Как работает пропеллер. Воздушный винт

Что влияет на тягу и скорость модели?
P.S. Многие не зная этого, начинают строчить свои комментарии на странице понравившегося им мотора или винта подвергая себя быть сильно униженными со стороны других участников клуба, не по причине что тут клуб злых ненавистников новичков, а что многие не пользуясь поиском и просмотром хотя бы части записей, задают снова и снова один и тот же вопрос и сидя у экрана с вот вот лопнущем терпением дожидаются ответа, в надежде что бы цифра была как можно больше, всё это каждый раз поднимает и поднимает столбик терпения всё выше и выше) и время от времени он падает на очередном новичке. Так что если ответ на ваш вопрос, был не совсем адекватный и вами ожидаемый, то знайте чей то столбик терпения опустился до 0 отметки) и незачем торопиться на форум или в обратную связь с яростным желанием написать кляузу на этого негодяя, у которого на 101 раз прочтения подобного вопроса как и у 100 предыдущих, лопнуло терпение.
Так же не стоит задавать вопросов на тему, дальность сигнала и полёта моей туринг 9, на сколько хватит заряда моего аккумулятора, какой лучше взять мотор и др. Некоторые вопросы просто на столько заевшиеся что тошнить хочется, а другая видимо чисто риторическая с целью задать вопрос что бы проста поболтать, так как никто же не знает какой у вас мотор стоит при выборе аккум. какие там используются винты, вес модели тоже никто не знает, и редко кто сам это первый напишет.. вот и приходится всех расспрашивать,как на допросе словно каком то.(Так что на будущее если кто то надумает задавать такие вопросы пишите всё, для чего, на что повесить хотите, в смысле какой самолёт для каких целей будет служить и тд).

Вообщем хватит об этом передём к винтам. И так: у винта есть 2 обозначения диаметр и шаг винта, давай те посмотрим, что это такое и для чего оно нужно.

Диаметр - дает тягу...
- Шаг винта - дает скорость...

На картинках в описаниях товара обычно эта информация вся есть, как на примере ниже. Так же ещё многие продавцы пишут размер отверстия крепления винта
.

Определяющими являются диаметр и шаг винта. Шаг винта соответствует воображаемому расстоянию, на которое передвинется винт, ввинчиваясь в несжимаемую среду за один оборот. То есть проще говоря сколько винт за 1 полный оборот на 360º возьмёт воздуха перед собой.
Лопасти винта, вращаясь, захватывают воздух и отбрасывают его в направлении, противоположном движению. Перед винтом создаётся зона пониженного давления, за винтом - повышенного. Вращение лопастей воздушного винта приводит к тому, что отбрасываемые им массы воздуха приобретают окружные и радиальные направления и на это расходуется часть энергии, подводимой к винту.

Кстати говоря, отступая немного от основной темы, самый быстрый винтовой самолёт - бомбардировщик Ту-95 - имеет максимальную скорость 920 км/ч. российский турбовинтовой стратегический бомбардировщик-ракетоносец, один из самых быстрых винтовых самолётов, ставший одним из символов холодной войны.

Обычно производитель двигателя указывает рекомендуемые винты и измеренные им характеристики.(Как на фото ниже) Дальше, выбирайте нужный вам вариант.
Если хотите поэкспериментировать - выбираете определённый вариант из рекомендуемого производителем и начинаете играться. Т.е. , если вам нужна тяга, то увеличиваете на дюйм диаметр и уменьшаете на дюйм шаг. Так, чтоб сумма шага и диаметра оставалась одинаковой с рекоммендуемым производителем как на сайте http://gazovik.online
Если нужна скорость - увеличиваете на дюйм шаг и уменьшаете на дюйм диаметр.
К примеру винт 9*6 на 3х банках липо, мотор(не принципиально какой в данном случае) тянет 700г при оборотах 7000, для поднятия тяги нам нужно выбрать винт 10*5, а следовательно для повышения скорости 8*7.
...или же ещё пример...
Производитель рекомендует к установленному на модель мотору винт 8х4.3! С данным винтом мотор выдаст примерно 240 грамм тяги!!!
Исходя из полетного веса модели, можно заменить винт 8х4.3 на винт 7х3.5!

Для получения следующих плюсов и минусов.
1.Тяга упадёт примерно до 200 грамм! Для модели в 160 грамм, а тем более тренера, это не страшно.
2. Винт станет намного короче, что приведёт к более легким посадкам модели без шасси. Удобно для планеров которые запускаются с руки.
3. Потребляемый мотором ток значительно уменьшился, что в конечном итоге даст+2,+3 минуты полетного времени.

