История открытия антибиотиков кратко. История открытия антибиотиков

История открытия антибиотиков

Открытие антибиотиков, без преувеличения, можно назвать одним из величайших достижений медицины прошлого века. Первооткрывателем антибиотиков является английский ученый Флеминг, который в 1929 году описал бактерицидное действие колоний грибка Пенициллина на колонии бактерий, разраставшихся по соседству с грибком. Как и многие другие великие открытия в медицине, открытие антибиотиков было сделано случайно. Оказывается, ученый Флеминг не очень любил чистоту, и потому нередко пробирки на полках в его лаборатории зарастали плесенью. Однажды после недолгого отсутствия Флеминг заметил, что разросшаяся колония плесневого грибка пенициллина полностью подавила рост соседней колонии бактерий (обе колонии росли в одной пробирке). Здесь нужно отдать должное гениальности великого ученого сумевшего заметить этот замечательный факт, который послужил основой предположения того, что грибы победили бактерий при помощи специального вещества безвредного для них самих и смертоносного для бактерий. Это вещество и есть природный антибиотик - химическое оружие микромира. Действительно, выработка антибиотиков является одним из наиболее совершенных методов соперничества между микроорганизмами в природе. В чистом виде вещество, о существовании, которого догадался Флеминг, было получено во время второй мировой войны. Это вещество получило название пенициллин (от названия вида грибка, из колоний которого был получен этот антибиотик). Во время войны это чудесное лекарство спасло тысячи больных обреченных на смерть от гнойных осложнений. Но это было лишь начало эры антибиотиков. После войны исследования в этой области продолжились, и последователи Флеминга открыли множество веществ со свойствами пенициллина. Оказалось, что кроме грибков вещества и подобными свойствами вырабатываются и некоторыми бактериями, растениями, животными. Параллельные исследования в области микробиологии, биохимии и фармакологии, наконец, привели к изобретению целого ряда антибиотиков пригодных для лечения самых разнообразных инфекций вызванных бактериями. При этом оказалось, что некоторые антибиотики могут быть использованы для лечения грибковых инфекций или для разрушения злокачественных опухолей. Термин «антибиотик» происходит от греческих слов anti, что означает против и bios - жизнь, и буквально переводится, как «лекарство против жизни». Несмотря на это антибиотики спасают, и будут спасать миллионы жизней людей.

Основные группы известных на сегодняшний день антибиотиков

Бета-лактамные антибиотики.Группа бета-лактамных антибиотиков включает две большие подгруппы известнейших антибиотиков: пенициллины и цефалоспорины, имеющих схожую химическую структуру.Группа пенициллинов. Пенициллины получаются из колоний плесневого грибка Penicillium, откуда и происходит название этой группы антибиотиков. Основное действие пенициллинов, связано с их способностью угнетать образование клеточной стенки бактерий и тем самым подавлять их рост и размножение. В период активного размножения многие виды бактерий очень чувствительны по отношению к пенициллину и потому действие пенициллинов бактерицидное.

Важным и полезным свойством пенициллинов является их способность проникать внутрь клеток нашего организма. Это свойство пенициллинов позволяет лечить инфекционные болезни, возбудитель которых «прячется» внутри клеток нашего организма (например, гонорея). Антибиотики из группы пенициллина обладают повышенной избирательностью и потому практически не влияют на организм человека, принимающего лечение. К недостаткам пенициллинов можно отнести их быстрое выведение из организма и развитие резистентности бактерий по отношению к этому классу антибиотиков. Биосинтетические пенициллины получают напрямую из колоний плесневых грибков. Наиболее известными биосинтетическими пенициллинами являются бензилпенициллин и феноксиметилпенициллин. Эти антибиотики используют для лечения ангины, скарлатины, пневмонии, раневых инфекций, гонореи, сифилиса.

Полусинтетические пенициллины получаются на основе биосинтетических пенициллинов путей присоединения различных химических групп. На данный момент существует большое количество полусинтетический пенициллинов: амоксициллин, ампициллин, карбенициллин, азлоциллин. Важным преимуществом некоторых антибиотиков из группы полусинтетических пенициллинов является их активность по отношению к пенициллинустойстойчивым бактериям (бактерии, разрушающие биосинтетические пенициллины). Благодаря этому полусинтетические пенициллины обладают более широким спектром действия и потому могут использоваться в лечении самых разнообразных бактериальных инфекций. Основные побочные реакции, связанные с применением пенициллинов носят аллергический характер и иногда являются причиной отказа от использования этих препаратов.

Группа цефалоспоринов. Цефалоспорины также относятся к группе бета-лактамных антибиотиков и обладают структурой, схожей со структурой пенициллинов. По этой причине некоторые побочные эффекты их двух групп антибиотиков совпадают.

Цефалоспорины обладают высокой активностью по отношению к широкому спектру различных микробов и потому используются в лечении многих инфекционных болезней. Важным преимуществом антибиотиков из группы цефалоспоринов является их активность по отношению к микробам устойчивым к действию пенициллинов (пенициллиноустойчивые бактерий). Существует несколько поколений цефалоспоринов.

Антибиотики – огромная группа бактерицидных препаратов, каждый из которой характеризуется своим спектром действия, показаниями к применению и наличием тех или иных последствий

Антибиотики – вещества, способные подавлять рост микроорганизмов или уничтожать их. Согласно определению ГОСТа, к антибиотикам относятся вещества растительного, животного или же микробного происхождения. В настоящее время это определение несколько устарело, так как создано огромное количество синтетических препаратов, однако прообразом для их создания послужили именно природные антибиотики.

История антимикробных препаратов начинается с 1928 года, когда А. Флемингом был впервые открыт пенициллин . Это вещество было именно открыто, а не создано, так как оно всегда существовало в природе. В живой природе его вырабатывают микроскопические грибы рода Penicillium, защищая себя от других микроорганизмов.

Менее чем за 100 лет создано более сотни различных антибактериальных препаратов. Некоторые из них уже устарели и не используются в лечении, а некоторые только вводятся в клиническую практику.

Как действуют антибиотики

Рекомендуем прочитать:

Все антибактериальные препараты по эффекту воздействия на микроорганизмы можно разделить на две большие группы:

  • бактерицидные – непосредственно вызывают гибель микробов;
  • бактериостатические – препятствуют размножению микроорганизмов. Не способные расти и размножаться, бактерии уничтожаются иммунной системой больного человека.

Свои эффекты антибиотики реализуют множеством способов: некоторые из них препятствуют синтезу нуклеиновых кислот микробов; другие препятствуют синтезу клеточной стенки бактерий, третьи нарушают синтез белков, а четвертые блокируют функции дыхательных ферментов.

Группы антибиотиков

Несмотря на многообразие этой группы препаратов, все их можно отнести к нескольким основным видам. В основе этой классификации лежит химическая структура – лекарства из одной группы имеют схожую химическую формулу, отличаясь друг от друга наличием или отсутствием определенных фрагментов молекул.

Классификация антибиотиков подразумевает наличие групп:

  1. Производные пенициллина . Сюда относятся все препараты, созданные на основе самого первого антибиотика. В этой группе выделяют следующие подгруппы или поколения пенициллиновых препаратов:
  • Природный бензилпенициллин, который синтезируется грибами, и полусинтетические препараты: метициллин, нафциллин.
  • Синтетические препараты: карбпенициллин и тикарциллин, обладающие более широким спектром воздействия.
  • Мециллам и азлоциллин, имеющие еще более широкий спектр действия.
  1. Цефалоспорины – ближайшие родственники пенициллинов. Самый первый антибиотик этой группы – цефазолин С, вырабатывается грибами рода Cephalosporium. Препараты этой группы в большинстве своем обладают бактерицидным действием, то есть убивают микроорганизмы. Выделяют несколько поколений цефалоспоринов:
  • I поколение: цефазолин, цефалексин, цефрадин и др.
  • II поколение: цефсулодин, цефамандол, цефуроксим.
  • III поколение: цефотаксим, цефтазидим, цефодизим.
  • IV поколение: цефпиром.
  • V поколение: цефтолозан, цефтопиброл.

Отличия между разными группами состоят в основном в их эффективности – более поздние поколения имеют больший спектр действия и более эффективны. Цефалоспорины 1 и 2 поколений в клинической практике сейчас используются крайне редко, большинство из них даже не производится.

  1. – препараты со сложной химической структурой, оказывающие бактериостатическое действие на широкий спектр микробов. Представители: азитромицин, ровамицин, джозамицин, лейкомицин и ряд других. Макролиды считаются одними из самых безопасных антибактериальных препаратов – их можно применять даже беременным. Азалиды и кетолиды – разновидности макорлидов, имеющие отличия в структуре активных молекул.

Еще одно достоинство этой группы препаратов – они способны проникать в клетки человеческого организма, что делает их эффективными при лечении внутриклеточных инфекций: , .

