Кто такие эукариоты и прокариоты: сравнительная характеристика клеток разных царств. Органоиды эукариотической клетки, их строение и функции Эукариотическая клетка строение

Характеристика эукариотических клеток

Средняя величина эукариотической клетки – около 13 мкм. Клетка разделена внутренними мембранами на различные компартменты (реакционные пространства). Три вида органелл четко отграничены от остальной протоплазмы (цитоплазмы) оболочкой из двух мембран: клеточное ядро, митохондрии и пластиды. Пластиды служат главным образом для фотосинтеза, а митохондрии – для выработки энергии. Все пласты содержат ДНК в качестве носителя генетической информации.

Цитоплазма содержит различные органеллы, в том числе рибосомы, которые имеются также в пластидах и митохондриях. Все органеллы лежат в матриксе.

Характеристика прокариотических клеток

Средняя величина прокариотических клеток составляет 5 мкм. У них нет никаких внутренних мембран, кроме выпячиваний внутренних мембран и плазматической мембраны. Вместо клеточного ядра имеется нуклеоид, лишенный оболочки и состоящий из одной-единственной молекулы ДНК. Кроме того, бактерии могут содержать ДНК в форме крошечных плазмид, сходных с внеядерными ДНК эукариот.

В прокариотических клетках , способных к фотосинтезу (синезеленые водоросли, зеленые и пурпурные бактерии), имеются различно структурированные крупные выпячивания мембраны – тилакоиды, по своей функции соответствующие пластидам эукариотДля прокариот характерно наличие муреннового мешка – механически прочного элемента клеточной стенки.

Основные компоненты эукариотической клетки. Их строение и функции.

Оболочка обязательно содержит плазматическую мембрану. Кроме нее, у растений и грибов имеется клеточная стенка, а у животных – гликокаликс.

У растений и грибов выделяют протопласт – все содержимое клетки, кроме клеточной стенки.

Цитоплазма – это внутренняя полужидкая среда клетки. Состоит из гиалоплазмы, включений и органоидов. В цитоплазме выделяют экзоплазму (кортикальный слой, лежит непосредственно под мембраной, не содержит органоидов) эндоплазму (внутренняя часть цитоплазмы).



Гиалоплазма (цитозоль) – это основное вещество цитоплазмы, коллоидный раствор крупных органических молекул.Обеспечивает взаимосвязь всех компонентов клетки

В ней происходят основные процессы обмена веществ, например, гликолиз.

Включения – это необязательные компоненты клетки, которые могут появляться и исчезать в зависимости от состояния клетки. Например: капли жира, гранулы крахмала, зерна белка.

Органоиды бывают мембранные и немембранные.

Мембранные органоиды бывают одномембранные (ЭПС, АГ, лизосомы, вакуоли) и двухмембранные (пластиды, митохондрии).

К немембранным органоидам относятся рибосомы и клеточный центр.

Органоиды эукариотической клетки, их строение и функции.

Эндоплазматическая сеть - одномембранный органоид. Представляет собой систему мембран, формирующих «цистерны» и каналы, соединенных друг с другом и ограничивающих единое внутреннее пространство - полости ЭПС. Различают два вида ЭПС: 1) шероховатая, содержащая на своей поверхности рибосомы, и 2) гладкая, мембраны которой рибосом не несут.

Функции: 1) транспорт веществ из одной части клетки в другую, 2) разделение цитоплазмы клетки на компартменты («отсеки»), 3) синтез углеводов и липидов (гладкая ЭПС), 4) синтез белка (шероховатая ЭПС)

Аппарат Гольджи - одномембранный органоид. Представляет собой стопки уплощенных «цистерн» с расширенными краями. С ними связана система мелких одномембранных пузырьков (пузырьки Гольджи). Каждая стопка обычно состоит из 4-х–6-ти «цистерн», является структурно-функциональной единицей аппарата Гольджи и называется диктиосомой.

Функции аппарата Гольджи: 1) накопление белков, липидов, углеводов, 2) «упаковка» в мембранные пузырьки белков, липидов, углеводов, 4) секреция белков, липидов, углеводов, 5) синтез углеводов и липидов, 6) место образования лизосом.