Из этого следует:

1. Нужно подбирать винты исходя из полетного веса модели и опираясь на рекомендации производителя.
2. Нужно подбирать винты исходя из "вида" и назначения модели
3. Нужно подбирать винты опираясь на параметры мотора (максимальный ток нагрузки, обороты на вольт и т.д.)

Выводы: нужно как минимум 2-3 различных винтов (чуть больше и чуть меньше по параметрам от рекомендуемого производителем) для нахождения среди них наиболее оптимального для достижения поставленной цели. Все это подбирается экспериментальным путем.

На самом деле есть ещё куча не мало важных нюансов, при выборе мотора и пропеллера, в которые я бы вам не советовал внедряться и лишним забивать себе голову, а просто брать те винты которые советует вам продавец мотора, для наилучшей тяги, ну и если есть желание эксперементировать с винтами немного отличающимися от рекомендуемых.
Но если всё таки желание есть лезть дальше в дебри, то вот ещё статейка - продолжение специально для вас.

Как вариант для более точного и эффективной работы мотора можно производить замеры напряжения ваттметром во время его работы с при разных винтах, что бы не перегружать мотор и не выходить за рамки его номинальной мощности, дабы не спалить обмотку в попытках выжать максимум с мотора из за нежелания его замены на другой более подходящий. Кому интересно могут ознакомиться со схемой ниже.


Смысл понятен я думаю и он тут один. Винт насадил - дал полный газ, замерил тягу, замерил показания ваттметра, сравнил с теми которые идут в технических характеристиках на данный мотор, если меньше заявленных показывает значит хорошо, если больше то плоха, для максимальной эффективности мотора мотребляемый ток должен быть как можно ближе к номинальному в характеристиках, но не превышать его.

Ну и наконец пара ответов на вопросы которые тоже иногда попадаются.
Что влияет на минимальную скорость модели?
Самолеты способны летать с низкой скоростью по причине малой нагрузки на крыло, чем больше нагрузка - тем выше должна быть скорость что бы самолёт не рухнул на землю или больше по площади крыло.

Почему нельзя обрезать концы винта?
Шаг винта не постоянен: у основания больше, а к концу меньше.
Производителем указывается какой-то усредненный "рабочий", учитывая что максимальная эффективность считается ближе к концу лопасти.
Обрезая винт у конца мы изменяем этот показатель - делаем шаг большим...
Примерно: если взять винт 9х6 и обрезать на дюйм думая что получим 8х6 - ошибочно, получим 8х7 - вот так-то.

полете самолет все время преодолевает сопротивле­ние воздуха. Эту работу выполняет его силовая уста­новка, состоящая либо из поршневого двигателя внут­реннего сгорания и воздушного винта, либо из реактив­ного двигателя. Мы кратко расскажем только о воздуш­ном винте.

С воздушным винтом каждый из нас знаком с дет­ства.

В деревнях ребята часто устанавливают на воротах двухлопастную ветрянку, которая при ветре вращается так быстро, что лопасти ее сливаются в сплошной круг. Ветрянка и есть простейший винт. Если насадить такой винт на ось, сильно закрутить между ладонями и вы­пустить, то он с жужжанием полетит вверх.

Воздушный винт самолета насаживается на вал дви­гателя. При вращении винта лопасти набегают на воз­дух под некоторым углом атаки и отбрасывают его назад, благодаря чему, как бы отталкиваясь от воздуха, стре­мятся двигаться вперед. Таким образом, при вращении воздушный винт развивает аэродинамическую силу, на­правленную вдоль оси винта. Эта сила тянет самолет вперед и поэтому называется силой тяги.

Воздушный винт может иметь две, три или четыре лопасти. Профиль (сечение) лопасти подобен профилю крыла.

В работе по созданию силы тяги большую роль иг­рают шаг воздушного винта и угол установки лопасти к плоскости вращения.

Шагом воздушного винта называют расстояние, ко­торое винт должен был бы пройти за один свой полный оборот, если бы он ввинчивался в воздух, как болт в гайку. В действительности же при полете самолета воздушный винт из-за малой плотности воздуха продви­гается на несколько меньшее расстояние.

Шаг воздушного винта получается тем больше, чем больше угол установки лопасти к плоскости вращения (рис. 17, а).

Таким образом, винт с большим углом установки ло­пастей быстрее «шагает», чем винт с малым углом уста­новки (подобно тому как болт с крупной резьбой быст­рее ввинчивается в гайку, чем болт с мелкой резьбой). Следовательно, винт с большим шагом нужен для боль­шой скорости полета, а с малым шагом - для малой скорости.

Работа лопастей воздушного винта подобна работе крыла. Но движение винта сложнее. В отличие от крыла лопасти винта в полете не только движутся вперед, но еще и вращаются при этом. Эти движения складываются, и поэтому лопасти винта движутся в полете по некото­рой винтовой линии (рис. 17, б). Посмотрим, как возни­кает сила тяги воздушного винта.