  1. Аминогликозиды . Представители: гентамицин, амикацин, канамицин. Эффективны в отношении большого числа аэробных грамотрицательных микроорганизмов. Эти препараты считаются наиболее токсичными, могут привести к достаточно серьезным осложнениям. Применяются для лечения инфекций мочеполового тракта, .
  2. Тетрациклины . В основном этой полусинтетические и синтетические препараты, к которым относятся: тетрациклин, доксициклин, миноциклин. Эффективны в отношении многих бактерий. Недостатком этих лекарственных средств является перекрестная устойчивость, то есть микроорганизмы, выработавшие устойчивость к одному препарату, будут малочувствительны и к другим из этой группы.
  3. Фторхинолоны . Это полностью синтетические препараты, которые не имеют своего природного аналога. Все препараты этой группы делятся на первое поколение (пефлоксацин, ципрофлоксацин, норфлоксацин) и второе (левофлоксацин, моксифлоксацин). Используются чаще всего для лечения инфекций ЛОР-органов ( , ) и дыхательных путей ( , ).
  4. Линкозамиды. К этой группе относятся природный антибиотик линкомицин и его производное клиндамицин. Оказывают и бактериостатическое, и бактерицидное действия, эффект зависит от концентрации.
  5. Карбапенемы . Это одни из самых современных антибиотиков, действующих на большое количество микроорганизмов. Препараты этой группы относятся к антибиотикам резерва, то есть применяются в самых сложных случаях, когда другие лекарства неэффективны. Представители: имипенем, меропенем, эртапенем.
  6. Полимиксины . Это узкоспециализированные препараты, используемые для лечения инфекций, вызванных . К полимиксинам относятся полимиксин М и В. Недостаток этих лекарств – токсическое воздействие на нервную систему и почки.
  7. Противотуберкулезные средства . Это отдельная группа препаратов, обладающих выраженным действием на . К ним относятся рифампицин, изониазид и ПАСК. Другие антибиотики тоже используют для лечения туберкулеза, но только в том случае, если к упомянутым препаратам выработалась устойчивость.
  8. Противогрибковые средства . В эту группы отнесены препараты, используемые для лечения микозов – грибковых поражений: амфотирецин В, нистатин, флюконазол.

Способы применения антибиотиков

Антибактериальные препараты выпускаются в разных формах: таблетках, порошке, из которого готовят раствор для инъекций, мазях, каплях, спрее, сиропе, свечах. Основные способы применения антибиотиков:

  1. Пероральный – прием через рот. Принять лекарство можно в виде таблетки, капсулы, сиропа или порошка. Кратность приема зависит от вида антибиотиков, к примеру, азитромицин принимают один раз в день, а тетрациклин – 4 раза в день. Для каждого вида антибиотика есть рекомендации, в которых указано, когда его нужно принимать – до еды, во время или после. От этого зависит эффективность лечения и выраженность побочных эффектов. Маленьким детям антибиотики назначают иногда в виде сиропа – детям проще выпить жидкость, чем проглотить таблетку или капсулу. К тому же, сироп может быть подслащен, чтобы избавиться от неприятного или горького вкуса самого лекарства.
  2. Инъекционный – в виде внутримышечных или внутривенных инъекций. При этом способе препарат быстрее попадает в очаг инфекции и активнее действует. Недостатком этого способа введения является болезненность при уколе. Применяют инъекции при среднетяжелом и тяжелом течении заболеваний.

Важно: делать уколы должна исключительно медицинская сестра в условиях поликлиники или стационара! На дому антибиотики колоть категорически не рекомендуется.

  1. Местный – нанесение мазей или кремов непосредственно на очаг инфекции. Этот способ доставки препарата в основном применяется при инфекциях кожи – рожистом воспалении, а также в офтальмологии – при инфекционном поражении глаза, например, тетрациклиновая мазь при конъюнктивите.

Путь введения определяет только врач. При этом учитывается множество факторов: всасываемость препарата в ЖКТ, состояние пищеварительной системы в целом (при некоторых заболеваниях скорость всасывания снижается, а эффективность лечения уменьшается). Некоторые препараты можно вводить только одним способом.

При инъекционном введении необходимо знать, чем можно растворить порошок. К примеру, Абактал можно разводить только глюкозой, так как при использовании натрия хлорида он разрушается, а значит, и лечение будет неэффективным.

Чувствительность к антибиотикам

Любой организм рано или поздно привыкает к самым суровым условиям. Справедливо это утверждение и по отношению к микроорганизмам – в ответ на длительное воздействие антибиотиков микробы вырабатывают устойчивость к ним. Во врачебную практику было введено понятие чувствительности к антибиотикам – с какой эффективностью воздействует тот или иной препарат на возбудителя.

Любое назначение антибиотиков должно опираться на знание о чувствительности возбудителя. В идеале, перед назначением препарата врач должен провести анализ на чувствительность, и назначить самый действенный препарат. Но время проведения такого анализа в самом лучшем случае – несколько дней, а за это время инфекция может привести к самому печальному результату.

Поэтому при инфекции с невыясненным возбудителем врачи назначают препараты эмпирическим путем – с учетом наиболее вероятного возбудителя, со знанием эпидемиологической обстановки в конкретном регионе и лечебном учреждении. Для этого используют антибиотики широкого спектра действия.

После выполнения анализа на чувствительность врач имеет возможность сменить препарат на более эффективный. Замена препарата может быть произведена и при отсутствии эффекта от лечения на 3-5 сутки.

Более эффективно этиотропное (целевое) назначение антибиотиков. При этом выясняется, чем вызвано заболевание – с помощью бактериологического исследования устанавливается вид возбудителя. Затем врач подбирает конкретный препарат, к которому у микроба отсутствует резистентность (устойчивость).

Всегда ли эффективны антибиотики

Антибиотики действуют только на бактерии и грибы! Бактериями считаются одноклеточные микроорганизмы. Насчитывается несколько тысяч видов бактерий, некоторые из которых вполне нормально сосуществуют с человеком – в толстом кишечнике обитает более 20 видов бактерий. Часть бактерий является условно-патогенными – они становятся причиной болезни только при определенных условиях, например, при попадании в нетипичное для них место обитания. Например, очень часто простатит вызывает кишечная палочка, попадающая восходящим путем в из прямой кишки.

Обратите внимание: абсолютно неэффективны антибиотики при вирусных заболеваниях. Вирусы во много раз меньше бактерий, и у антибиотиков попросту нет точки приложения своей способности. Поэтому же антибиотики при простуде не оказывают эффекта, так как простуда в 99% случаев вызвана вирусами.

Антибиотики при кашле и бронхите могут быть эффективны, если эти явления вызваны бактериями. Разобраться в том, чем вызвано заболевание может только врач – для этого он назначает анализы крови, при необходимости – исследование мокроты, если она отходит.

Важно: назначать самому себе антибиотики недопустимо! Это приведет лишь к тому, что часть возбудителей выработает резистентность, и в следующий раз болезнь будет вылечить гораздо сложнее.

Безусловно, эффективны антибиотики при – это заболевание имеет исключительно бактериальную природу, вызывают ее стрептококки или стафилококки. Для лечения ангины используют самые простые антибиотики – пенициллин, эритромицин. Самое важное в лечение ангины- это соблюдение кратности приема препаратов и продолжительность лечения – не менее 7 дней. Нельзя прекращать прием лекарства сразу после наступления состояния, что обычно отмечается на 3-4 день. Не следует путать истинную ангину с тонзиллитом, который может быть вирусного происхождения.

Обратите внимание: недолеченная ангина может стать причиной острой ревматической лихорадки или !

Воспаление легких () может иметь как бактериальное, так и вирусное происхождение. Бактерии вызывают пневмонию в 80% случаев, поэтому даже при эмпирическом назначении антибиотики при пневмонии оказывают хороший эффект. При вирусных же пневмониях антибиотики не обладают лечебным действием, хотя и препятствуют присоединению бактериальной флоры к воспалительному процессу.

Антибиотики и алкоголь

Одновременный прием алкоголя и антибиотиков за короткий промежуток времени ни к чему хорошему не приводит. Некоторые препараты разрушаются в печени, как и алкоголь. Наличие в крови антибиотика и алкоголя дает сильную нагрузку на печень – она попросту не успевает обезвредить этиловый спирт. В результате этого повышается вероятность развития неприятных симптомов: тошноты, рвоты, кишечных расстройств.

Важно: ряд препаратов взаимодействует с алкоголем на химическом уровне, в результате чего напрямую снижается лечебное действие. К таким препаратам относятся метронидазол, левомицетин, цефоперазон и ряд других. Одновременный прием алкоголя и этих препаратов может не только снизить лечебный эффект, но и привести к одышке, судорогам и смерти.

Конечно, некоторые антибиотики можно принимать на фоне употребления алкоголя, но зачем рисковать здоровьем? Лучше ненадолго воздержаться от спиртных напитков – курс антибактериальной терапии редко превышает 1,5-2 недели.

Антибиотики при беременности

Беременные женщины болеют инфекционными болезнями ничуть ни реже, чем все остальные. А вот лечение беременных антибиотиками весьма затруднительно. В организме беременной растет и развивается плод – будущий ребенок, весьма чувствительный ко многим химическим веществами. Попадание в формирующийся организм антибиотиков может спровоцировать развитие пороков развития плода, токсическое повреждение центральной нервной системе плода.

В первый триместр желательно избегать применения антибиотиков вообще. Во второй и третий триместры их назначение более безопасно, но тоже, по возможности, должно быть ограничено.