Лизосомы - одномембранные органоиды. Представляют собой мелкие пузырьки содержащие набор гидролитических ферментов. Ферменты синтезируются на шероховатой ЭПС, перемещаются в аппарат Гольджи, где происходит их модификация и упаковка в мембранные пузырьки, которые после отделения от аппарата Гольджи становятся собственно лизосомами. Расщепление веществ с помощью ферментов называют лизисом.

Функции лизосом: 1) внутриклеточное переваривание органических веществ, 2) уничтожение ненужных клеточных и неклеточных структур, 3) участие в процессах реорганизации клеток.

Вакуоли - одномембранные органоиды, представляют собой «емкости», заполненные водными растворами органических и неорганических веществ.Жидкость, заполняющая растительную вакуоль, называется клеточным соком.

Функции вакуоли: 1) накопление и хранение воды, 2) регуляция водно-солевого обмена, 3) поддержание тургорного давления, 4) накопление водорастворимых метаболитов, запасных питательных веществ, 5) окрашивание цветов и плодов и привлечение тем самым опылителей и распространителей семян

Митохондрия ограничена двумя мембранами. Наружная мембрана митохондрий гладкая, внутренняя образует многочисленные складки - кристы. Кристы увеличивают площадь поверхности внутренней мембраны, на которой размещаются мультиферментные системы, участвующие в процессах синтеза молекул АТФ. Внутреннее пространство митохондрий заполнено матриксом. В матриксе содержатся кольцевая ДНК, специфические иРНК, рибосомы прокариотического типа, ферменты цикла Кребса.

Функции митохондрий: 1) синтез АТФ, 2) кислородное расщепление органических веществ.

Пластиды характерны только для растительных клеток. Различают три основных типа пластид: лейкопласты - бесцветные пластиды в клетках неокрашенных частей растений, хромопласты - окрашенные пластиды обычно желтого, красного и оранжевого цветов, хлоропласты - зеленые пластиды.

Хлоропласты. В клетках высших растений хлоропласты имеют форму двояковыпуклой линзы. Хлоропласты ограничены двумя мембранами. Наружная мембрана гладкая, внутренняя имеет сложную складчатую структуру. Наименьшая складка называется тилакоидом. Группа тилакоидов, уложенных наподобие стопки монет, называется граной. В мембраны тилакоидов встроены фотосинтетические пигменты и ферменты, обеспечивающие синтез АТФ. Главным фотосинтетическим пигментом является хлорофилл, который и обусловливает зеленый цвет хлоропластов.

Внутреннее пространство хлоропластов заполнено стромой . В строме имеются кольцевая ДНК, рибосомы, ферменты цикла Кальвина, зерна крахмала.

Функция хлоропластов : фотосинтез.

Функция лейкопластов : синтез, накопление и хранение запасных питательных веществ.

Хромопласты. В строме имеются кольцевая ДНК и пигменты - каротиноиды, придающие хромопластам желтую, красную или оранжевую окраску.

Функция хромопластов: окрашивание цветов и плодов и тем самым привлечение опылителей и распространителей семян.

Рибосомы - немембранные органоиды, диаметр примерно 20 нм. Рибосомы состоят из двух субъединиц - большой и малой. Химический состав рибосом - белки и рРНК. Молекулы рРНК составляют 50–63% массы рибосомы и образуют ее структурный каркас. Во время биосинтеза белка рибосомы могут «работать» поодиночке или объединяться в комплексы - полирибосомы (полисомы) . В таких комплексах они связаны друг с другом одной молекулой иРНК. Объединение субъединиц в целую рибосому происходит в цитоплазме, как правило, во время биосинтеза белка.

Функция рибосом: сборка полипептидной цепочки (синтез белка).

Цитоскелет образован микротрубочками и микрофиламентами. Микротрубочки - цилиндрические неразветвленные структуры. Основной химический компонент - белок тубулин. Микротрубочки разрушаются под воздействием колхицина. Микрофиламенты - нити, состоят из белка актина. Микротрубочки и микрофиламенты образуют в цитоплазме сложные переплетения.

Функции цитоскелета: 1) определение формы клетки, 2) опора для органоидов, 3) образование веретена деления, 4) участие в движениях клетки, 5) организация тока цитоплазмы.

