинетической энергии тела уже имеет более сложную зависимость от скорости, чем в нерелятивистском случае.
Специальная теория относительности получила многочисленные подтверждения на опыте и является, безусловно, верной теорией в своей области применимости.
Четырёхмерный континуум - пространство-время.
С математической точки зрения, непривычные свойства СТО можно интерпретировать как результат того, что время и пространство не являются независимыми понятиями, а образуют пространство-время Минковского, которое является псевдоевклидовым пространством. Вращения базиса в этом четырёхмерном пространстве-времени, смешивающие временную и пространственные координаты 4-векторов, выглядят для нас как переход в движущуюся систему отсчета и похожи на вращения в обычном трёхмерном пространстве. При этом естественно изменяются проекции четырёхмерных интервалов между определёнными событиями на временную и пространственные оси системы отсчёта, что и порождает релятивистские эффекты изменения временных и пространственных интервалов. Именно инвариантная структура этого пространства, задаваемая постулатами СТО, не меняется при переходах от одного условия синхронизации часов к другому, и гарантирует независимость результатов экспериментов от принятого условия.
Аналог расстояния между событиями в пространстве Минковского, называемый интервалом, при введении наиболее простых координат, аналогичных декартовым координатам трёхмерного пространства, даётся выражением.

3. Аксиоматические основания СТО

Специальная теория относительности, как и любая другая физическая теория, нуждается в определении своих основных понятий и формулировки исходных постулатов (аксиом).
Основные понятия.
Система отсчёта представляет собой некоторое материальное тело, выбираемое в качестве начала этой системы, способ определения положения объектов относительно начала системы отсчёта и способ измерения времени. Обычно различают системы отсчёта и системы координат. Добавление процедуры измерения времени к системе координат «превращает» её в систему отсчёта.
Инерциальная система отсчёта (ИСО) - это такая система, относительно которой объект, не подверженный внешним воздействиям, движется равномерно и прямолинейно. Постулируется, что любая система отсчёта, движущаяся относительно данной инерциальной системы равномерно и прямолинейно, также является ИСО.
Событием называется любой физический процесс, который может быть локализован в пространстве, и имеющий при этом очень малую длительность. Другими словами, событие полностью характеризуется координатами (x,y,z) и моментом времени t. Примерами событий являются: вспышка света, положение материальной точки в данный момент времени и т. п.
Обычно рассматриваются две инерциальные системы S и S". Время и координаты некоторого события, измеренные относительно системы S обозначаются как (t, x, y, z), а координаты и время этого же события, измеренные относительно системы S", как (t", x", y", z"). Удобно считать, что координатные оси систем параллельны друг другу и система S" движется вдоль оси x системы S со скоростью v. Одной из задач СТО является поиск соотношений, связывающих (t", x", y", z") и (t, x, y, z), которые называются преобразованиями Лоренца.
Синхронизация времени.
В СТО постулируется возможность определения единого времени в рамках данной инерциальной системы отсчёта. Для этого вводится процедура синхронизации двух часов, находящихся в различных точках ИСО. Пусть от первых часов, в момент времени t1 ко вторым посылается сигнал (не обязательно световой) с постоянной скоростью u. Сразу по достижении вторых часов (по их показаниям в момент времени T) сигнал отправляется обратно с той же постоянной скоростью u и достигает первых часов в момент времени t2. Часы считаются синхронизированными, если выполняется соотношение T = (t1 + t2) / 2.
Предполагается, что такая процедура в данной инерциальной системе отсчёта может быть проведена для любых неподвижных относительно друг друга часов, так что справедливо свойство транзитивности: если часы A синхронизованы с часами B, а часы B синхронизованы с часами C, то часы A и C также окажутся синхронизованными.
В отличие от классической механики единое время можно ввести только в рамках данной системы отсчёта. В СТО не предполагается, что время является общим для различных систем. В этом состоит основное отличие аксиоматики СТО от классической механики, в которой постулируется существование единого (абсолютного) времени для всех систем отсчёта.
Линейность преобразований
Простейшими преобразованиями между двумя ИСО являются линейные функции. Например, для координаты x и времени t можно записать:

где Ai,Bi,Ci - некоторые постоянные коэффициенты, которые могут зависеть от единственного параметра - относительной скорости v. Линейность преобразований обычно связывается с однородностью пространства и времени.
Вообще говоря, можно показать, что в общем случае преобразования между двумя ИСО должны быть дробно-линейными функциями координат и времени с одинаковым знаменателем. Для этого достаточно использовать определение ИСО: если некоторое тело имеет постоянную скорость относительно одной инерциальной системы отсчёта, то его скорость будет постоянна и относительно любой другой ИСО.
Для получения линейных преобразований необходимо выполнение более сильного требования: если два объекта имеют одинаковые скорости относительно одной инерциальной системы отсчёта, то их скорости будут равны и в любой другой инерциальной системе.
Согласование единиц измерения
Чтобы измерения, выполненные в различных ИСО, можно было между собой сравнивать, необходимо провести согласование единиц измерения между системами отсчёта. Так, единицы длины могут быть согласованы при помощи сравнения эталонов длины в перпендикулярном направлении к относительному движению инерциальных систем отсчёта. Например, это может быть кратчайшее расстояние между траекториями двух частиц, движущихся параллельно осям x и x" и имеющих различные, но постоянные координаты (y, z) и (y",z"). Поэтому при относительном движении систем вдоль оси x можно считать, что y"=y, z"=z.
Для согласования единиц измерения времени можно использовать идентично «устроенные» часы, например, атомные. Другой способ согласования единиц времени - это соглашение о некотором значении относительной скорости систем отсчёта. Если начало системы S" (x"=0) движется со скоростью v вдоль оси x системы S, то его траектория в этой системе будет иметь вид x=vt. Аналогично, начало системы отсчёта S (x=0) движется относительно S" со скоростью -v, поэтому имеет траекторию x"=-vt". При этом событие совпадения начал отсчёта систем выбирается за начальный момент времени (t"=t=0, когда x"=x=0). Эти соглашения позволяют записать преобразования в следующем виде:

где коэффициенты?(v), ?(v) зависят от относительной скорости систем отсчёта и для своего определения требуют дополнительных предположений.
Изотропность пространства
Пространство в инерциальных системах отсчёта предполагается изотропным (нет выделенных направлений). Это приводит к тому, что?(v) является чётной функцией скорости: ?(? v) = ?(v).
Рассмотрим, например, измерение длины некоторого объекта (линейки), неподвижного в системе отсчёта S". Если одновременно (?t = 0) в системе S измерить координаты «начала» и «конца» линейки, то её длина?x" = ?(v)?x не должна зависеть от направления (знака) скорости v, откуда следует, что функция?(v) является чётной.
Принцип относительности.
Ключевым для аксиоматики специальной теории относительности является принцип относительности, утверждающий равноправие инерциальных систем отсчёта. Это означает, что все физические процессы в инерциальных системах отсчёта описываются одинаковым образом. Совместно с остальными постулатами, перечисленными выше, принципа относительности достаточно, чтобы получить явный вид преобразований координат и времени между ИСО.
Для этого необходимо рассмотреть три инерциальные системы S1, S2 и S3. Пусть скорость системы S2 относительно системы S1 равна v1, скорость системы S3 относительно S2 равна v2, а относительно S1, соответственно, v3. Записывая последовательность преобразований (S2, S1), (S3, S2) и (S3, S1), можно получить следующее равенство:

Так как относительные скорости систем отсчёта v1 и v2 произвольные и независимые величины, то это равенство будет выполняться только в случае, когда отношение?(v) / v равно некоторой константе?, единой для всех инерциальных систем отсчёта, и, следовательно.
Существование обратного преобразования между ИСО, отличающегося от прямого только заменой знака относительной скорости, позволяет найти функцию.