Отказаться от назначения антибиотиков беременной женщине нельзя при следующих болезнях:

  • Пневмония;
  • ангина;
  • инфицированные раны;
  • специфические инфекции: бруцеллез, бореллиоз;
  • половые инфекции: , .

Какие же антибиотики можно назначить беременной?

Не оказывают почти никакого влияния на плод пенициллин, препараты цефалоспоринового ряда, эритромицин, джозамицин. Пенициллин, хотя и проходит через плаценту, не оказывает негативного воздействия на плод. Цефалоспорин и другие названные препараты проникают через плаценту в крайне низкой концентрации и не способны навредить будущему ребенку.

К условно безопасным препаратам относят метронидазол, гентамицин и азитромицин. Их назначают только по жизненным показаниям, когда польза для женщины перевешивает риск для ребенка. К таким ситуациям относят тяжелые пневмонии, сепсис, другие тяжелые инфекции, при которых без антибиотиков женщина может попросту погибнуть.

Какие из препаратов нельзя назначать при беременности

Нельзя применять у беременных следующие препараты:

  • аминогликозиды – способны привести к врожденной глухоте (исключение - гентамицин);
  • кларитромицин, рокситромицин – в экспериментах оказывали токсичное действие на зародыши животных;
  • фторхинолоны ;
  • тетрациклин – нарушает формирование костной системы и зубов;
  • левомицетин – опасен на поздних сроках беременности за счет угнетения функций костного мозга у ребенка.

По некоторым антибактериальным препаратам нет данных о негативном воздействии на плод. Объясняется это просто – на беременных женщинах не проводят экспериментов, позволяющих выяснить токсичность препаратов. Эксперименты же на животных не позволяют со 100% уверенностью исключить все негативные эффекты, так как метаболизм препаратов у человека и животных может значительно отличаться.

Следует учесть, что перед следует также отказаться от приема антибиотиков или изменить планы по зачатию. Некоторые препараты обладают кумулятивным эффектом – способны накапливаться в организме женщины, и еще некоторое время после окончания курса лечения постепенно метаболизируются и выводятся. Беременеть рекомендуется не ранее чем через 2-3 недели после окончания приема антибиотиков.

Последствия приема антибиотиков

Попадание антибиотиков в организм человека ведет не только к уничтожению болезнетворных бактерий. Как и все инородные химические препараты, антибиотики оказывают системное действие – в той или иной мере воздействуют на все системы организма.

Можно выделить несколько групп побочных эффектов антибиотиков:

Аллергические реакции

Практически любой антибиотик может стать причиной аллергии. Выраженность реакции бывает разной: сыпь на теле, отек Квинке (ангионевротический отек), анафилактический шок. Если аллергическая сыпь практически не опасна, то анафилактический шок может привести к смертельному исходу. Риск шока гораздо выше при уколах антибиотиков, именно поэтому инъекции должны делаться только в медицинских учреждениях – там может быть оказана неотложная помощь.

Антибиотики и другие антимикробные ЛС, вызывающие перекрестные аллергические реакции:

Токсические реакции

Антибиотики могут повреждать многие органы, но больше всего подвержена их воздействию печень – на фоне антибактериальной терапии может возникнуть токсический гепатит. Отдельные препараты оказывают избирательное токсическое воздействие на другие органы: аминогликозиды – на слуховой аппарат (вызывают глухоту); тетрациклины угнетают рост костной ткани у детей.

Обратите внимание : токсичность препарата обычно зависит от его дозы, но при индивидуальной непереносимости иногда достаточно и меньших доз, чтобы проявился эффект.

Воздействие на желудочно-кишечный тракт

При приеме некоторых антибиотиков пациенты часто жалуются на боли в желудке, тошноту, рвоту, расстройства стула (диарея). Обусловлены эти реакции чаще всего местнораздражающим действием препаратов. Специфическое воздействие антибиотиков на флору кишечника ведет к функциональным расстройствам его деятельности, что сопровождается чаще всего диареей. Состояние это так и называется – антибиотикассоциированной диареей, которая в народе больше известна под термином дисбактериоз после антибиотиков.

Другие побочные эффекты

К прочим побочным последствиям относят:

  • угнетение иммунитета;
  • появление антибиотикорезистентных штаммов микроорганизмов;
  • суперинфекция – состояние, при котором активизируются устойчивые к данному антибиотику микробы, приводя к возникновению нового заболевания;
  • нарушение обмена витаминов – обусловлено угнетением естественной флоры толстой кишки, которая синтезирует некоторые витамины группы В;
  • бактериолиз Яриша-Герксгеймера – реакция.ю возникающая при применении бактерицидных препаратов, когда в результате одномоментной гибели большого числа бактерий в кровь выбрасывается большое количество токсинов. Реакция схожа по клинике с шоком.

Можно ли использовать антибиотики с профилактической целью

Самообразование в сфере лечения привела к тому, что многие пациенты, особенно это касается молодых мам, стараются назначить самому себе (или своему ребенку) антибиотик при малейших признаках простуды. Антибиотики не обладают профилактическим действием – они лечат причину заболевания, то есть устраняют микроорганизмы, а при отсутствии проявляются лишь побочные эффекты препаратов.

Существует ограниченное количество ситуаций, когда антибиотики вводят до клинических проявлений инфекции, с целью ее предупредить:

  • хирургическая операция – в этом случае антибиотик, находящийся в крови и тканях, препятствует развитию инфекции. Как правило, достаточно однократной дозы препарата, введенной за 30-40 минут до вмешательства. Иногда даже после аппендэктомии в послеоперационном периоде не колют антибиотики. После «чистых» хирургических операций антибиотики вообще не назначают.
  • крупные травмы или раны (открытые переломы, загрязнение раны землей). В этом случае абсолютно очевидно, что в рану попала инфекция и следует «задавить» ее до того, как она проявится;
  • экстренная профилактика сифилиса проводится при незащищенном сексуальном контакте с потенциально больным человеком, а также у медработников, которым кровь инфицированного человека или другая биологическая жидкость попала на слизистую оболочку;
  • пенициллин может быть назначен детям для профилактики ревматической лихорадки, являющейся осложнением ангины.

Антибиотики для детей

Применение антибиотиков у детей в целом не отличается от применения их у других групп людей. Детям маленького возраста педиатры чаще всего назначают антибиотики в сиропе. Эта лекарственная форма удобнее для приема, в отличие от уколов совершенно безболезненная. Детям более старшего возраста могут назначаться антибиотики в таблетках и капсулах. При тяжелом течении инфекции переходят на парентеральный путь введения – уколы.

Важно : главная особенность в использовании антибиотиков в педиатрии заключается в дозировках – детям назначают меньшие дозы, так как расчет препарата ведется в пересчете на килограмм массы тела.

Антибиотики – это очень эффективные препараты, имеющие в то же время большое количество побочных эффектов. Чтобы вылечиться с их помощью и не нанести вреда своему организму, принимать их следует только по назначению врача.

Какие бывают антибиотики? В каких случаях прием антибиотиков необходим, а в каких опасен? Главные правила лечения антибиотиками рассказывает педиатр, доктор Комаровский:

Гудков Роман, врач-реаниматолог

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

«История становления и развития антибиотикотерапии»

Введение

Жизнь против жизни

Заключение

Список литературы

Введение

Ценность антибиотиков как лекарств ни у кого не вызывает сомнения. Почти каждый взрослый человек испытал их целебное действие на себе. Кому они помогли выздороветь, а кому и спасли жизнь. Антибиотики совершенно изменили структуру заболеваемости -- острозаразные болезни, гнойные заболевания, воспаление легких, еще совсем недавно бывшие основной причиной смерти людей, теперь отодвинуты на задний план. Антибиотики преобразили хирургию, создав условия для выполнения сложных операций, позволили резко снизить детскую смертность. Они преобразовали животноводство, растениеводство, целые отрасли пищевой промышленности. Среднегодовой прирост объема потребления антибиотиков в развитых странах составляет 7--9% и пока тенденция к спаду не предвидится.

Жизнь против жизни

Все началось с обычной зеленой плесени. Первым, кто описал удивительные свойства зеленоватого пушистого налета, неведомо откуда поселяющегося на забытых пищевых остатках, был профессор Военно-медицинской академии В. А. Монассейн. Его статья «Об отношении бактерий к зеленому кистевику и о влиянии некоторых средств на развитие этого последнего», в котором рассказывалось о способности плесени убивать микробов, появилась в печати более ста лет назад -- в 1871 г. Через год в статье «Патологическое значение плесени» профессор А. Г. Полотебнов сообщил о своих попытках использовать плесень для лечения гнойных ран. Позднее способность одних микроорганизмов подавлять рост и размножение других была описана многими авторами. Луи Пастер, наблюдавший борьбу между микробами, предсказывал использование этого явления с целью лечения больных.