Клеточный центр включает в себя две центриоли и центросферу. Центриоль представляет собой цилиндр, стенка которого образована девятью группами из трех слившихся микротрубочек. Центриоли объединены в пары, где они расположены под прямым углом друг к другу. Перед делением клетки центриоли расходятся к противоположным полюсам, и возле каждой из них возникает дочерняя центриоль. Они формируют веретено деления, способствующее равномерному распределению генетического материала между дочерними клетками.

Функции: 1) обеспечение расхождения хромосом к полюсам клетки во время митоза или мейоза, 2) центр организации цитоскелета.

Прочитаем информацию .

Клетка - сложная система, состоящая из трех структурно-функциональных подсистем поверхностного аппарата, цитоплазмы с органоидами и ядра.

Эукариоты (ядерные) - клетки, обладающие, в отличие от прокариот, оформленным клеточным ядром, ограниченным от цитоплазмы ядерной оболочкой.

К эукариотическим клеткам относят клетки животных, человека, растений и грибов.

Строение эукариотических клеток

Структура

Строение и состав

Функции структуры

Плазматическая мембрана

Представляет собой двойной слой липидных молекул - фосфолипидов, плотно расположенных друг к другу.

Состоит из липидов, белков и сложных углеводов.

1.защищает цитоплазму от физических и химических повреждений

2.избирательно регулирует обмен веществ между клеткой и внешней средой

3.обеспечивает контакт с соседними клетками

Двойная ядерная мембрана, окружающая кариоплазму (ядерный сок). Мембрана пронизана порами, через которые происходит обмен веществ между ядром и цитоплазмой

1.регулирует клеточную активность

2.содержит ДНК, хранящую информацию о специфической последовательности аминокислот в белке

3.мембрана ядра через ЭПС связана с наружной мембраной

Округлое тельце диаметром около 1 мкм

Происходит сборка рибосомных субъединиц, синтез рРНК

Цитоплазма

Органоиды: эндоплазматическая сеть, рибосомы, митохондрии, пластиды, комплекс Гольджи, лизосомы и др.

1.объединяет все компоненты клетки в единую систему

2.осуществляются все процессы клеточного метаболизма, кроме синтеза нуклеиновых кислот

3.принимает участие в передаче информации (цитоплазматическая наследственность)

4.участвует в переносе веществ и перемещении органоидов внутри клетки

5.участвует в передвижении клетки (амебовидное движение)

Хромосомы

Две хроматиды, соединенные в области центромеры. Состоят из ДНК и белка

Хранят и распределяют генетическую информацию

Митохондрии

Внешняя мембрана, наружная мембрана, внутренняя мембрана, из которой образуются складки (кристы). Внутри находятся РНК, ДНК, рибосомы

1.образуется энергия (синтез АТФ) в результате окислительных процессов

2. осуществляют аэробное дыхание

Рибосомы

Немембранные компоненты клетки. Состоят из двух субъединиц (большой и малой)

Сборка белковых молекул

Эндоплазматический ретикулум (ЭПС)

Система уплощенных, удлиненных, трубчатых и пузыреобразных элементов

Обеспечивает синтез углеводов, липидов, белков и их перемещение внутри клетки

Аппарат Гольджи

Три основных элемента: стопка уплощенных мешочков (цистерн), пузырьки и вакуоли

Модификация, накопление, сортировка продуктов синтеза и распада веществ

Лизосомы

Одномембранные структуры, внешне напоминающие пузырьки.

1.внутриклеточное переваривание макромолекул пищи

2.уничтожение старых клеток (аутолиз или )

Клеточная стенка

Животные клетки - отсутствует

Растительные - состоят из целлюлозы

1.опорная

2.защитная

Пластиды (хлоропласты, хромопласты, лейкопласты)

Мембранные органоиды, содержащие хлорофилл, ДНК

Существуют только в растительных клетках.

1.фотосинтез

2.запас питательных веществ

Растительные клетки - органоиды, ограниченные мембраной, содержащие клеточный сок.

2.запас необходимых веществ (особенно воды)

3.отложение вредных веществ

4.ферментативное расщепление органических соединений

Животные клетки имеют

пищеварительные вакуоли и автографические вакуоли.

Относятся к группе вторичных лизосом. Содержат гидролитические ферменты.