Таким образом, с точностью до произвольной константы?, получается явный вид преобразований между двумя ИСО. О численном значении константы? и её знаке без обращения к эксперименту ничего сказать нельзя . Если? > 0, то удобно ввести обозначение? = 1 / c2. Тогда преобразования принимают следующий вид:

и называются преобразованиями Лоренца. Из дальнейшего анализа станет ясно, что константа имеет смысл максимальной скорости движения любого объекта. Подобный вывод преобразований Лоренца стал известен спустя 5 лет после известной статьи Эйнштейна 1905 года, благодаря работам Игнатовского, Франка и Роте.
Постулат постоянства скорости света.
Исторически важную роль при построении СТО сыграл второй постулат Эйнштейна, утверждающий, что скорость света c не зависит от скорости движения источника и одинакова во всех инерциальных системах отсчёта. Именно при помощи этого постулата и принципа относительности Альберт Эйнштейн в 1905 г. получил преобразования Лоренца с фундаментальной константой c, имеющей смысл скорости света. С точки зрения описанного выше аксиоматического построения СТО второй постулат Эйнштейна оказывается теоремой теории и непосредственно следует из преобразований Лоренца (см. релятивистское сложение скоростей). Тем не менее, в силу его исторической важности, такой вывод преобразований Лоренца широко используется в учебной литературе.
Необходимо отметить, что световые сигналы, вообще говоря, не требуются при обосновании СТО. Хотя неинвариантность уравнений Максвелла относительно преобразований Галилея привела к построению СТО, последняя имеет более общий характер и применима ко всем видам взаимодействий и физических процессов. Фундаментальная константа c, возникающая в преобразованиях Лоренца, имеет смысл предельной скорости движения материальных тел. Численно она совпадает со скоростью света, однако этот факт связан с безмассовостью электромагнитных полей. Даже если бы фотон имел отличную от нуля массу, преобразования Лоренца от этого бы не изменились. Поэтому имеет смысл различать фундаментальную скорость c и скорость света cem. Первая константа отражает общие свойства пространства и времени, тогда как вторая связана со свойствами конкретного взаимодействия. Чтобы измерить фундаментальную скорость c нет необходимости проводить электродинамические эксперименты. Достаточно, воспользовавшись, например, релятивистским правилом сложения скоростей по значениям скорости некоторого объекта относительно двух ИСО, получить значение фундаментальной скорости c.
Принцип параметрической неполноты.
Приведенный выше вывод преобразований Лоренца основывался на тех же постулатах, что и классическая механика. Однако в последней дополнительно вводится аксиома абсолютности времени t" = t, что приводит к значению константы c, равному бесконечности, и, следовательно, к преобразованиям Галилея. Таким образом, СТО фактически строится на базе подмножества аксиом классической механики.
Обобщением этого факта явилась формулировка принципа параметрической неполноты. Согласно этому принципу построение более общей теории (СТО) возможно на основе аксиом менее общей (классической механики). Для этого можно отказаться от части аксиом менее общей теории. Возникающая при этом неполнота (уменьшение исходной аксиоматической информации) может привести к появлению неопределяемых в рамках теории фундаментальных констант. В случае СТО отказ от аксиомы абсолютности времени (время течёт одинаковым образом во всех системах отсчёта) приводит к появлению фундаментальной константы, имеющей смысл предельной скорости движения любых материальных объектов. Применение этого принципа позволяет получить, например, проективное обобщение теории относительностии объясняет происхождение фундаментальных физических констант.
Непротиворечивость теории относительности.
Тот факт, что СТО может быть построена на подмножестве аксиом классической механики, доказывает её непротиворечивость, точнее, сводит проблему доказательства непротиворечивости СТО к доказательству непротиворечивости классической механики. Действительно, если следствия из более широкой системы аксиом являются непротиворечивыми, то они, тем более, будут непротиворечивыми при использовании только части аксиом.
С точки зрения логики противоречия могут возникать, когда к уже существующим аксиомам добавляется новая аксиома, не согласующаяся с исходными. В аксиоматическом построении СТО, описанном выше, этого не происходит, поэтому СТО является непротиворечивой теорией.
Геометрический подход.
Возможны другие подходы к построению специальной теории относительности. Следуя Минковскому и более ранней работе Пуанкаре, можно постулировать существование единого метрического четырёхмерного пространства-времени с 4-координатами (ct,x,y,z). В простейшем случае плоского пространства метрика, определяющая расстояние между двумя бесконечно близкими точками, может быть евклидовой или псевдоевклидовой. Последний случай соответствует специальной теории относительности. Преобразования Лоренца при этом являются поворотами в таком пространстве, которые оставляют неизменным расстояние между двумя точками.
Возможен ещё один подход, в котором постулируется геометрическая структура пространства скоростей. Каждая точка такого пространства соответствует некоторой инерциальной системе отсчёта, а расстояние между двумя точками - модулю относительной скорости между ИСО. В силу принципа относительности все точки такого пространства должны быть равноправными, а, следовательно, пространство скоростей является однородным и изотропным. Если его свойства задаются римановой геометрией, то существует три и только три возможности: плоское пространство, пространство постоянной положительной и отрицательной кривизны. Первый случай соответствует классическому правилу сложения скоростей. Пространство постоянной отрицательной кривизны (пространство Лобачевского) соответствует релятивистскому правилу сложения скоростей и специальной теории относительности.