В 1896 г. итальянский врач Б. Гозио, изучавший причины поражения риса плесенью, выделил культуру зеленоватого микроскопического гриба. Жидкая среда, в которой рос этот гриб, оказывала губительное действие на бактерии сибирской язвы. Фактически в руках Б. Гозио был первый в мире антибиотик, однако он не получил практического применения и был забыт. Немецкие ученые Р. Эммерих и О. Лев из культуры синегнойной палочки (по-латыни она называется пиоцианеум) получил препарат пиоцианазу, который пытались использовать для лечения ран. Одновременно советский ученый Н. Ф. Гамалея из культуры той же палочки получил препарат пиокластин. Однако из-за непостоянства лечебного эффекта этих препаратов их вскоре перестали применять. В 1913 г. в Америке микробиологи Альсберг и Блек получили антибиотическое вещество из культуры гриба, принадлежавшего к семейству пенициллиумов. Они назвали это вещество пенициллиновой кислотой и собирались применить в клинике, но из-за начала первой мировой войны исследования остались незавершенными.

В 1889 г. француз Вюльмен, собрав все сведения о взаимном влиянии микробов, сформулировал очень важное положение «Когда два живых тела тесно соединяются, и одно из них оказывает разрушительное действие на другое, можно сказать, что происходит антибиоз» (от греч. «анти» -- против, «биос» -- жизнь). Так было произнесено слово, от которого произошло название «антибиотики» -- вещества, вырабатываемые одним живым организмом для разрушения другого живого организма. Борьба живого с живым оказалась очень выгодна для человека.

Самое выдающееся медицинское открытие XX века было сделано в один из сентябрьских дней 1928 года в крохотной лаборатории, теснящейся под лестницей. Вряд ли оно было случайным, как принято думать: Александр Флеминг, бактериолог лондонской больницы Святой Марии, шел к нему более полутора десятков лет -- и все-таки, наверное, было бы несправедливо вовсе отвергать элемент случайности в этом открытии.

Впоследствии Прайс, ставший известным ученым, так напишет об этом дне: «Меня поразило, что Флеминг не ограничился наблюдениями, а тотчас же принялся действовать. Многие, обнаружив какое-нибудь явление, чувствуют, что оно может быть замечательным, но лишь удивляются и вскоре забывают о нем. Флеминг был не таков...»

Что такое плесень? Это растительные организмы, крошечные грибки, размножающиеся в сырых местах. Внешне плесень напоминает войлочную массу белого, зеленого, коричневого и черного цвета. Вырастает плесень из спор -- микроскопических живых организмов, невидных невооруженным глазом. Микологии -- науке о грибах -- известны тысячи разновидностей плесени. Грибок, так заинтересовавший Флеминга, назывался Penicillium notatum. Впервые он был найден шведским фармакологом Вестлингом на сгнивших листах кустарника иссопе.

В тот день он перебирал в своей маленькой лаборатории чашки Петри со старыми культурами бактерий. Эти чашки, названные по имени их изобретателя, похожи на коробочки, в которых продается гуталин. Они только пошире и сделаны из стекла. Чашки заполняют обезжиренным бульоном с добавлением особого вещества агар-агара, получаемого из морских водорослей. Благодаря агар-агару, который очень напоминает желатин, бульон застывает и образует твердый студень. Для человека такой студень не слишком привлекателен, а для микробов -- лакомое блюдо. Стоит на поверхность студня попасть хоть одному микробу, как он начинает быстро размножаться. Особенно быстро размножение микробов происходит при температуре человеческого тела -- 37°С. Поэтому чашки Петри, после того как на них посеят микробы, ставят в специальные шкафы (термостаты), поддерживающие нужную температуру. Через сутки каждый микроб, многократно разделившись, превратится в небольшое микробное селение -- колонию. Похожа такая колония на круглую бляшку -- налет на агаре. Опытный микробиолог уже по форме, цвету и характеру поверхности колонии может определить тип микроба.

Доктор Флеминг, просматривая старые посевы, ворчал. Поскольку крышки в процессе работы многократно открывались, во многие из них залетали посторонние микробы. Особенно мешала плесень, для развития и роста которой высокая температура не требуется. Если в чашку попал один плесневый гриб, то он начинает расти, постепенно наплывая на более ранние культуры. пенициллин плесень аллергия медицина

Но вдруг Флеминг остановился. Что такое? В одной из чашек плесени вроде бы и не много, но культуры стафилококков -- микробов, вызывающих нагноения, -- вокруг нее исчезли. Они как бы растворились. Дальше шли сильно измененные колонии, желтоватые бляшки превратились в прозрачные капельки. И только совсем у края чашки сохранилось несколько микробных поселений.

Пробурчав под нос: «Это очень интересно», -- Флеминг соскоблил часть плесени и бросил в бутылку с бульоном. Через несколько дней в бутылке из отдельных крошечных грибов выросли нити, которые, разветвляясь, образовали сплошную волокнистую массу. На вид это была обычная ничем не примечательная плесень, которая вырастает на забытой корке хлеба или завалявшихся фруктах.

Позднее Флеминг ставил решающий опыт. В центре чашки он поместил маленький кусочек плесени, а вокруг -- по капельке разных бактерий. Капельки он размазал по студню в виде лучей, идущих от центра. Через пару дней и плесень, и бактерии размножились. Подавляя дрожь в руках, исследователь поднес чашку к свету и сразу увидел, что опыт удался. За счет массы бактерий лучи стали хорошо видны. Но некоторые из них проросли полностью, а другие только у края чашки. Плесень убила их на расстоянии нескольких сантиметров. Самым примечательным было то, что эта плесень -- «пенициллиум нотатум», таково было ее научное название, выделяла яд, который действовал губительно на микробов, особо опасных для человека. Погибли стрептококки, вызывающие воспаление в горле, стафилококки, вызывающие нагноения, пневмококки, вызывающие воспаление легких, погибли дифтерийные палочки и даже палочки сибирской язвы -- страшной болезни, спасения от которой не было. Но может быть яд, выделяемый плесенью, опасен и для самой человека? Бульон из бутылки отфильтровывается и вводится мыши. Никаких признаков отравления не наблюдается. Вместе с тем достаточно капнуть этот бульон в стакан с чистой культурой микробов, как все они погибают.

Все хорошо, но бульон нельзя вводить человеку ни под кожу, ни в мышцу, ни тем более в вену. Именно поэтому Флеминг предложил использовать его для лечения ран.

Вот эта работа и вызвала неудовольствие всемирно известного микробиолога, действительного члена многих академий и научных обществ, профессора Лондонского университета сэра Алмрот Эдуард Райта. В один из ноябрьских дней 1929 г. Райт был сердит как никогда. Самое худшее, что сердиться приходилось на одного из своих любимых учеников, доктора Александра Флеминга, который, несмотря на постоянные споры с учителем, пока не доставлял ему огорчения. Сегодня утром Флем, как звали Флеминга в лаборатории, принес на подпись статью, в которой значилось: «Определенный вид пенициллиум (плесневого гриба) вырабатывает в питательной среде мощное антибактериальное вещество». И дальше: «Предлагается применить его в качестве эффективного антисептика -- противогнилостного средства».

Как? Разве он, Райт, не доказал, что при лечении инфекционных и других болезней, вызываемых микробами, следует полагаться только на защитные силы самого организма и предохранительные прививки? Разве не с этим упорным шотландцем в годы первой мировой войны они доказали, что все (!!!) вещества, в том числе и карболовая кислота, убивающая микробы в пробирке, на хирургических инструментах и вообще на предметах, не способствуют, а препятствуют заживлению ран. Как не понять, что любой способ воздействия на микробы (холод, огонь, яд) обязательно должен приводить также и к гибели клеток человеческого тела. Такие вещества могут быть применены разве что на коже, которая защищена от губительного действия яда слоем роговых чешуек. «Кажется я достаточно четко писал, -- думал Райт, -- что лечение инфекционных заболеваний у человека путем введения в организм химических синтетических веществ (химиотерапия) невозможно и никогда не будет осуществлено. Флема сбил с истинного пути фантазер Пауль Эрлих. Ну, не фантазия ли? Этот австриец хочет создать такое лекарство, которое, будучи введено в кровь человека, сумело бы распознавать среди его клеток врага, миновало бы, обошло клетки тела хозяина, нашло и убило незваного микробного пришельца. Не зря Эрлих назвал свою мечту «волшебной пулей». Это действительно больше похоже на волшебство, чем на серьезную науку. Конечно, Флем начнет напоминать мне о хинине и эрлиховском сальварсане. Но что из того? Они излечивают малярию и сонную болезнь! Ведь эти болезни вызывают не настоящие микробы. Причина их -- плазмодий и трипаносомы, которые хотя действительно очень просты по строению, но все же представляют собой маленьких животных, устроенных намного сложнее, чем бактерии. Одно дело стрелять волшебной пулей в слона, окруженного охотниками, другое дело в комара, сидящего у охотника на носу».

Недовольство статья вызвала не только Райта. Даже после опубликования, статья не вызвала у медиков никакого энтузиазма. А все потому, что пенициллин оказался очень нестойким веществом. Он разрушался уже при самом кратковременном хранении, а тем более при попытке выпарить содержащий его бульон. Когда в 1939 г. Флеминг обратился за помощью в Лондонское химическое общество, то получил ответ: «Вещество слишком нестойкое и с химической точки зрения не заслуживает никакого внимания».