1.пищеварение

2.выделение

У одноклеточных животных есть сократительные вакуоли

1.осморегуляция

2.выделение

Микротрубочки и микрофиламенты

Белковые образования, цилиндрической формы

1.образование цитоскелета клетки, центриолей, базальных телец, жгутиков, ресничек

2.обеспечение внутриклеточного движения (митохондрий и др.)

Реснички, жгутики

Система микротрубочек, покрытых мембраной

1.перемещение клетки

2.формирование потоков жидкости у поверхности клеток

Клеточный центр

Немембранный органоид, в котором находятся центриоли - система микротрубочек

2.участвует в равномерном распределении генетического материала при клеточном делении

Функции эукариотических клеток

В одноклеточных организмах

В многоклеточных организмах

Осуществляют все функции, характерные для живых организмов:

  • обмен веществ
  • развитие
  • размножение

Способны к адаптации

Клетки различны (дифференцированы) по строению.

Определенные клетки выполняют определенные функции.

Специализированные клетки образуют эпителиальные, мышечные, нервные, соединительные ткани (в качестве примера см. инфо-урок - ).

Автолиз (аутолиз) - саморастворение живых клеток и тканей под действием их собственных гидролитических ферментов, разрушающих структурные молекулы. Происходит в организме при физиологических процессах: метаморфоз, автотомия, также после смерти.

Ксантофилл - растительный пигмент, придающий желтый и коричневый цвета частям растений (желтый цвет листьев, красный цвет моркови, помидор). Принадлежит к группе каротиноиды.

Каротиноиды - группа растительных пигментов - высокомолекулярные углеводороды. Накапливаются в хлоропластах и, главным образом, в хромопластах. К этой группе относят каротины и ксантофиллы; из последних наиболее распространены зеаксантин, капксантин, ксантин, ликопин, лютеин. Участвуют в процессе фотосинтеза, поглощая энергию синей части солнечного спектра; окрашивают цветки, плоды, семена, корнеплоды, а осенью - и листья.

Тургор тканей - внутреннее гидростатическое давление в живой клетке, вызывающее напряжение клеточной оболочки.

Митотическое веретено (веретено деления) - структура, возникающая в клетках эукариот в процессе деления ядра (митоз). Получила своё название за отдалённое сходство формы с веретеном.

Цитоскелет - клеточный каркас или скелет, находящийся в цитоплазме живой клетки. Он присутствует во всех клетках как у эукариот, так и у прокариот. Образован из микротрубочек и микрофиламентов. Осуществляет поддержание формы и движение клетки.

Фагоцитоз - процесс, при котором клетки крови и тканей (фагоциты) захватывают и переваривают возбудителей инфекционных заболеваний и отмершие клетки.

Фагоциты - общее название клеток: в крови - зернистые лейкоциты (гранулоциты), в тканях - макрофаги. Процесс открыт И.И.Мечниковым в 1882 г.

Фагоцитоз - одна из защитных реакций организма.

Пиноцитоз - 1. захват клеточной поверхностью жидкости с содержащимися в ней веществами. 2. процесс поглощения и внутриклеточного разрушения макромолекул. Один из основных механизмов проникновения в клетку высокомолекулярных соединений, в частности белков и углеводно-белковых комплексов.

Используемая литература:

1.Биология: полный справочник для подготовки к ЕГЭ. / Г.И.Лернер. - М.: АСТ: Астрель; Владимир; ВКТ, 2009

2.Биология: учеб. для учащихся 11 класса общеобразоват. Учреждений: Базовый уровень / Под ред. проф. И.Н.Пономаревой. - 2-е изд., перераб. - М.: Вентана-Граф, 2008.

3.Биология для поступающих в вузы. Интенсивный курс / Г.Л.Билич, В.А.Крыжановский. - М.: Издательство Оникс, 2006.

4.Общая биология: учеб. для 11 кл. общеобразоват. учреждений / В.Б.Захаров, С.Г.Сонин. - 2-е изд., стереотип. - М.: Дрофа, 2006.

5.Биология. Общая биология. 10-11 классы: учеб. для общеобразоват. учреждений: базовый уровень / Д.К.Беляев, П.М.Бородин, Н.Н.Воронцов и др. под ред. Д.К.Беляева, Г.М.Дымшица; Рос. акад. наук, Рос. акад. образования, изд-во «Просвещение». - 9-е изд. - М.: Просвещение, 2010.