4. Экспериментальные основания СТО

Специальная теория относительности лежит в основе всей современной физики. Поэтому, какого-либо отдельного эксперимента, «доказывающего» СТО нет. Вся совокупность экспериментальных данных в физике высоких энергий, ядерной физике, спектроскопии, астрофизике, электродинамике и других областях физики согласуется с теорией относительности в пределах точности эксперимента. Например, в квантовой электродинамике (объединение СТО, квантовой теории и уравнений Максвелла) значение аномального магнитного момента электрона совпадает с теоретическим предсказанием с относительной точностью 10 ? 9 .
Фактически СТО является инженерной наукой. Её формулы используются при расчёте ускорителей элементарных частиц. Обработка огромных массивов данных по столкновению частиц, двигающихся с релятивистскими скоростями в электромагнитных полях, основана на законах релятивистской динамики, отклонения от которых обнаружено не было. Поправки, следующие из СТО и ОТО, используются в системах спутниковой навигации (GPS). СТО лежит в основе ядерной энергетики, и т. д.
Всё это не означает, что СТО не имеет пределов применимости. Напротив, как и в любой другой теории, они существуют, и их выявление является важной задачей экспериментальной физики. Например, в теории гравитации Эйнштейна (ОТО) рассматривается обобщение псевдоевклидового пространства СТО на случай пространства-времени, обладающего кривизной, что позволяет объяснить большую часть астрофизических и космологических наблюдаемых данных. Существуют попытки обнаружить анизотропию пространства и другие эффекты, которые могут изменить соотношения СТО. Однако необходимо понимать, что если они будут обнаружены, то приведут к более общим теориям, предельным случаем которых снова будет СТО. Точно так же при малых скоростях верной остаётся классическая механика, являющаяся частным случаем теории относительности. Вообще, в силу принципа соответствия, теория, получившая многочисленные экспериментальные подтверждения, не может оказаться неверной, хотя, конечно, область её применимости может быть ограничена.
Ниже приведены только некоторые эксперименты, иллюстрирующие справедливость СТО и её отдельных положений.
Релятивистское замедление времени.
То, что время движущихся объектов течёт медленнее, получает постоянное подтверждение в экспериментах, проводимых в физике высоких энергий. Например, время жизни мюонов в кольцевом ускорителе в CERN с точностью увеличивается в соответствии с релятивистской формулой. В данном эксперименте скорость мюонов была равна 0.9994 от скорости света, в результате чего время их жизни увеличилось в 29 раз. Этот эксперимент важен также тем, что при 7-метровом радиусе кольца ускорение мюонов достигало значений 1018 от ускорения свободного падения. Это в свою очередь, свидетельствует о том, что эффект замедления времени обусловлен только скоростью объекта и не зависит от его ускорения.
Измерение величины замедления времени проводилось также с макроскопическими объектами. Например, в эксперименте Хафеле - Китинга проводилось сравнение показаний неподвижных атомных часов, и атомных часов, летавших на самолёте.
Независимость скорости света от движения источника.
На заре возникновения теории относительности определённую популярность получили идеи Вальтера Ритца о том, что отрицательный результат опыта Майкельсона может быть объяснён при помощи баллистической теории. В этой теории предполагалось, что свет со скоростью c излучается относительно источника, и происходит сложение скорости света и скорости источника в соответствии с классическим правилом сложения скоростей. Естественно, эта теория противоречит СТО.