Может быть в том, что на пенициллин долго не обращали внимания, частично был виноват сам Флеминг. Он не был хорошим оратором, способным увлечь своей идеей окружающих. Вот что он пишет сам: «Об этом явлении чрезвычайной важности было напечатано в 1929 г. ...Я говорил о пенициллине в 1936 году..., но не был достаточно красноречив, и мои слова прошли незамеченными». А говорил-то не где-нибудь, а с трибуны Международного съезда микробиологов!

Приближение войны заставило многих ученых пересмотреть характер своих занятий. Руководитель кафедры патологии Оксфордского университета профессор Г. Флори со своими помощниками решили начать изыскание нового лекарства для борьбы с микробами. Нельзя сказать, что в 1939 г. выбор их был богат, однако поиски можно было начинать не на абсолютно пустом месте. В 1936 г. немецким ученым Домагком был получен красный стрептоцид, который, конечно, можно было усовершенствовать. Была пиоционаза, был, наконец, лизоцим, антибиотик, содержащийся в слюне и слезах человека, открытый тем же Флемингом в 1922 г. Однако выбор пал на плесневый гриб. Может быть потому, что один из основных помощников профессора Э. Чейн был биохимиком и предполагал, что действующим началом культуры плесени является фермент?

Вначале Чейна преследовали неудачи. Едва удалось обнаружить в растворе пенициллин, как последний бесследно исчез. Прежде всего, был установлен факт, что пенициллин сохраняется в щелочных растворах, в слабом растворе соды, например. Было выявлено и другое свойство этого неуловимого вещества -- его способность переходить в эфир. Чейн ставил раствор в ящик со льдом. Пенициллин смешивался с эфиром, и в сосуде образовывалось два слоя. Чейн удалял водяной слой. В сосуде оставался пенициллин, растворенный в эфире. Для того чтобы сохранить его, добавлялась щелочь, и реакция шла в обратном направлении -- пенициллин переходил в щелочной раствор. Вода осторожно выпаривалась, и на дне сосуда оставалась слизистая масса, содержащая в себе пенициллин. Чейн замораживал ее, потом высушивал и, наконец, получал ничтожное количество коричневого порошка. Это и был пенициллин.

Первые же опыты с веществом, выделенным Чейном из плесневого бульона, буквально ошеломили ученых. Хитли разводил его в сотни тысяч раз, и всего лишь одной капли этого раствора оказывалось достаточно, чтобы остановить рост самых патогенных микробов, засеянных в чашках Петри. Пенициллин оказался в МИЛЛИОН раз активнее, чем плесневой фильтрат, с которым экспериментировал Флеминг.

Уже через год оксфордская группа ученых получила первые порции препарата. По правде говоря, пенициллина в той желтоватой жидкости, которую демонстрировали радостные ученые своим коллегам, содержалось всего 1%. Но все же это было лекарство. Сначала с его помощью были излечены мыши, зараженные смертельной дозой стафилококка, а потом очередь дошла и до человека. 12 февраля 1941 г. с помощью пенициллина была сделана попытка спасти мужчину, который погибал от заражения крови. Он неосторожно расковырял ранку в углу рта, и теперь был обречен на смерть. Несколько инъекций пенициллина в течение одного дня улучшили его состояние, однако имеющегося количества пенициллина оказалось недостаточным. Таким образом, спасти первого больного не удалось.

Несмотря на трагический исход, ценность препарата стала совершенно очевидной, что и было отмечено во всех газетах Англии. Газета «Тайме» поместила статью А. Райта: «Лавровый венок должен быть присужден Александру Флеммингу. Это он первым открыл пенициллин и первый предсказал, что это вещество может найти широкое применение в медицине». Профессор вместе со всем человечеством склонил голову пред своим гениальным учеником.

Дальнейший путь пенициллина, тем не менее, отнюдь не был усыпан розами. Несмотря на то, что война уже шла, и кругом миллионы людей погибали от гнойных ран, правительство Великобритании не хотело раскошелиться на строительство специального завода, отговариваясь тем, что якобы Англия подвергается слишком усиленным бомбежкам. Может быть, дела так и не сдвинулись с мертвой точки, если бы не энергия и не активность сотрудника Флеминга Г. Флори. Он быстро нашел и деньги для работы, и людей, которые ему помогли, в США. Исследования закипели. Для получения более активного гриба, выделяющего пенициллин в достаточных количествах, была организована доставка образцов плесени не то что изо всех уголков страны, но и со всех частей света. Самое забавное в том, что найдена такая плесень была буквально под самым носом, она росла на дыне, принесенной с городской свалки. Вскоре дело продвинулось так далеко, что был начат промышленный выпуск пенициллина.

Первым человеком, вылеченным с помощью пенициллина, была маленькая девочка, болезнь которой началась с горла, а потом распространилась на сердце. Микробы, которые вызвали у нее ангину, проникли в кровь и осели на внутренней оболочке сердечной мышцы. Как и всех других больных, пораженных таким недугом, ее ждала неминуемая смерть. Врач, который лечил девочку, упросил Флори дать ему пенициллин. Хотя никто о таком применении пенициллина раньше не думал, но очень уж жаль было девочку. Раствор пенициллина был введен ей, когда она уже умирала. Полученный эффект превзошел все ожидания -- девочке сразу стало лучше, и она стала поправляться.

Вскоре после этого случая Флеминг сам впервые ввел раствор пенициллина в спинномозговой канал своему другу, который заболел гнойным воспалением мозговых оболочек. Неминуемая, казалось бы, смерть отступила и на этот раз. Потом уже пенициллином начали лечить английских летчиков, получивших ранения в воздушных боях над Лондоном. Под влиянием антибиотика гнойные раны очищались, ожоги зарастали кожей, гангрена отступала. Действие лекарства было похоже на мановение волшебной палочки.

Первооткрыватели пенициллина Флеминг, Флори и Чейн, понимая все значение этого лекарства для человечества, не засекретили свое лекарство, как это обычно делается, однако каждая страна должна была получить свой пенициллин. В Советском Союзе эту трудную и почетную работу выполнила Зинаида Виссарионовна Ермольева со своими помощниками. Под бомбежками, в тяжелых условиях военного времени, были собраны образцы плесени, и каждый из них испытан на способность выделять пенициллин. Наконец, полученный гриб, который оказался даже лучше американского, но назывался не нотатум, а крустозум, помещен в ферментатор. В кратчайшие сроки выпуск пенициллина был налажен в промышленных масштабах, и первые его порции начали поступать в госпитали и непосредственно на фронт. Вместе со своим лекарством отправилась на фронт и профессор З. В. Ермольева. Там, на поле боя, нашлось новое применение пенициллину -- предупреждение нагноения. Рана только что получена, гноя еще нет, но микробы уже внутри раны, вместе с осколком, землей, обрывками одежды. Если пенициллин ввести сразу после ранения, то и размножения микробов не происходит -- рана зарастает без всяких осложнений. Благодаря новому методу, врачи сумели не просто вылечить, а возвратить в строй 72% раненых! Пенициллин, таким образом, тоже воевал.

Сорок лет назад был осуществлен первый промышленный выпуск пенициллина. С этого же времени и поныне продолжается его триумфальное шествие по земному шару. А человек, открывший новую эпоху в жизни человечества, был необычайно скромен. В 1945 г. по поводу вручения ему Нобелевской премии Флеминг сказал: «Мне говорят, что я изобрел пенициллин. Нет, я только обратил на него внимание людей и дал ему название».

Когда в 1945 г. Американская медицинская ассоциация поставила перед учеными вопрос: «Какое лекарство вы считаете наиболее ценным?», то 99% опрошенных ответили: «Антибиотики». Но ведь это было только начало. Весну делали только первые ласточки-. В 1945 г. был открыт четвертый антибиотик -- хлортетрациклин, а 1947 г. -- пятый -- левомицетин, а уже к 1950 г. было описано более 100 антибиотиков. В 1955 г. их было уже более 500. Сейчас открыто и изучено примерно 4000 соединений, причем 60 из них нашли широкое применение в медицине. Среди этого набора можно найти антибиотики, которые действуют на микробов, вызывающих нагноение, и на микробов, повинных в заболевании легких, и на микробов, поселяющихся в желудочно-кишечном тракте. Есть антибиотики, пригодные для лечения детей и для лечения стариков.

Кстати сказать, многие из них выделены из земли. Советский ученый Н. А. Красильников, изучив свойства бактерий чуть ли не всех областей нашей страны, обнаружил, что наиболее богаты производителями антибиотиков земли Казахстана -- в каждом грамме пахотной земли содержится 380 000 микроскопических фармацевтических фабрик. Так что кладовая антибиотиков не исчерпана.

И все же, несмотря на достоинства новых препаратов, пенициллин до сих пор остается самым распространенным. Только в США этот препарат ежегодно выпускается в количестве 1500 т! Почему?

Во-первых, он очень активен. Судите сами. Для того чтобы подавить жизнедеятельность микроба в ведре воды, в него нужно добавить не менее 10 г карболовой кислоты (она обычно используется как стандарт) или 1 г фурациллина, или 0,1 г норсульфазола, или 0,01 г пенициллина. Речь идет, разумеется, о чувствительных к этим препаратам микробах. Но главное, пожалуй, все же не активность, так как существуют другие не менее активные антибиотики.