6.Биология: учеб.-справ.пособие / А.Г.Лебедев. М.: АСТ: Астрель. 2009.

7.Биология. Полный курс общеобразовательной средней школы: учебное пособие для школьников и абитуриентов / М.А.Валовая, Н.А.Соколова, А.А. Каменский. - М.: Экзамен, 2002.

Используемые Интернет-ресурсы:

Википедия. Строение клетки


Прокариоты – древнейшие организмы, образующие самостоятельное царство. К прокариотам относятся бактерии, сине-зеленые «водоросли» и ряд других мелких групп.

Клетки прокариот не обладают, в отличие от эукариот, оформленным клеточным ядром и другими внутренними мембранными органоидами (за исключением плоских цистерн у фотосинтезирующих видов, например, у цианобактерий). Единственная крупная кольцевая (у некоторых видов – линейная) двухцепочечная молекула ДНК, в которой содержится основная часть генетического материала клетки (так называемый нуклеоид) не образует комплекса с белками-гистонами (так называемого хроматина). К прокариотам относятся бактерии, в том числе цианобактерии (сине-зелёные водоросли). Также к ним можно условно отнести постоянные внутриклеточные симбионты эукариотических клеток – митохондрии и пластиды.

Эукариоты (эвкариоты) (от греч. eu– хорошо, полностью иkaryon– ядро) – организмы, обладающие, в отличие от прокариот, оформленным клеточным ядром, отграниченным от цитоплазмы ядерной оболочкой. Генетический материал заключён в нескольких линейных двухцепочечных молекулах ДНК (в зависимости от вида организмов их число на ядро может колебаться от двух до нескольких сотен), прикрепленных изнутри к мембране клеточного ядра и образующих у подавляющего большинства (кроме динофлагеллят) комплекс с белками-гистонами, называемый хроматином. В клетках эукариот имеется система внутренних мембран, образующих, помимо ядра, ряд других органоидов (эндоплазматическая сеть, аппарат Гольджи и др.). Кроме того, у подавляющего большинства имеются постоянные внутриклеточные симбионты-прокариоты – митохондрии, а у водорослей и растений – также и пластиды.

2. Клетки эукариот. Строение и функции

К эукариотам относятся растения, животные, грибы.

Клеточной стенки у клеток животных нет. Она представлена голым протопластом. Пограничный слой клетки животных – гликокаликс – это верхний слой цитоплазматической мембраны, «усиленный» молекулами полисахаридов, которые входят в состав межклеточного вещества.

Митохондрии имеют складчатые кристы.

В клетках животных есть клеточный центр, состоящий из двух центриолей. Это говорит о том, что любая клетка животных потенциально способна к делению.

Включение в животной клетке представлено в виде зерен и капель (белки, жиры, углевод гликоген), конечных продуктов обмена, кристаллов солей, пигментов.

В клетках животных могут быть сократительные, пищеварительные, выделительные вакуоли небольших размеров.

В клетках нет пластид, включений в виде крахмальных зерен, крупных вакуолей, заполненных соком.

3. Сопоставление прокариотической и эукариотической клеток

Наиболее важным отличием эукариот от прокариот долгое время считалось наличие оформленного ядра и мембранных органоидов. Однако к 1970 – 1980-м гг. стало ясно, что это лишь следствие более глубинных различий в организации цитоскелета. Некоторое время считалось, что цитоскелет свойственен только эукариотам, но в середине 1990-х гг. белки, гомологичные основным белкам цитоскелета эукариот, были обнаружены и у бактерий. (Таблица 16).

Именно наличие специфическим образом устроенного цитоскелета позволяет эукариотам создать систему подвижных внутренних мембранных органоидов. Кроме того, цитоскелет позволяет осуществлять эндо- и экзоцитоз (как предполагается, именно благодаря эндоцитозу в эукариотных клетках появились внутриклеточные симбионты, в том числе митохондрии и пластиды). Другая важнейшая функция цитоскелета эукариот – обеспечение деления ядра (митоз и мейоз) и тела (цитотомия) эукариотной клетки (деление прокариотических клеткок организовано проще). Различия в строении цитоскелета объясняют и другие отличия про- и эукариот. Например, постоянство и простоту форм прокариотических клеток и значительное разнообразие формы и способность к её изменению у эукариотических, а также относительно большие размеры последних.