Для этого выделим на каждой лопасти маленький элемент, ограниченный двумя сечениями (рис. 17, а). Его можно считать за маленькое крыло, которое в полете движется по винтовой линии, набегая на воздух под не­которым углом атаки. Следовательно, элемент лопасти, подобно крылу самолета, создаст аэродинамическую силу Р. Эту силу мы можем разложить на две силы - параллельно оси винта и перпендикулярно к ней. Сила,

Направленная вперед, и будет силой тяги элемента ло­пасти, вторая же, маленькая сила, направленная против вращения винта, будет тормозящей силой.

Элементарные силы тяги обеих лопастей в сумме дадут силу тяги Т всего винта, как бы прилаженную к его оси. Тормозящие силы преодолевает двигатель.

Сила тяги винта очень сильно зависит от скорости полета. С увеличением скорости она уменьшается. По­чему это происходит и какое имеет значение для по­лета?

Когда самолет стоит на земле и силовая установка работает, то лопасти винта имеют только одну скорость - окружную (рис. 17, а). Значит, воздух набегает на ло­пасть по направлению стрелки В, показанной в плоскости вращения винта. Угол между этой стрелкой и хордой про­филя лопасти будет, очевидно, углом атаки. Как видим, при неподвижном воздухе он равен углу установки ло­пасти к плоскости вращения. Иначе получается в полете, когда, кроме вращательного движения, винт движется еще и вперед (вместе с самолетом).

В полете эти движения складываются, и в результате лопасть движется по винтовой линии (рис. 17, б). По­этому воздух набегает на лопасть по направлению стрелки В1, и угол между ней и хордой профиля будет углом атаки. Вы видите, что угол атаки стал меньше угла установки. И чем больше будет скорость полета, тем меньше станут углы атаки лопастей, а поэтому тем меньше станет и сила тяги (при неизменном числе оборо­тов винта).

Этот недостаток в особенности присущ простому винту, у которого угол установки лопастей, а тем самым и шаг винта, нельзя изменять в полете (простой винт имеет и другие недостатки). Гораздо более совершенен винт из­меняемого шага (рис. 18). Такой винт благодаря особому устройству втулки без участия летчика изменяет свой шаг. Когда летчик уменьшает скорость полета, шаг винта тотчас же уменьшается, когда же летчик увеличивает скорость, винт увеличивает шаг.

Эта небольшая статья содержит базовую информацию о пропеллерах для квадрокоптера (иногда их называют реквизитами) и рассказывает о том, как шаг, форма и количество лопастей влияют на их производительность, тягу и эффективность.

Основные понятия

Параметры реквизитов определяются их длиной, шагом, площадью, направлением вращения, а также формой и количеством лопастей

Длина и шаг

Эти параметры являются главными. Под длиной понимают диаметр диска, образующегося при вращении пропеллера. Шаг может быть определен как расстояние, которое пропеллер может пройти в некоей твердой среде за один полный оборот (вспомните, как входит в доску самый обыкновенный шуруп). При прочих равных условиях, величина шага определяется наклоном (углом атаки) лопастей квадрокоптера.

Тяга винтомоторной группы (ВМГ) определяется объемом воздуха, который ее винты способны переместить. Понятно, что увеличение длины и/или шага пропеллеров при сохранении их скорости вращения положительно сказывается на тяге, но, к сожалению, увеличивает и сопротивление воздуха за счет растущей турбулентности. Для вращения более крупного винта или винта с большим углом наклона лопастей будет затрачено больше энергии, что приведет к снижению времени полета при прочих равных условиях.

Крупные винты с малым шагом идеально подходят для аэрофотосъемки, а небольшими пропеллерами с большим шагом оснащаются гоночные дроны.

Количество и форма лопастей

Классическим вариантом является наличие у пропеллера двух лопастей. Впрочем, на самых маленьких моделях применяют воздушные винты с тремя, четырьмя и даже пяти лопастями. Понятно, что многолопастный воздушный винт снижает уровень турбулентности за счет создания более равномерного потока. Более того, дополнительные лопасти увеличивают общую площадь винта, что благотворно отражается на подъемной силе квадрокоптера. Из этого следует, что многолопастный винт меньшего диаметра способен создавать ту же подъемную силу, что и более крупный классический пропеллер. Многолопастные пропеллеры делают летательный аппарат более отзывчивым, что очень важно при полетах в режиме Acro . Основным недостатком таких винтов является сложность изготовления и центровки, а также достаточно высокая стоимость.