Во-вторых, и это главное, пенициллин почти совсем не оказывает на человека токсического действия. Обычно для оценки степени ядовитости того или иного вещества определяют его смертельную дозу для мышей. Чем больше эта доза, тем вещество менее ядовито. Так вот, чтобы вызвать гибель мыши, ей необходимо ввести внутривенно один из следующих антибиотиков: нистатин в дозе 0,04 мг, грамицидин -- 0,4 мг, тетрациклин -- 1 мг, стрептомицин -- 5 мг, а пенициллин -- 40 мг. Учитывая, что человек в 3500 раз больше мыши, то в 1 мг содержится 1660 ЕД (единица действия) пенициллина, что самые большие ампулы препарата, используемые лишь при крайне тяжелых заболеваниях, содержат по 1 000 000 ЕД, не трудно подсчитать опасную для человека дозу. Она содержится в 233 ампулах при условии, что содержимое этих ампул будет вводиться единовременно. Согласитесь, что это говорит о полной безвредности пенициллина.

В-третьих, пенициллин можно назначать не только взрослым, но и детям, он безопасен и для беременных женщин, чего нельзя сказать о других антибиотиках. Некоторые из них, например левомицетин, просто запрещено назначать новорожденным, другие назначают с большой осторожностью и по особым показаниям. Стрептомицин, неомицин и подобные им антибиотики вызывают у людей глухоту, поражая слуховой нерв. Дети обладают повышенной чувствительностью к стрептомицину, а обнаружить начальные стадии поражения нерва у них труднее, чем у взрослых. Как ни стараются ограничить его применение, а все же 12% глухонемых детей являются жертвами стрептомицина. Тетрациклин опасен для беременных женщин. В первые месяцы беременности он может вызвать возникновение уродства плода, а при приеме в последние месяцы -- отложиться в костях и зачатках зубов будущего ребенка. Кости с тетрациклином медленнее растут, а зубы окрашиваются в коричневый цвет и быстрее портятся. По этой же причине тетрациклин стараются не назначать детям до 5 лет.

Как ни хорош пенициллин, но и он не идеален в отношении безвредности. Оказывается, что при повторном применении у людей развивается к нему не только повышенная, но и извращенная чувствительность. Такое состояние в медицине носит название аллергии. Чем дольше пенициллин применяется, тем больше становится аллергизированных людей, которым он противопоказан.

Кроме того, пенициллин действует лишь на сравнительно небольшое число микробов, а потому эффективен лишь при строго определенных болезнях. Набор микроорганизмов, которые могут быть обезврежены при применении антибиотиков, называется спектром их действия. У пенициллина спектр противомикробного действия намного уже, чем, скажем, у тетрациклина. Это является его недостатком.

Самый же большой недостаток пенициллина состоит в том, что микробы к нему сравнительно быстро привыкают. Если в первые годы его действие напоминало мановение волшебной палочки, чудо, воскрешение из мертвых, то теперь такие чудесные выздоровления встречаются все реже. Иногда приходится слышать, что пенициллин «ныне пошел не тот». Это неверно. Пенициллин тот же, но микробы стали другие. Они научились вырабатывать особое вещество, фермент, который разрушает пенициллин. Называется он пенициллиназа. Если микроб вырабатывает пенициллиназу, то пенициллин на него не действует.

Особенно быстро устойчивость к пенициллину развивается у стафилококков, которые образно называют «чумой XX века». За годы, прошедшие с начала применения пенициллина, их чувствительность к этому антибиотику снизилась в 2000 раз! В 1944 г. только 10% штаммов стафилококков были устойчивы к пенициллину. В 1950 г. их число возросло до 50, в 1965 г. -- до 80, а в 1975 г. -- до 95%. Можно считать, что на стафилококки пенициллин больше не действует.

Интересно, что не все препараты сдают свои позиции одинаково быстро. Медленно теряют активность тетрациклины и левомицетин, а вот устойчивость микробов к стрептомицину, к сожалению, развивается очень быстро. Уступая просьбам фтизиатров (специалистов по лечению туберкулеза), врачи прочих специальностей почти совсем прекратили его применение, чтобы он не утратил своего действия полностью. Так же быстро теряет эффективность эритромицин. В результате к пенициллину теперь не чувствительно приблизительно 75% штаммов, к левомицетину -- 50%, к тетрациклину -- 40%. Отличаются по способности приобретать устойчивость и микробы. Наиболее быстро привыкают к антибиотикам микробы, вызывающие заболевания желудочно-кишечного тракта, наиболее медленно -- пневмококки (легочные кокки).

В 1977 г. группа канадских специалистов проанализировала использование антибиотиков в больнице города Гамильтона. Оказалось, что хирурги применяли антибиотики неправильно в 42%, а терапевты -- в 12% случаев. Случаи неправильного применения антибиотиков отмечались, во-первых, при назначении их с профилактическими целями. За исключением особых ситуаций, которые можно пересчитать по пальцам, такое назначение не приводит к успеху. Второе место занимают случаи назначения антибиотиков в недостаточных дозах или реже, чем это нужно для поддержания высокой концентрации в крови. На третьем месте стоит использование антибиотиков для местного лечения. Как теперь точно установлено именно при таком способе применения устойчивость микробов развивается особенно быстро. Существует много других лекарств (йодинол, раствор перекиси водорода, фурацилин, препараты ртути и серебра, краски), которые следует использовать для местного лечения.

Чтобы повысить эффективность лечения и предупредить развитие чувствительности в большинстве стран, как и в нашей стране, продажа антибиотиков без рецепта врача запрещена. Понятно почему? Если уж врачи иногда могут использовать их неправильно, то несведущие в медицине люди и подавно. Все антибиотики разделены на две подгруппы: основные -- пенициллин, левомицетин, тетрациклины, эритромицин, неомицин и резервные -- все остальные. Основными антибиотиками начинают лечить сразу, до того как будет установлена чувствительность микробов. Резервные антибиотики применяются только по особым показаниям, когда эффект основных антибиотиков уже полностью исчерпан. Наиболее часто применяют комбинацию тетрациклина с олеандомицином -- препарат олететрин. Тут сразу в одной таблетке содержатся оба антибиотика в наиболее выгодной пропорции.

При сочетании двух антибиотиков требуется максимум осторожности и делать это можно только по назначению врача. В некоторых случаях сочетание двух препаратов может не усилить, а ослабить действие каждого из них. Примером такого неудачного сочетания может служить смесь из пенициллина с левомицетином или тетрациклином. В некоторых случаях комбинация антибиотиков между собой или с другими препаратами может повести к резкому усилению побочного эффекта и отравлению. Совместное применение левомицетина и сульфаниламидных препаратов приводит к подавлению кроветворения. Одновременное применение стрептомицина с неомицином может привести к глухоте. Антибиотики -- лучший пример для иллюстрации того, что одно и то же лекарство может быть спасением для одного и ядом для другого.

Еще в то время, когда пенициллин продолжал свое триумфальное шествие по миру, ученые начали искать ему достойную смену. Вскоре после войны в лаборатории Флори был изучен новый гриб Цефалоспорум, который был выловлен в одной из сточных труб острова Сардинии. Оказалось, что гриб вырабатывает не один, а сразу семь антибиотиков. Один из них под названием цефалоспорин «С» стал использоваться в клинике вместо пенициллина. Основное его достоинство заключалось в том, что он был еще менее ядовит (если так можно выразиться), чем пенициллин, действовал на тех же микробов, но его можно было назначать больным, обладающим к пенициллину повышенной чувствительностью. Поскольку цефалоспорин очень похож на пенициллин, условно можно назвать его «внуком» первого антибиотика.

Вслед за «внуком» появились и «правнуки». Ученые разложили цефалоспорин на составные части и из них уже синтетическим путем получили новые препараты -- полусинтетические цефалоспорины. В нашей стране популярен антибиотик цепорин, который отличается очень высокой активностью и действует на утративших чувствительность к пенициллину стафилококков.

Заключение

С открытием пенициллина началась новая эра в лечении больных. Современным врачам трудно понять, насколько бессильны были их предшественники в борьбе с некоторыми инфекциями. Им незнакомо отчаяние, овладевавшее докторами, когда они сталкивались с болезнями, смертельными в те времена, а теперь излечимыми. Некоторые из этих заболеваний даже перестали существовать. Пенициллин и все антибиотики, открытые после него, дают возможность хирургу производить такие операции, на которые раньше никто бы не решился. Средняя продолжительность жизни человека настолько возросла, что изменилась вся общественная структура. Только Эйнштейн - но в другой области - и еще Пастер оказали такое же, как Флеминг, влияние на современную историю человечества. Государственные деятели трудятся изо дня в день над устройством мира, но лишь люди науки своими открытиями создают условия для их деятельности.

Пенициллин в борьбе с инфекциями привел к ослаблению вирулентности микробов. Только отдельные штаммы их еще сопротивляются и усиливают свою вирулентность, основные же отряды повержены в прах. Многие болезни, как пневмония, менингит, стали более легкими в своем течении.

Заражение крови и гнойные воспаления брюшины (перитонит), от которых раньше наступала неминуемая смерть, перестали пугать врачей, вооруженных ампулами с пенициллином.