Так, размеры прокариотических клеток составляют в среднем 0,5 – 5 мкм, размеры эукариотических – в среднем от 10 до 50 мкм. Кроме того, только среди эукариот попадаются поистине гигантские клетки, такие как массивные яйцеклетки акул или страусов (в птичьем яйце весь желток – это одна огромная яйцеклетка), нейроны крупных млекопитающих, отростки которых, укрепленные цитоскелетом, могут достигать десятков сантиметров в длину.

По своей структуре организмы могут одноклеточными и многоклеточными. Прокариоты преимущественно одноклеточны, за исключением некоторых цианобактерий и актиномицетов. Среди эукариот одноклеточное строение имеют простейшие, ряд грибов, некоторые водоросли. Все остальные формы многоклеточны. Считается, что одноклеточными были первые живые организмы Земли.

Эукариотическая клетка произошла в результате симбиогенеза нескольких прокариот.

Структурные компоненты клетки взаимосвязаны между собой различными биохимическими процессами, направленными на поддержание гомеостаза, деление, приспособление к окружающей среде, в том числе внутренней (для многоклеточных организмов).

В строении эукариотических клеток можно выделить такие основополагающие части:

  • ядро,
  • цитоплазма, содержащая органоиды и включения,
  • цитоплазматическая мембрана и клеточная стенка.

Ядро выполняет роль управляющего центра, регулирует все клеточные процессы. Здесь содержится генетический материал - хромосомы . Также важна роль ядра в клеточном делении.

Цитоплазма состоит из полужидкого содержимого - гиалоплазмы, в которой находятся органеллы, включения, различные молекулы.

Клеточная мембрана есть у всех клеток, представляет собой липидный бислой с содержащимися в нем и на его поверхностях белками. Клеточная стенка есть только у растительных и грибных клеток. Причем у растений основным ее компонентом является целлюлоза, а у грибов - хитин.

Органеллы, или органоиды, эукариотических клеток принято делить на мембранные и немембранные. Содержимое мембранных органоидов окружено мембраной, подобной той, которая окружает всю клетку. При этом одни органоиды окружены двумя мембранами - внешней и внутренней, а другие - только одной.

Ключевыми мембранными органеллами эукариотических клеток являются:

  • митохондрии,
  • хлоропласты,
  • эндоплазматическая сеть,
  • комплекс Гольджи,
  • лизосомы.

К немембранным органоидам относятся:

  • рибосомы,
  • клеточный центр.

Особенности строения органоидов эукариотической клетки связаны с выполняемыми ими функциями.

Так митохондрии выполняют роль энергетических центров клетки, в них синтезируется большая часть молекул АТФ. В связи с этим внутренняя мембрана митохондрий имеет множество выростов - крист, содержащих ферментативные конвейеры, функционирование которых приводит к синтезу АТФ.

Хлоропласты есть только у растений. Это тоже двумембранный органоид, содержащий внутри себя структуры - тилакоиды. На мембранах тилакоидов происходят реакции световой фазы фотосинтеза.

В процессе фотосинтеза за счет энергии Солнца происходит синтез органических веществ. Эта энергия накапливается в химических связях сложных соединений. В процессе дыхания, которое большей частью происходит в митохондриях, происходит расщепление органических веществ с высвобождением энергии, которая сначала аккумулируется в АТФ, а далее используется для обеспечения любой активности клетки.

По каналам эндоплазматической сети (ЭПС) идет транспорт веществ из одной части клетки в другую, здесь же синтезируется большая часть белков, жиров и углеводов. Причем белки синтезируются рибосомами, расположенными на поверхности мембраны ЭПС.

В комплексе Гольджи образуются лизосомы , содержащие различные ферменты в основном для расщепления поступивших в клетку веществ. Им формируются везикулы, содержимое которых экскретируется за пределы клетки. Также Гольджи принимает участие в построении цитоплазматической мембраны и клеточной стенки.

Рибосомы состоят из двух субъединиц, выполняют функцию синтеза полипептидов.

Клеточный центр у большинства эукариот состоит из пары центриолей. Каждая центриоль похожа на цилиндр. Его составляют расположенные по окружности микротрубочки в количестве 27 штук, объединенные по 3, т. е. получается 9 триплетов. Основная функция клеточного центра - организация веретена деления, состоящего из «вырастающих» из него микротрубочек. Веретено деления обеспечивает равномерное распределение генетического материала при делении эукариотической клетки.