Советуем обратить внимание на разницу в форме окончания реквизитов. Они бывают трех видов - Normal, Bullnose (BN), Hybrid Bullnose (HBN). Винты Normal имеют заостренные на концах лезвия, создают меньшую тягу, но способствует эффективному расходу энергии аккумулятора. Винты BN при равном диаметре имеют большую площадь и тягу. Дополнительный вес на кончиках лопастей увеличивает крутящий момент и улучшает чувствительность летательного аппарата по оси рысканья. К сожалению, эти положительные моменты сопровождаются высоким энергопотреблением и снижением времени полета. Пропеллеры HBN занимают промежуточную позицию.

Направление вращения

На мультикоптерах используются два типа двигателей - CW (с вращением вала по часовой стрелке) и CCW (с вращением вала против часовой стрелки). Схема установки моторов зависит от типа летательного аппарата. Несколько таких схем показаны на рисунке.

На направление вращения конкретного пропеллера указывает приподнятая кромка его лопастей.

Материал и качество

Наиболее популярны пластиковые винты. Они отличаются пластичностью, низкой ценой, широким ассортиментом и высокой степенью доступности. С одной стороны, гибкость лопастей повышает их устойчивость к повреждениям, с другой - вызывает проблемы с балансировкой.

Некоторые фирмы выпускают винты из углеродного волокна. Карбоновые винты довольно дороги, но обладают необходимой жесткостью и высокой эффективностью без значительного увеличения веса.

Промежуточное положение занимают пропеллеры, выполненные из пластика, усиленного углеродным волокном. Этот тип пропеллеров обладает высокой жесткостью и сравнительно низкой стоимостью.

Качество винтов подразумевает точность их изготовления. Высококлассные пропеллеры хорошо сбалансированы и практически не вносят дополнительную вибрацию в работу ВМГ. Лучшие реквизиты выпускаются под брендами GWS, APC и EMP.

Спецификация

Узнать о параметрах конкретного пропеллера для квадрокоптера можно по его кодировке. Производители используют два типа обозначений: LLPPxB или LxPxB. Здесь L обозначает длину, P - шаг, а B - количество лопастей. Для классических пропеллеров параметр B обычно не указывается.

Например, пропеллер 6045 (или 6×4,5) имеет две лопасти, шестидюймовую длину и шаг 4,5 дюйма. Другим примером является пятидюймовый трехлопастный пропеллер 5040×3 (или 5x4x3), имеющий шаг 4 дюйма.

Иногда в конце обозначения ставится буква R или C (может отсутствовать), определяющая направление вращения. Воздушные винты R устанавливаются на двигатели CW, а C - на моторы CCW. Изредка к обозначению добавляются аббревиатуры BN или HBN (см. выше).

Методы установки

Установить винты на квадрокоптер можно по-разному. Очень часто вал электродвигателя представляет собой простой металлический штырь, не имеющий каких-либо приспособлений для установки пропеллера. В этом случае применяют специальные переходники - пропсейверы и цанговые зажимы.

Пропсейвер (см. фото) удобно использовать для проведения экспериментов при создании самодельных моделей. Он выглядит как втулка, в боковой поверхности которой имеется два симметричных отверстия с установленными в них винтами. Приспособление устанавливается на вал, а винты затягиваются. Пропеллер также надевается на вал и фиксируется двумя нейлоновыми стяжками или резиновым кольцом.

Более надежным переходником является цанговый зажим. Он представляет собой резьбовое соединение с разрезной конусообразной втулкой. Цанга надевается на вал, далее устанавливается зажимная втулка, пропеллер и шайба. Вся конструкция фиксируется гайкой особой формы - коком.

Если ротор бесколлекторного двигателя находится снаружи (моторы класса Outrunner), то на его верхней поверхности обычно имеется несколько резьбовых отверстий для установки различных переходников и креплений.


У производителей готовых коптеров с бесколлекторными моторами очень популярен вариант с самозатягивающимися гайками от компании DJI . У таких двигателей вал заканчивается резьбой, противоположной направлению вращения ротора.

Балансировка пропеллеров

Можно с уверенностью сказать, что большинство пропеллеров, особенно дешевых, нельзя назвать сбалансированными на 100%. Такие винты не только раздражающе сильно шумят, но и вносят дополнительную вибрацию в работу ВМГ. Из-за этого, в частности, снижается качество воздушных съемок (эффект желе). Хуже того, постоянные колебания вызывают дополнительный износ двигателей, подшипников и шестерней, что повышает стоимость обслуживания летательного аппарата.

Как видим, без процедуры балансировки винтов для квадрокоптера нам не обойтись. Для этого понадобятся:

  • Винт;
  • Скотч или суперклей (можно заменить лаком для ногтей);
  • Наждачная бумага;
  • Специальный балансир пропеллеров Du-Bro Tru-Spin - один из лучших, или китайские аналоги .