Отступили и другие смертельные враги человечества. Эпидемический менингит перестал страшить нас, так как пенициллин дает почти 100-процентное исцеление от него, а ведь раньше появление эпидемии этой болезни вызывало у родителей панический ужас. Они знали, что 90 процентов заболевших должны были быть принесены в жертву ненасытному молоху смерти.

Пенициллин излечивает не только смертельные болезни, но и многие тяжелые заболевания, которые еще недавно делали человека инвалидом.

Он с успехом применяется при скарлатине и дифтерии. Он в несколько дней вылечивает от гонореи, убивает спирохету сифилиса, без осечки помогает при всех воспалительных процессах, вызываемых кокками...

Сейчас уже официально признано, что средняя продолжительность жизни в цивилизованных странах резко повысилась благодаря пенициллину, победившему самые злые инфекции.

Средняя продолжительность жизни человека равнялась в Европе XVI века 21 году, XVII века - 26 годам, XVIII века - 34 годам, в Европе конца XIX века - 50 годам. А теперь в отдельных странах средняя продолжительность жизни человека достигает 60 лет (в нашей же стране, учитывая еще благоприятные социальные условия, - 67 лет).

Таковы заслуги А. Флеминга перед человечеством. Но они не исчерпываются этим. Получив пенициллин, Флеминг открыл новую эру в истории медицины - эру антибиотической терапии.

Открытие Флеминга - одно из самых удивительных в науке. Оно, на наш взгляд, по своей значимости и масштабу вполне отвечает нашему атомному веку, и есть нечто глубоко справедливое в том, что оно пришло вместе с развитием атомной физики. Медикам, следовательно, тоже есть чем гордиться.

Литература

Прозоровский В.Б. «Рассказы о лекарствах» - М.: Медицина, 1986.

Моруа А. «Жизнь А. Флеминга». - М. Молодая гвардия. «ЖЗЛ» - 1964.

Семенов-Спасский Л.Г. «Вечный бой». - Л.: Детская литература, 1989

Размещено на Allbest.ru

...

Подобные документы

    Открытие одного из первых антибиотиков - пенициллина, спасшего не один десяток жизней. Оценка состояния медицины до пенициллина. Плесень как микроскопический грибок. Очистка и массовое производство пенициллина. Показания для применения пенициллина.

    презентация , добавлен 25.03.2015

    Значение открытий Флеминга, краткие биографические сведения об ученом, его путь к открытиям в медицине. Открытие лизоцима, его перспективы использования в медицинской практике. Получение Нобелевской премии по физиологии и медицине за открытие пенициллина.

    презентация , добавлен 16.04.2010

    Источники получения антибиотиков, их классификация по направленности и механизму фармакологического действия. Причины резистентности к антибиотикам, принципы рациональной антибиотикотерапии. Бактерицидные свойства пенициллина, его побочные эффекты.

    презентация , добавлен 16.11.2011

    Общая характеристика антибиотиков и особенности их получения. Схема производства пенициллина. Использование рДНК-биотехнологии. Применение антибиотиков в пищевой промышленности и сельском хозяйстве. Классификация антибиотиков по штаммам-продуцентам.

    презентация , добавлен 04.12.2015

    Разработка и производство антибиотиков, хронология изобретений. История открытия пенициллина и его целебного воздействия при различных инфекционных болезнях. Бактериостатические и бактерицидные антибиотики, их свойства и применение; побочные действия.

    презентация , добавлен 18.12.2016

    Понятие и назначение, физические и химические свойства пенициллина, история его открытия и значение в лечении разнообразных заболеваний. Характер воздействия пенициллина на микроорганизмы. Синтетические аналоги данного лекарства, их использование.

    презентация , добавлен 07.11.2016

    Применение антибиотиков в медицине. Оценка качества, хранение и отпуск лекарственных форм. Химические строение и физико-химические свойства пенициллина, тетрациклина и стрептомицина. Основы фармацевтического анализа. Методы количественного определения.

    курсовая работа , добавлен 24.05.2014

    Общая характеристика антимикробных препаратов. Классификация химиотерапевтических средств. Открытие пенициллина в 1928г. Механизмы развития антибиотикорезистентности. Механизм действия антибиотиков. Характеристика и применение антибактериальных средств.

    презентация , добавлен 23.01.2012

    История открытия пенициллина. Классификация антибиотиков, их фармакологические, химиотерапевтические свойства. Технологический процесс получения антибиотиков. Устойчивость бактерий к антибиотикам. Механизм действия левомицетина, макролидов, тетрациклинов.

    реферат , добавлен 24.04.2013

    Характеристика положительных и негативных свойств антибиотиков. Обобщение основных осложнений, вызванных приемом антибиотиков и объединенных одним названием "лекарственная болезнь": аллергические реакции, токсические явления, дисбактериозы, суперинфекция.

Способность одних микроорганизмов подавлять жизнь других (антибиоз ) была впервые установлена И. И. Мечниковым , который предложил использовать это свойство для лечебных целей: в частности, он применил для подавления жизнедеятельности вредных гнилостных бактерий кишечника молочнокислую палочку, которую предлагал вводить с простоквашей.

В 1868—1871 гг. В. А. Манассеин и А. Г. Полотебнов указали на способность зеленой плесени подавлять рост различных патогенных бактерий и с успехом применили ее для лечения инфицированных ран и язв.

Большое значение в учении об антибиотиках имели исследования Н. А. Красильникова, А. И. Кореняко, М. И. Нахимовской и Д. М. Новогрудского, которые установили Широкое распространение в Почве грибов, вырабатывающих различные антибиотические вещества.

В 1940 г. были разработаны методы излечения и получения из культуральной жидкости антибиотических веществ в чистом виде. Многие из этих антибиотических веществ оказались весьма эффективными при лечении ряда инфекционных болезней.

Наибольшее значение в медицинской практике получили следующие антибиотики:

Пенициллин,

Стрептомицин,

Левомицетин,

Синтомицин,

Тетрациклины,

Альбомицин,

Грамицидин С,

Мицерин и др.

В настоящее время известна химическая природа многих антибиотиков, что позволяет получать эти антибиотики не только из естественных продуктов, но и синтетическим путем.

Антибиотики, обладая способностью подавлять развитие патогенных микробов в организме, в то же время являются малотоксичными для организма человека. Задерживая развитие в организме патогенных микробов, они тем самым способствуют усилению защитных свойств организма и быстрейшему выздоровлению больного. Вот почему требуется правильный выбор антибиотика для лечения различных инфекционных заболеваний. В отдельных случаях можно пользоваться комбинацией антибиотиков или проводить комплексное лечение антибиотиками, сульфаниламидами и другими препаратами.

Пеницилин

Пенициллин — вещество, вырабатываемое плесенью Penicillium при росте ее на жидких питательных средах. Впервые оно было получено английским ученым А. Флемингом в 1928 г. В СССР пенициллин был получен 3. В. Ермольевой в 1942 г. Для получения пенициллина плесень засевают в специальную питательную среду, где по мере ее размножения накапливается пенициллин. Оптимальная температура роста Penicillium 24—26°. Максимальное накопление пенициллина происходит через 5—6 дней, а при интенсивном доступе кислорода (аэрации) — более быстро. Питательную жидкость фильтруют и подвергают специальной обработке и химической очистке. В результате получается очищенный препарат в виде кристаллического порошка. В жидком виде пенициллин нестоек, в порошке более устойчив, особенно при температуре 4—10°. Порошок быстро и полностью растворяется в дистиллированной воде или физиологическом растворе поваренной соли.

Пенициллин обладает способностью задерживать размножение в организме многих патогенных микробов— стафилококков, стрептококков, гонококков, анаэробных бацилл, спирохет сифилиса. Не действует пенициллин на палочки брюшного тифа, дизентерии, бруцеллы, туберкулезную палочку. Пенициллин широко применяют для лечения нагноительных «процессов, септических заболеваний, воспаления легких, гонореи, цереброспинального менингита, сифилиса, анаэробных инфекций.

В отличие от большинства синтетических химических препаратов пенициллин мало токсичен для человека и его можно вводить в больших дозах. Вводят пенициллин обычно внутримышечно, так как при введении через рот он быстро разрушается желудочным и кишечным соком.

В организме пенициллин быстро выводится почками, поэтому его назначают в виде внутримышечных инъекций через каждые 3—4 часа. Количество вводимого пенициллина исчисляется в единицах действия (ЕД). За единицу пенициллина принимают то количество его, которое полностью задерживает рост золотистого стафилококка в 50 мл бульона. Выпускаемые отечественной промышленностью препараты пенициллина содержат в одном флаконе от 200 000 до 500 000 ЕД пенициллина.

Для удлинения срока действия пенициллина в организме изготовлен ряд новых препаратов, содержащих пенициллин в комплексе с другими веществами, которые способствуют медленному всасыванию пенициллина и еще более медленному выделению его из организма почками (новоциллин, экмопенициллин, бициллин 1, 2, 3 и Др.). Некоторые из этих препаратов можно принимать внутрь, так как они не разрушаются под действием желудочного и кишечного сока. К числу таких препаратов относится, например, феноксиметилпенициллин; последний выпускается в виде таблеток для приема перорально.