Строение животной клетки

Выше перечислены наиболее важные и обязательные компоненты эукариотической клетки. Однако строение клеток разных эукариот, а также разных клеток одного организма несколько отличается. У дифференцированных клеток может исчезать ядро. Такие клетки уже не делятся, а только выполняют свою функцию. У растений клеточный центр не имеет центриолей. Клетки одноклеточных эукариот могут содержать специальные органоиды, такие как сократительные, выделительные, пищеварительные вакуоли.

Крупная центральная вакуоль есть во многих зрелых растительных клетках.

Также все клетки содержат цитоскелет из микротрубочек и микрофилламентов, пероксисомы.

Необязательными компонентами клетки являются включения. Это не органоиды, а различные продукты обмена веществ, имеющие разное предназначение. Например, жировые, углеводные и белковые включения используются как питательные вещества. Есть включения, подлежащие выделению из клетки, - экскреты.

Таким образом, строение эукариотической клетки показывает, что это сложная система, функционирование которой направлено на поддержание жизни. Такая система возникла в процессе длительной сначала химической, биохимической и потом биологической эволюции на Земле.

Эукариотические клетки от простейших организмов до клеток высших растений и млекопитающих, отличаются сложностью и разнообразием структуры. Типичной эукариотической клетки не существует, но из тысяч типов клеток можно выделить общие черты. Каждая эукариотическая клетка состоит из цитоплазмы и ядра.

Строение эукариотической клетки .

Плазмалемма (клеточная оболочка) животных клеток образована мембраной, покрытой снаружи слоем гликокаликса толщиной 10-20 нм. Плазмалемма выполняет отграничивающую, барьерную, транспортную и рецепторную функции. Благодаря свойству избирательной проницаемости плазмалемма регулирует химический состав внутренней среды клетки. В плазмалемме размещены молекулы рецепторов, которые избирательно распознают определенные биологически активные вещества (гормоны). В пластах и слоях соседние клетки удерживаются благодаря наличию разного вида контактов, которые представлены участками плазмалеммы, имеющими особое строение. Изнутри к мембране примыкает кортикальный (корковый) слой цитоплазмы толщиной 0,1-0,5 мкм.

Цитоплазма. В цитоплазме находится целый ряд оформленных структур, имеющих закономерные особенности строения и поведения в разные периоды жизнедеятельности клетки. Каждая из этих структур несёт определенную функцию. Отсюда возникло сопоставление их с органами целого организма, в связи с чем они получили название органеллы , или органоиды . В цитоплазме откладываются различные вещества - включения (гликоген, капли жира, пигменты). Цитоплазма пронизана мембранами эндоплазматической сети .

Эндоплазматическая сеть (ЭДС) . Эндоплазматическая сеть - это разветвлённая сеть каналов и полостей в цитоплазме клетки, образованная мембранами. На мембранах каналов находятся многочисленные ферменты, обеспечивающие жизнедеятельность клетки. Различают 2 вида мембран ЭДС - гладкие и шероховатые. На мембранах гладкой эндоплазматической сети находятся ферментные системы, участвующие в жировом и углеводном обмене. Основная функция шероховатой эндоплазматической сети - синтез белков, который осуществляется в рибосомах, прикрепленных к мембранам. Эндоплазматическая сеть - это общая внутриклеточная циркуляционная система, по каналам которой транспортируются вещества внутри клетки и из клетки в клетку.

Рибосомы осуществляют функцию синтеза белков. Рибосомы представляют собой сферические частицы диаметром 15-35нм, состоящие из 2 субъединиц неравных размеров и содержащие примерно равное количество белков и РНК . Рибосомы в цитоплазме располагаются или прикрепляются к наружной поверхности мембран эндоплазматической сети. В зависимости от типа синтезируемого белка рибосомы могут объединяться в комплексы - полирибосомы . Рибосомы присутствуют во всех типах клеток.