Прежде всего, нужно выставить само приспособление для балансировки так, чтобы его ось была строго горизонтальной.

Лопасть проверяется на отсутствие повреждений, устанавливается на ось и слегка отклоняется в ту или иную сторону. Если он не возвращается в горизонтальное положение, нужно облегчить (подчистить наждачной бумагой) более тяжелое лезвие или наклеить кусочек липкой ленты на более легкое. Необходимо повторять процедуру до тех пор, пока лезвия не уравновесятся. Липкую ленту успешно заменяет мазок суперклея или лака.

Ось балансировочного станка переворачивается - нужно убедиться, что пропеллер сохраняет равновесие и в этом положении. Отметим, что все подчистки и наклеивания должны выполняться на внутренних (вогнутых) поверхностях лопастей.

Следующим шагом будет балансировка ступицы. Для этого пропеллер устанавливается вертикально. Если он отклоняется вправо, нужно утяжелять клеем или лаком левую часть ступицы и наоборот. Добиваемся баланса, переворачиваем пропеллер и убеждаемся, что в этом положении он также уравновешен. Процедура закончена.

Калькулятор eCalc

Многим создателям беспилотных моделей известен on-line калькулятор eCalc, предназначенный для расчёта параметров винтомоторной установки летательных аппаратов. Страница калькулятора, посвященная мультикоптерам, выглядит приблизительно так.

На первый взгляд, все понятно, но есть несколько нюансов, которые могут повлиять на результаты вычислений.

Прежде всего, вводится полный взлетный вес мультикоптера (с подвесом и камерой, если таковые имеются). Если будет указано Without Drive (Без привода), то вводим суммарный вес рамы, пропеллеров, платы контроллера, подвеса, камеры и оборудования для FPV полетов. Добавим процентов 10 на массу проводов и получаем искомую цифру.

Вводим количество роторов, их схему (одиночная или соосная), максимальную высоту полета и погодные условия, при которых он будет проводиться (температуру за бортом и атмосферное давление).

Лопастной винт самолета, он же пропеллер или лопаточная машина, которая приводится во вращение с помощью работы двигателя. С помощью винта происходит преобразование крутящего момента от двигателя в тягу.

Воздушный винт выступает движителем в таких летательных аппаратах, как самолеты, цикложиры, автожиры, аэросани, аппараты на воздушной подушке, экранопланы, а также вертолеты с турбовинтовыми и поршневыми двигателями. Для каждой из этих машин винт может выполнять разные функции. В самолетах он используется в качестве несущего винта, который создает тягу, а в вертолетах обеспечивает подъем и руление.

Все винты летательных аппаратов делятся на два основных вида: винты с изменяемым и фиксированным шагом вращения. В зависимости от конструкции самолета винты могут обеспечивать толкающую или тянущую тягу.

При вращении лопасти винта захватывают воздух и производят его отброс в противоположном направлении полета. В передней части винта создается пониженное давление, а позади – зона с высоким давлением. Отбрасываемый воздух приобретает радиальное и окружное направление, за счет этого теряется часть энергии, которая подводится к винту. Сама закрутка воздушного потока снижает обтекаемость аппарата. Сельскохозяйственные самолеты, проводя обработку полей, имеют плохую равномерность рассеивание химикатов из-за потока от пропеллера. Подобная проблема решена в аппаратах, которые имеют соосную схему расположения винтов, в данном случае происходит компенсация с помощью работы заднего винта, который вращается в противоположную сторону. Подобные винты установлены на таких самолетах, как Ан-22 , Ту-142 и Ту-95 .

Технические параметры лопастных винтов

Наиболее весомые характеристики винтов, от которых зависит сила тяги и сам полет, конечно же, шаг винта и его диаметр. Шаг – это расстояние, на которое может переместиться винт за счет ввинчивания в воздух за один полный оборот. До 30-х годов прошлого века использовались винты с постоянным шагом вращения. Только в конце 1930-х годов практически все самолеты оснащались пропеллерами со сменным шагом вращения

Параметры винтов:

    Диаметр окружности винта – это размер, который описывают законцовки лопастей при вращении.

    Поступь винта – реальное расстояние, проходящее винтом за один оборот. Данная характеристика зависит от скорости движения и оборотов.

    Геометрический шаг пропеллера – это расстояние, которое мог бы пройти винт в твердой среде за один оборот. От поступи винта в воздухе отличается скольжением лопастей в воздухе.

    Угол расположения и установки лопастей винта – наклон сечения лопасти к реальной плоскости вращения. За счет наличия крутки лопастей угол поворота замеряется по сечению, в большинстве случаев это 2/3 всей длины лопасти.