Астрофизические наблюдения являются убедительным опровержением подобной идеи. Например, при наблюдении двойных звёзд, вращающихся относительно общего центра масс, в соответствии с теорией Ритца происходили бы эффекты, которые на самом деле не наблюдаются (аргумент де Ситтера). Действительно, скорость света («изображения») от звезды, приближающейся к Земле, была бы выше скорости света от удаляющейся при вращении звезды. При большом расстоянии от двойной системы более быстрое «изображение» существенно обогнало бы более медленное. В результате, видимое движение двойных звёзд выглядело бы достаточно странным, что не наблюдается. Иногда встречается возражение, что гипотеза Ритца «на самом деле» верна, но свет при движении сквозь межзвёздное пространство переизлучается атомами водорода, имеющими в среднем нулевую скорость относительно Земли, и достаточно быстро приобретает скорость c. Однако, если бы это было так, возникала бы существенная разница в изображении двойных звёзд в различных диапазонах спектра, так как эффект «увлечения» средой света существенно зависит от его частоты.
В опытах Томашека (1923 г.) при помощи интерферометра сравнивались интерференционные картины от земных и внеземных источников (Солнце, Луна, Юпитер, звёзды Сириус и Арктур). Все эти объекты имели различную скорость относительно Земли, однако смещения интерференционных полос, ожидаемых в модели Ритца, обнаружено не было. Эти эксперименты в дальнейшем неоднократно повторялись. Например, в эксперименте Бонч-Бруевича М. А. и Молчанова В. А. (1956 г.) измерялась скорость света от различных краёв вращающегося Солнца. Результаты этих экспериментов также противоречат гипотезе Ритца.
Независимость скорости света от скорости источника регистрируется и в наземных экспериментах. Например, проводилось измерение скорости пары фотонов, возникающих при аннигиляции электрона и позитрона, центр масс которых двигался со скоростью, равной половине скорости света. С экспериментальной точностью 10 % сложение скорости света и скорости источника обнаружено не было.

Список литературы

1. Гинзбург В. Л. Как и кто создал теорию относительности? в Эйнштейновский сборник, 1966г. - М.: Наука, 1966. - С. 363.
2. Сацункевич И. С. Экспериментальные корни специальной теории относительности. - 2-е изд. - М.: УРСС, 2003г. - 176 с.
Паули В. Теория Относительности. - М.: Наука, Издание 3-е, исправленное. - 328 с.
3. Визгин В. П. Релятивистская теория тяготения (истоки и формирование, 1900-1915). М.: Наука, 1981г. - 352c.