Комплекс Гольджи. Основным структурным элементом комплекса Гольджи является гладкая мембрана, которая образует пакеты уплощенных цистерн, или крупные вакуоли, или мелкие пузырьки. Цистерны комплекса Гольджи соединены с каналами эндоплазматической сети. Синтезированные на мембранах эндоплазматической сети белки, полисахариды, жиры транспортируются к комплексу, конденсируются внутри его структур и "упаковываются" в виде секрета, готового к выделению, либо используются в самой клетке в процессе её жизнедеятельности.

Митохондрии. Всеобщее распространение митохондрий в животном и растительном мире указывают на важную роль, которую митохондрии играют в клетке. Митохондрии имеют форму сферических, овальных и цилиндрических телец, могут быть нитевидной формы. Размеры митохондрий 0,2-1мкм в диаметре, до 5-7мкм в длину. Длина нитевидных форм достигает 15-20мкм. Количество митохондрий в клетках различных тканей неодинаково, их больше там, где интенсивны синтетические процессы (печень) или велики затраты энергии. Стенка митохондрий состоит из 2-х мембран - наружной и внутренней. Наружная мембрана гладкая, а от внутренней внутрь органоида отходят перегородки - гребни, или кристы. На мембранах крист находятся многочисленные ферменты, участвующие в энергетическом обмене. Основная функция митохондрий - синтез АТФ .

Лизосомы - небольшие овальные тельца диаметром около 0,4мкм, окруженные одной трехслойной мембраной. В лизосомах находится около 30 ферментов, способных расщеплять белки, нуклеиновые кислоты, полисахариды, липиды и др. вещества. Расщепление веществ с помощью ферментов называется лизисом , поэтому и органоид назван лизосомой . Полагают, что лизосомы образуются из структур комплекса Гольджи либо непосредственно из эндоплазматической сети. Функции лизосом : внутриклеточное переваривание пищевых веществ, разрушение структуры самой клетки при её отмирании в ходе эмбрионального развития, когда происходит замена зародышевых тканей на постоянные, и в ряде других случаев.

Центриоли. Клеточный центр состоит из 2-х очень маленьких телец цилиндрической формы, расположенных под прямым углом друг к другу. Эти тельца называются центриолями . Стенка центриоли состоит из 9-ти пар микротрубочек. Центриоли способны к самосборке и относятся к самовоспроизводящимся органоидам цитоплазмы. Центриоли играют важную роль в клеточном делении: от них начинается рост микротрубочек, образующих веретено деления.

Ядро. Ядро - важнейшая составная часть клетки. Оно содержит молекулы ДНК и поэтому выполняет две главные функции: 1) хранение и воспроизведение генетической информации, 2) регуляция процессов обмена веществ, протекающих в клетке. Клетка утратившая ядро , не может существовать. Ядро также неспособно к самостоятельному существованию. Большинство клеток имеет одно ядро, но можно наблюдать 2-3ядра в одной клетке, например в клетках печени. Известны многоядерные клетки с числом ядер в несколько десятков. Формы ядер зависят от формы клетки. Ядра бывают шаровидные, многолопастные. Ядро окружено оболочкой, состоящей из двух мембран, имеющих обычное трёхслойное строение. Наружная ядерная мембрана покрыта рибосомами, внутренняя мембрана гладкая. Главную роль в жизнедеятельности ядра играет обмен веществ между ядром и цитоплазмой. Содержимое ядра включает ядерный сок, или кариоплазму, хроматин и ядрышко. В состав ядерного сока входят различные белки, в том числе большинство ферментов ядра, свободные нуклеотиды, аминокислоты, продукты деятельности ядрышка и хроматина, перемещающиеся из ядра в цитоплазму. Хроматин содержит ДНК, белки и представляет собой спирализованные и уплотненные участки хромосом. Ядрышко представляет собой плотное округлое тельце, располагающееся в ядерном соке. Число ядрышек колеблется от 1 до 5-7 и более. Ядрышки есть только в неделящихся ядрах, во время митоза они исчезают, а после завершения деление образуются вновь. Ядрышко не является самостоятельным органоидом клетки, оно лишено мембраны и образуется вокруг участка хромосомы, в котором закодирована структура рРНК. В ядрышке формируются рибосомы, которые затем перемещаются в цитоплазму. Хроматином называют глыбки, гранулы и сетевидные структуры ядра, интенсивно окрашивающиеся некоторыми красителями и отличные по форме от ядрышка.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.