Лопасти пропеллера имеют переднюю – режущую – и заднюю кромки. Сечение лопастей имеет профиль крыльевого типа. В профиле лопастей имеется хорда, которая имеет относительную кривизну и толщину. Для повышения прочности лопастей винта используют хорду, которая имеет утолщение к корню пропеллера. Хорды сечения находятся в разных плоскостях, поскольку лопасть изготовлена закрученной.

Шаг винта является основной характеристикой гребного винта, он в первую очередь зависит от угла установки лопастей. Шаг измеряется в единицах пройденного расстояния за один оборот. Чем больший шаг делает винт за один оборот, тем больший объем отбрасывается лопастью. В свою очередь увеличение шага ведет за собой дополнительные нагрузки на силовую установку, соответственно, количество оборотов снижается. Современные летательные аппараты имеют возможность изменять наклон лопастей без остановки двигателя.

Преимущества и недостатки воздушных винтов

Коэффициент полезного действия винтов на современных самолетах достигает показателя в 86%, это делает их востребованными авиастроением. Также нужно отметить, что турбовинтовые аппараты значительно экономнее, чем реактивные самолеты. Все же винты имеют некоторые ограничения как в эксплуатации, так и в конструктивном плане.

Одним из таких ограничений выступает «эффект запирания», который возникает при увеличении диаметра винта или же при добавлении количества оборотов, а тяга в свою очередь остается на том же уровне. Это объясняется тем, что на лопастях пропеллера возникают участки со сверхзвуковыми или околозвуковыми потоками воздуха. Именно этот эффект не позволяет летательным аппаратам с винтами развить скорость выше чем 700 км/час. На данный момент самой быстрой машиной с винтами является отечественная модель дальнего бомбардировщика Ту-95 , который может развить скорость в 920 км/час.

Еще одним недостатком винтов выступает высокая шумность, которая регламентируется мировыми нормами ICAO. Шум от винтов не вписывается в стандарты шумности.

Современные разработки и будущее винтов самолета

Технологии и опыт работы позволяют конструкторам преодолеть некоторые проблемы с шумностью и повысить тягу, миновав ограничения.

Таким образом удалось миновать эффект запирания за счет применения мощного турбовинтового двигателя типа НК-12, который передает мощность на два соосные винта. Их вращение в разные стороны позволило миновать запирание и повысить тягу.

Также используются на винтах тонкие саблевидные лопасти, которые имеют возможность затягивания кризиса. Это позволяет достичь более высоких показателей скорости. Такой тип винтов установлен на самолете типа Ан-70.

На данный момент ведутся разработки по созданию сверхзвуковых винтов. Несмотря на то что проектирование ведется очень долго при немалых денежных вливаниях, достичь положительного результата так и не удалось. Они имеют очень сложную и точную форму, что значительно затрудняет расчеты конструкторов. Некоторые готовые винты сверхзвукового типа показали, что они очень шумные.

Заключение винта в кольцо – импеллер – является перспективным направлением развития, поскольку снижает концевое обтекание лопастей и уровень шума. Также это позволило повысить безопасность. Существуют некоторые самолеты с вентиляторами, которые имеют ту же конструкцию, что и импеллер, но дополнительно оснащаются аппаратом направления воздушного потока. Это значительно повышает эффективность работы винта и двигателя.

Думаю, вы уже знаете, что вращение пропеллера каким-то образом влияет на положение самолета в пространстве, что влияние это обычно нежелательно и с ним необходимо что-то делать. Обычно, в качестве причины этого воздействия называют «момент винта», но часто добавляют что-то и про «обдув хвоста». Иногда упоминается также «правило буравчика» – хотя это, на мой взгляд, уже совсем за гранью добра и зла. :) А курсанты обыкновенно кивают и делают вид, что им все понятно.

Если вы из тех, кому уже все понятно – не задерживайтесь на этой страничке. Для остальных я попробую объяснить это как-нибудь попонятнее, на пальцах.

ВАЖНО: вращение пропеллера обеспечивает сразу четыре различных по природе эффекта, влияющих на положение самолета в пространстве. Два из них более заметны на земле, а два других – в воздухе. Вот они:

  1. Момент винта
  2. Обдув вертикального оперения
  3. Асимметрия тяги винта
  4. Гироскопический момент (прецессия)

Момент винта (Torque) – это реакция самолета на раскручивание своего же собственного винта. Третий закон Ньютона в действии. Мы раскручиваем винт в одну сторону, а он, в отместку, «раскручивает» нас в обратную. По счастью, мы тяжелее и всегда побеждаем. Но все же немного кренимся.

Людям, имевшим дело с автомобильными моторами, нетрудно вспомнить, что при резкой даче газа, двигатель, работавший до этого на холостом ходу, заметно отклоняется в сторону на своих эластичных подушках. То же самое делает и двигатель самолета, которому дали взлетный режим, и его реакция передается на фюзеляж. Только у самолета этот эффект усиливается как массой винта, так и существенным сопротивлением воздуха, им возмущаемого.