OОсновные понятия

Принцип относительности Галилея

Принцип относительности (первый постулат Эйнштейна): законы природы инвариантны относительно смены системы отсчёта

Инвариантность скорости света (второй постулат Эйнштейна)

Постулаты Эйнштейна как проявление симметрий пространства и времени

Основные релятивистские эффекты (следствия из постулатов Эйнштейна).

Соответствие СТО и классической механики: их предсказания совпадают при малых скоростях движения (гораздо меньше скорости света)

& Краткое содержание

Принцип относительности - фундаментальный физический принцип. Различают:

    Принцип относительности классической механики -постулат Г.Галилея , согласно которому в любых инерциальных системах отсчета все механические явления протекают одинаково при одних и тех же условиях. Законы механики одинаковы во всех инерциальных системах отсчёта.

    Принцип относительности релятивитской механики - постулат А.Эйнштейна , согласно которому в любых инерциальных системах отсчета все физические явления протекают одинаково. Т.е. все законы природы одинаковы во всех инерциальных системах отсчёта.

Инерциальная система отсчета (ИСО) - система отсчета, в которой справедлив закон инерции: тело, на которое не действуют внешние силы, находится в состоянии покоя или равномерного прямолинейного движения.

Всякая система отсчёта, движущаяся относительно ИСО равномерно и прямолинейно, также является ИСО. Согласно принципу относительности, все ИСО равноправны, и все законы физики в них действуют одинаково.

Предположение о существовании хотя бы двух ИСО в изотропном пространстве приводит к выводу о существовании бесконечного множества таких систем, движущихся друг относительно друга с постоянными скоростями.

Если скорости относительного движения ИСО могут принимать любые значения, связь между координатами и моментами времени любого «события» в разных ИСО осуществляется преобразованиями Галилея.

Если скорости относительного движения ИСО не могут превышать некоторой конечной скорости «с», связь между координатами и моментами времени любого «события» в разных ИСО осуществляется преобразованиями Лоренца. Постулируя линейность этих преобразований, получают постоянство скорости «с» во всех инерциальных системах отсчета.

Отцом принципа относительности считается Галилео Галилей , который обратил внимание на то, что находясь в замкнутой физической системе, невозможно определить, покоится эта система или равномерно движется. Во времена Галилея люди имели дело в основном с чисто механическими явлениями. Идеи Галилея нашли развитие в механике Ньютона. Однако с развитием электродинамики оказалось, что законы электромагнетизма и законы механики (в частности, механическая формулировка принципа относительности) плохо согласуются друг с другом. Эти противоречия привели к созданию Эйнштейном специальной теории относительности. После этого обобщённый принцип относительности стал называться «принципом относительности Эйнштейна», а его механическая формулировка - «принципом относительности Галилея».

А. Эйнштейн показал, что принцип относительности может быть сохранен, если радикально пересмотреть не подвергавшиеся на протяжении столетий сомнению фундаментальные понятия пространства и времени. Работа Эйнштейна стала частью системы образования нового блестящего поколения физиков, выросшего в 1920-х годах. Последующие годы не выявили в частной теории относительности каких-либо слабых мест.

Однако Эйнштейну не давало покоя то обстоятельство, ранее отмеченное Ньютоном, что вся идея относительности движения рушится, если ввести ускорение; в этом случае в игру вступают силы инерции, отсутствующие при равномерном и прямолинейном движении. Через десять лет после создания частной теории относительности Эйнштейн предложил новую, в высшей степени оригинальную теорию, в которой главную роль играет гипотеза искривленного пространства и которая дает единую картину явлений инерции и гравитации. В этой теории принцип относительности сохранен, но представлен в гораздо более общей форме, и Эйнштейну удалось показать, что его общая теория относительности с небольшими изменениями включает бóльшую часть ньютоновской теории тяготения, причем одно из этих изменений объясняет известную аномалию в движении Меркурия.