В настоящее время получена большая группа новых препаратов пенициллина — полусинтетических пенициллинов. В основе этих препаратов лежит 6-амино-пеницил-линовая кислота, составляющая ядро пенициллина, к которой химическим путем присоединяются различные радикалы. Новые пенициллины (метициллин, оксациллин и др.) действуют на микроорганизмы, устойчивые к бензилпенициллину.

Наибольшее число антибиотиков вырабатывается лучистыми грибами — актиномицетами. Из этих антибиотиков широкое применение получили стрептомицин, хлоромицетин (левомицетин), биомицин (ауреомицин), террамицин, тетрациклин, колимиции, мицерин и др.

Стрептомицин

Стрептомицин — вещество, вырабатываемое лучистым грибом Actinomyces globisporus streptomycini. Он обладает способностью подавлять рост многих грамотрицательных и грамположительных бактерий, а также туберкулезной палочки. Недостатком стрептомицина является то, что микробы быстро к нему привыкают и становятся устойчивыми к его действию. Активность действия стрептомицина проверяют на кишечной палочке (Bact. coli). Практическое применение стрептомицин получил для лечения некоторых форм туберкулеза, особенно туберкулезного менингита, туляремии, а также в хирургической практике.

Хлоромицетин

Хлоромицетин получен в 1947 г. из культуральной жидкости актиномицетов. В 1949 г. учеными был синтезирован аналогичный препарат под названием левомицетина. Левомицетин представляет собой кристаллизированный порошок, очень устойчивый как в сухом состоянии, так и в растворах. Растворы левомицетина выдерживают кипячение в течение 5 часов. Левомицетин активен по отношению ко многим грамположительным и грамотрицательным бактериям, а также к риккетсиям. Принимают левомицетин через рот. Левомицетин рекомендуют применять для лечения следующих заболеваний: брюшного тифа и паратифов, сыпного тифа, бруцеллеза, коклюша, дизентерии и хирургических инфекций, вызванных грамотрицательными бактериями.

Наряду с левомицетином широко применяется другой синтетический препарат — синтомицин, представляющий собой неочищенный левомицетин. По своему действию синтомицин аналогичен левомицетину; он назначается в дозе в 2 раза большей, чем левомицетин.

Тетрациклины

К ним относится хлортетрациклин (ауреомицин, биомицин), окситетрациклин (терра-мицин) и тетрациклин. Хлортетрациклин получен из культуральной жидкости гриба Actinomyces aureofaciens, он обладает широким спектром действия против большинства грамположительных и грамотрицательных бактерий, простейших, риккетсий и некоторых крупных вирусов (орнитоза), хорошо всасывается при приеме перорально и диффундирует в ткани. Применяется для лечения дизентерии, бруцеллеза, риккетсиозов, сифилиса, орнитоза и других инфекционных заболеваний. Окситетрациклин и тетрациклин по своим свойствам напоминают хлортетрациклин и близкие к нему по механизму действия на микроб.

Неомицины

Неомицины — группа антибиотиков, полученных из культуральной жидкости актиномицетов, активны в отношении многих грамотрицательных и грамположительных бактерий, в том числе микобактерий. Их активность не снижается в присутствии белков крови или ферментов. Препараты плохо всасываются в желудочно-кишечном тракте, относительно мало токсичны. Применяются главным образом для местного лечения хирургических и кожных инфекций, вызванных стафилококками, устойчивыми к другим антибиотикам.

К группе неомицинов относятся советские препараты мицерин и колимицин, которые нашли широкое применение для лечения колиэнтеритов у детей, вызванных кишечными палочками или стафилококками, устойчивыми к другим антибиотикам.

Нистастин

Нистатин — антибиотик, эффективный не против бактерий, а против грибов. Он плохо растворяется в воде, поэтому его нельзя применять парентерально, а надо вводить внутрь в виде таблеток или местно в виде мазей.

Нистатин часто входит в состав таблеток вместе с другим антибиотиком — тетрациклином — с целью предотвращения кандидоза как осложнения при длительном применении тетрациклина.

Из антибиотиков бактериального происхождения пан большее значение имеет грамицидин.

Грамицидин

Грамицидин — вещество, полученное из культуры почвенной споровой палочки В. brevis. Название свое препарат получил в связи с тем, что он подавляет рост преимущественно грамположительных бактерий. В 1942 г. в СССР ученые открыли антибиотик, получивший название грамицидин С (советский грамицидин). Он обладает широким диапазоном действия, подавляя рост бактерий. Грамицидин С применяют в виде водно-спиртовых, спиртовых и масляных растворов только для местного лечения нагноительных и язвенных процессов.

Большой интерес представляют также антибиотики животного происхождения.

В 1887 г. Н. Ф. Гамалея указал на антибактериальное действие тканей животного организма. Затем в 1893 г. О. О. Успенский доказал бактерицидное действие экстрактов печени в отношении палочек сибирской язвы, сапа, стафилококков и других микробов.

Из антибиотиков животного происхождения получили применение следующие.

1. Лизоцим — вещество, продуцируемое клетками животных и человека. Впервые обнаружен П. Н. Лащенковым в 1909 г. в белке куриного яйца. Лизоцим содержится в слезах, секретах слизистых, в печени, селезенке, почках, сыворотке. Обладает способностью растворять как живых, так и мертвых микробов. Лизоцим в очищенном виде был применен 3. В. Ермольевой и И. С. Буяновской в клинической, промышленной и сельскохозяйственной практике. Наблюдается эффект от применения лизоцима при заболеваниях уха, горла, носа и глаз, при после гриппозных осложнениях.

2. Экмолин получен из рыбной ткани, биологически активен по отношению к тифозным и дизентерийным палочкам, стафилококкам и стрептококкам, действует также па вирус гриппа. Экмолин усиливает действие пенициллина и стрептомицина. Сообщают о положительных результатах комплексного применения экмолина со стрептомицином для лечения острой и хронической дизентерии и экмолина с пенициллином — для лечения и профилактики кокковых инфекций.

3. Фитонциды — вещества, выделяемые растениями. Открыты советским исследователем Б. П. Токиным в 1928 г. Эти вещества оказывают антимикробное действие на многих микроорганизмов, в том числе и на простейших. Наиболее активные фитонциды вырабатывают лук и чеснок. Если пожевать в течение нескольких минут лук, полость рта быстро очищается от микробов. Фитонциды применяют для местного лечения инфицированных ран. Антибиотики получили чрезвычайно широкое применение в медицинской практике и способствовали резкому уменьшению числа смертельных исходов при различных инфекционных заболеваниях (нагноительные процессы, менингиты, анаэробная инфекция, брюшной и сыпной тиф, туберкулез, детские инфекции и др.).

Однако следует указать и некоторое побочное и нежелательное их влияние.

При неправильном применении антибиотиков (маленькие дозы, кратковременное лечение) могут появиться устойчивые к данному антибиотику формы микробов-возбудителей. Вследствие этого для медицинской практики имеет большое значение определение чувствительности возбудителя инфекционного заболевания к тому или другому антибиотику.

Имеются 2 способа определения чувствительности выделяемых микробов к антибиотикам

1) метод серийных разведений

2) метод диффузии.

Первый метод более сложный и заключается в следующем: в ряд пробирок с 2 мл бульона наливают кратные разведения антибиотика, затем в каждую пробирку засевают 0,2 мл (выдержанной 18-ти часовой) бульонной культуры испытуемого микроба; пробирки помещают в термостат на 16—18 часов. Последняя пробирка, где отсутствует рост микробов, и определяет степень чувствительности микроба к данному антибиотику.

Более простым методом является метод диффузии . Для этой цели в лабораториях имеется набор специальных дисков из фильтровальной бумаги, пропитанных растворами разных антибиотиков. Делают посев выделенной культуры на чашку Петри, с мясопептонным агаром. Накладывают эти диски на засеянную поверхность.

Чашки помещают в термостат на 24—48 часов, после чего отмечают результат.

К другим осложнениям при применении антибиотиков относится снижение иммунологической реактивности. В этом случае иногда наступают рецидивы заболевания, например при брюшном тифе.

При слишком длительном приеме антибиотиков и в больших дозах часто наблюдаются токсические явления. У некоторых больных прием того или другого антибиотика вызывает аллергическую реакцию в виде высыпаний на коже, рвоты и т. д.

В отдельных случаях в результате длительного применения биомицина, левомицетина, синтомицина возможно угнетение нормальной микрофлоры человека, что ведет за собой активизацию условно патогенных микробов, обитающих на слизистых оболочках полости рта или кишечника: энтерококка, дрожжеподобных микроорганизмов и др. Эта флора в ослабленном организме может вызвать различного характера заболевания (кандидозы и др.). Все это свидетельствует о том, что медицинские работники должны применять антибиотики, строго руководствуясь существующими указаниями и инструкциями, наблюдая тщательно за состоянием больного, ив случае необходимости прекратить лечение его антибиотиками или заменить данный препарат другим.

Перечисленные осложнения не снижают ценности антибиотиков как лечебных препаратов. Благодаря антибиотикам медицинские работники в настоящее время имеют специфические лекарственные средства для лечения большинства инфекционных заболеваний.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.