Рис. 1: Момент винта (Torque)

Как же этот реактивный момент сказывается на направлении движения самолета? Больше всего его влияние заметно не в воздухе, а на земле, в момент дачи взлетного режима. Самолет немного кренится, что приводит к неравномерному обжатию пневматиков, а это, в свою очередь, способствует уводу в сторону более нагруженного колеса. Только-то и всего.

Обдув вертикального оперения (Slipstream) – это вторая и куда более значительная причина увода самолета в сторону на разбеге. Именно поэтому «на разбеге Цессну тянет влево» (один из реальных поисковых запросов, приведших кого-то на мой сайт). Российские ЯКи, кстати, тянет вправо, т.к. у них воздушный винт вращается в другую сторону.

Почему так происходит? Да все очень просто. Наверное, вы обращали внимание, что самолет в целом довольно симметричная штуковина? Симметричный фюзеляж, два одинаковых крыла и симметричный горизонтальный стабилизатор. Но есть один элемент, выделяющийся своей асимметрией – это стабилизатор вертикальный, торчащий только вверх. Вообще-то, и он мог бы быть симметричным: аэродинамике это не вредит, но взлетно-посадочные характеристики ухудшаются. Такой самолет цеплял бы хвостом за землю на взлете и посадке. Ясно, что это никуда не годится, поэтому вертикальный стабилизатор (c рулем направления) всегда только один, сверху.

В то же время, воздух, отбрасываемый пропеллером назад к хвосту, двигается не прямолинейно, а сильно закручивается, вращаясь ВОКРУГ самолета. Одна часть этого воздуха «нажимает» на вертикальный стабилизатор, отклоняя хвост в сторону, а другая часть беспрепятственно пролетает под хвостом снизу. Вот эта разность давлений на вертикальный стабилизатор и обеспечивает увод самолета в сторону.

Рис. 2: Обдув вертикального оперения (Slipstream)

Само собой, что чем больше тяги развивает двигатель, тем больше воздуха отбрасывается назад и тем сильнее воздействие на вертикальный стабилизатор. Именно это происходит на взлете, когда тяга максимальна. Хуже того, при малой воздушной скорости на первом этапе разбега эффективность руля направления еще совсем невелика, и для коррекции увода самолета приходится давить на педаль чуть ли не до упора. По мере увеличения скорости на разбеге эффективность руля растет и нажатие на педаль постепенно ослабляют.

Ослабить давление на педаль важно и в другом случае: когда самолет еще находится в воздухе на выравнивании и постановка малого газа приводит к внезапному исчезновению эффекта обдува вертикального стабилизатора. Если этого не сделать, то самолет вильнет в сторону в этот весьма неподходящий момент. Иногда, особенно при посадках с боковым ветром, приходится даже давать противоположную ногу, чтобы избежать касания ВПП с боковой нагрузкой на шасси. Но это нельзя делать чисто механически: нажатие на педаль должно ровно таким, чтобы ось самолета стала параллельна оси полосы — и не более того.

Поскольку влияние обдува вертикального оперения складывается с влиянием момента винта (см. выше), то эти эффекты часто путают или упоминают только один из них: «обдув» или «момент». Тем не менее, технически, это два различных эффекта.

Асимметрия тяги винта. Этот эффект тем заметнее, чем больше угол кабрирования самолета. Набор высоты после взлета – наилучший пример такой ситуации. В данном случае асимметрия тяги всегда приводит к сильному скольжению самолета и требует повышенного внимания и активного противодействия со стороны летчика.

Почему же возникает этот эффект? Ведь воздушный винт – симметричен? Здесь мне, возможно, придется разрушить чье-то ошибочное представление о движении самолета в наборе высоты. Обычно люди забывают, что «относительный ветер» (relative wind) далеко не всегда параллелен продольной оси самолета. На самом деле, в наборе высоты самолет летит не «носом вперед» а, скорее, «брюхом вперед». Так получается и из-за большого угла атаки при малой воздушной скорости, и из-за того, что вектор тяги в наборе всегда направлен несколько вверх, чтобы тянуть самолет «в горку».

Рис. 3. Причина асимметричности тяги винта

При этом всегда получается, что нисходящая лопасть пропеллера имеет больший угол атаки, чем восходящая. Если вам трудно это представить, то просто поверьте, что это так.

Поскольку углы атаки лопастей получаются разными, то и тяга, развиваемая лопастями, – тоже разная. В результате, самолет уводит в сторону, точнее он скользит, летит боком, что потенциально опасно при большом угле атаки в наборе. Тут надо следить за «в оба» и давить на педаль – иного выхода нет.