На протяжении более 50 лет после появления общей теории относительности в физике ей не придавалось особого значения. Дело в том, что расчеты, производимые на основе общей теории относительности, дают почти такие же ответы, как и вычисления в рамках теории Ньютона, а математический аппарат общей теории относительности намного сложнее. Проводить длинные и трудоемкие расчеты стоило лишь, чтобы разобраться в явлениях, возможных в гравитационных полях неслыханно высокой интенсивности. Но в 1960-х годах, с наступлением эры космических полетов, астрономы начали сознавать, что Вселенная гораздо разнообразнее, чем это представлялось вначале, и что могут существовать такие компактные объекты с высокой плотностью, как нейтронные звезды и черные дыры, в которых гравитационное поле действительно достигает необычайно высокой интенсивности. В то же время развитие вычислительной техники отчасти сняло бремя утомительных расчетов с плеч ученого. В результате общая теория относительности начала привлекать внимание многочисленных исследователей, и в этой области начался бурный прогресс. Были получены новые точные решения уравнений Эйнштейна и найдены новые способы интерпретации их необычных свойств. Более детально была разработана теория черных дыр. Граничащие с фантастикой приложения этой теории указывают на то, что топология нашей Вселенной гораздо сложнее, чем можно было думать, и что могут существовать другие вселенные, отстоящие от нашей на гигантские расстояния и соединенные с ней узкими мостиками искривленного пространства. Не исключено, конечно, что это предположение окажется неверным, но ясно одно: теория и феноменология гравитации – это математическая и физическая страна чудес, которую мы едва начали исследовать.

Два фундаментальных принципа СТО:

    Первый постулат Эйнштейна (принцип относительности ): законы природы инвариантны относительно смены системы отсчёта (все законы природы одинаковы во всех системах координат, движущихся прямолинейно и равномерно друг относительно друга. Иначе говоря, никакими опытами нельзя отличить движущуюся систему отсчета от покоящейся. Например, ощущения, которые испытывает человек в неподвижном автомобиле на перекрестке, когда ближайшая к нему машина начинает медленно трогаться с места, у человека возникает иллюзия, что его машина откатывается назад.)

    Второй постулат Эйнштейна :инвариантность скорости света (принцип постоянства скорости света : скорость света в вакууме одинакова во всех системах отсчета, движущихся прямолинейно и равномерно друг относительно друга (c=const=3 10 8 м/с). Скорость света в вакууме не зависит от движения или покоя источника света. Скорость света является предельно возможной скоростью распространения материальных объектов).

Соответствие СТО и классической механики : их предсказания совпадают при малых скоростях движения (гораздо меньше скорости света).

Эйнштейн отказался от понятий пространства и времени Ньютона.

Пространства без материи, как чистого вместилища, не бывает, и геометрия (искривление) мира, и замедление течения времени определяются распределением и движением материи.

Основные релятивистские эффекты (следствия из постулатов Эйнштейна ):

    время относительно , т.е. скорость хода часов определяется скоростью самих часов относительно наблюдателя.

    пространство относительно , т.е. расстояние между точками пространства зависит от скорости наблюдателя.

    относительность одновременности (если для неподвижного наблюдателя два события одновременны, то для наблюдателя, который движется, – это не так)

    относительность расстояний (релятивистское сокращение длин : в движущейся системе отсчета пространственные масштабы укорочены вдоль направления движения)

    относительность промежутков времени (релятивистское замедление времени : в движущейся системе отсчета время идет медленнее). Этот эффект проявляется, к примеру, в необходимости корректировать часы на спутниках Земли.

    инвариантность пространственно-временного интервала между событиями (интервал между двумя событиями имеет в одной системе отсчета то же самое значение, что и в другой)

    инвариантность причинно-следственных связей

    единство пространства-времени (пространство и время представляют единую четырехмерную реальность – мы видим мир всегда пространственно-временным.)

    эквивалентность массы и энергии

Таким образом ,в теории Эйнштейна пространство и время относительны - результаты измерения длины и времени зависят от того, движется наблюдатель или нет.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.