При переходе к горизонтальному полету нажатие на педаль надо ослабить, поскольку асимметрия тяги винта в этом режиме существенно уменьшается. Она может и совсем исчезнуть, если ось вращения винта полностью совпадет с направлением относительного ветра. Последнее вполне возможно в реальном полете, т.к. крыло обычно устанавливается под некоторым углом к продольной оси фюзеляжа. Т.е. самолет может лететь абсолютно горизонтально (и с симметричной тягой), а угол атаки крыла при этом будет составлять, допустим, 3 градуса, что достаточно для поддержания горизонтального полета.

Рис. 4: Абсолютно симметричная тяга как частный случай

Гироскопический момент или прецессия (Gyroscopic Precession) – наверное, самый сложный для понимания, тем не менее интереснейший физический феномен. По сути, воздушный винт – это самый большой гироскоп, установленный на самолете. К нему применимы все законы, которым подчиняются гироскопы, в частности – прецессия. Каждый раз, при попытке отклонить ось гироскопа в какой-нибудь плоскости, гироскоп стремится самостоятельно отклониться в другой плоскости, перпендикулярной первой. Проблема в том, что совершенно невозможно запомнить, в какую именно сторону во второй плоскости пытается отклониться гироскоп. :)

Чтобы понять суть процесса из объяснения, данного в советской «Практической аэродинамике», мне пришлось прочитать его раз десять. Но поскольку лучшего объяснения я все равно написать не смогу, привожу его полностью, мужайтесь:

Рис. 5: К объяснению гироскопического действия воздушного винта левого вращения на самолетах Як-52 и Як-55

«Допустим, что масса воздушного винта левого вращения самолетов Як-52 и Як-55 сосредоточена в двух грузах 1 и 2 (Рис. 5).

В момент, когда воздушный винт находился в вертикальном положении, летчик отклонил ручку управления на себя, что привело к поднятию относительно горизонта капота самолета. Поднятие капота самолета приведет к возникновению скорости грузов и относительно поперечной оси Z, дополнительно к имеющейся уже окружной скорости относительно продольной оси X.

Когда грузы займут горизонтальное положение, то по инерции они будут стремиться сохранить приобретенную скорость и при поднятии капота относительно горизонта. В результате действия этих скоростей грузов (направленных в противоположные стороны-груза 1′ назад, груза 2′ вперед) возникает момент, называемый гироскопическим моментом воздушного винта Му.гир , под действием его самолет начинает разворачиваться влево (при воздушном винте левого вращения)».

Чем хороша западная школа – она умеет просто и на пальцах объяснять всем, даже полным идиотам, вещи, которые в России ставят в тупик далеко не глупых студентов МАИ. Так что вот вам в помощь буржуйская картинка:

Рис. 6: Гироскопический эффект винта самолета

Зато советская школа всегда докопается до самых мелких деталей – и вот оно! Прекрасная диаграмма (вид из кабины), помогающая летчику запомнить, в каком именно направлении будет действовать гироскопический эффект при изменении положения капота:

Рис. 7: Гироскопическое действие воздушного винта левого вращения на самолетах Як-52 и Як-55

«Реакция самолета, возникающая при отклонении рулей из-за действия гироскопического момента воздушного винта, зависит от направления перемещения капота самолета (Рис.7).

Таким образом, направление перемещения капота самолета относительно горизонта при действии гироскопического момента воздушного винта находится путем перемещения его на 90° вокруг оси воздушного винта в сторону вращения ».

Вот, собственно, и вся премудрость. Только помните: диаграмма выше – это вид именно из кабины, а не вид на самолет спереди. И имейте в виду, что в Цессне и других западных самолетах, винт вращается в другую сторону, значит, и уводить самолет будет в обратном направлении, «в сторону вращения».

Гироскопический момент, также как и асимметрия тяги винта, штука довольно неприятная. Она особенно мешает в виражах, когда ось вращения винта непрерывно отклоняется в течение длительного времени. На ЯК-18Т, например, в правом развороте самолет все время забрасывает вверх метров на 20, а в левом — всегда теряет высоту. Также гироскопический момент весьма заметен на самолетах с хвостовым колесом, где на разбеге необходимо сначала оторвать хвост от земли движением штурвала от себя. Ось вращения пропеллера отклоняется на весьма большой угол, и вот тут-то самолет и виляет в сторону. Не самый удачный момент, надо отметить. К счастью, самолеты с носовой стойкой избавлены от этой особенности. Тем не менее, в воздухе резкое изменение тангажа может привести к сильному скольжению – будьте начеку!

Что ж… Надеюсь, что с влиянием пропеллера на поведение однодвигательного самолета мы разобрались. Про особенности многодвигательного самолета я со временем расскажу отдельно.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.