Хромосомы палочковидные тельца находятся в. Строение и наборы хромосом человека в клетке



Добавить свою цену в базу

Комментарий

Влияние на жизнь человека набора внешних факторов, способствует к генетическому изменению кода и как следствие, способности давать здоровое потомство. Статистика указывает на то, что около 1% всех младенцев, пришедших в этот мир, имеют серьезные нарушения в структуре хромосомного набора . 30% новорожденных имеют врожденные пороки и отклонения в кариотипе. Данная статья призвана указать на отличия в наборах хромосом у здорового человека, у человека с синдромом Дауна, и сравнить общие показатели с набором хромосом у приматов, в частности обезьян.

Набор хромосом, как основная часть наследственного кода человека

Хромосома являет собой мелкую частичку внутри ядра клетки, которая несет в себе информацию о генетической предрасположенности конкретного индивида . Состоящая из набора нуклеиновых кислот и комплекса белков, данная генетический единица позволяет внутри себя хранить, передавать и воссоздавать генетическую информацию. Впервые доказать существование данного элемента ядра удалось группе американских ученых, под курирование Т. Моргана. Первые опыты и публичные эксперименты были проведены в начале XX века, когда объектом для исследований послужила плодовая мушка. В 1915 году были зафиксированы общие положения хромосомной теории наследственности. Благодаря данному открытию, за открытие роли хромосом в наследственности ученый Т. Морган получил Нобелевскую премию по физиологии и медицине.

… неизбежно должно было возникнуть стремление определить где, когда и как осуществляется процесс расщепления и воссоединения, и неизбежно должна была явиться попытка согласовать эти явления с удивительными процессами в половых клетках, имеющих такое всеобщее распространение

Томас Морган, «Структурные основы наследственности».

Хромосома состоит из ДНК и белковой массы, которая достигает в общей сложности порядка 63% ее общей массы . Поверх которых намотана генетическая нить. В основе всей наследственности любого живого существа, обладающего клеточной структурой с ядрами, служит материал ДНК. Именно он отвечает за причинно – наследственные связи. Наука, изучающая строение и поведение хромосом называется цитогенетика . Процесс становления и выбора генов, ключевых элементов генетического кода, зависит от материала родителей, и передается во время зачатия.

Хромосомный набор здорового человека

Здоровый человек имеет набор из 23 пар хромосом . Каждая из таких пар отвечает за определенный ген. Общее количество хромосом человека равняется 46. Каждая хромосома в индивидуальном порядке передается нам от каждого из родителей: одна от отца, и другая от матери. Исключением является заключительная, 23 пара хромосом. Она отвечает за пол человека. Женское начало определяется как ХХ, а мужское как XY. Находясь в паре, хромосомы определяют диплоидный набор. В половых клетках они разделены, и объединяются в процессе оплодотворения.

Что бы собрать воедино совокупность признаков хромосом, в пределах одной клетки, ученные вывели название кариотип . Побочные воздействия и нарушения кариотипов приводят к возникновению заболеваний на разных этапах жизнедеятельности.

Количество хромосом у человека с синдромом Дауна

По горькой статистике на каждые 700 новорожденных младенцев приходится один малыш с данным заболеванием . Данная патология была описана еще в 1866 году. Ключом в данной проблеме служит третья хромосома, которая присоединяется к 21 паре набора. Этот процесс происходит в момент, когда в одной из веток хромосомного цепи родителей 24 хромосомы (с удвоенной 21). В итоге у такого больного ребенка получается одна лишняя хромосома, а их общее количество равняется 47. Такая патология может быть спровоцирована из-за перенесенного одним из родителей заболевания – диабет. Также изменение в коде человека могут вызвать вирусные инфекции, радиация и прочие факторы.

Из-за своего заболевания, в подавляющем большинстве случаев, дети с синдромом Дауна являются умственно отсталыми . Общий вид заболевания сказывается как на общем процессе мышления с самого раннего возраста, так и влияет на общие черты внешности человека. У таких людей наблюдаются отклонения во внешности в виде большого языка, ушей неправильной формы, складки на коже, широкая переносица, пятна в глазах и общая форма головы. Они в большей степени подвержены сердечно – сосудистым заболеваниям, имеют слабо развитые половые органы (в большей мере у мужской половины) и живут в среднем около 40 лет.

Количество хромосом у примата, на примере обезьяны

Размножайтесь, меняйтесь, и пусть сильнейшие выживают, а слабейшие умрут

Чарльз Дарвин. Так гласит старая цитата ученого.

У высших обезьян – 24 пары хромосом. Как утверждает общая теория Дарвина, мы произошли от обезьян, приспособившись и адаптировав свои физиологические процессы к внешней среде обитания. Так почему же у людей меньшее количество хромосом, нежели у наших «предков».

По данной теории мы должны обладать гораздо более развитой системой хромосомного набора. Такое разъяснение может скрываться в непоследовательном развитии эволюционных преобразований, согласно выдвинутой теории. Среди множества разнообразных видов живых организмов в природе, каждая цепочка развития планомерна и идет своим чередом. Значит, в определенный момент общий процесс развития обезьяны в человека пошел несколькими путями. В конечном итоге мы имеем то, что видим каждый день на улицах, в парках, метро, на работе, кругом. Это человек. Ключевым отличием его развития от обезьяны является более сложная структура генов, содержащихся внутри хромосом. Структура ДНК человека и примата имеет кардинальные различия, но при этом схожую структуру построения генов.

Выводы

Как бы то ни было, но все мы состоим из набора хромосом и ДНК. У каждого из нас уникальная структура генетического материала. Он является универсальным фундаментом и компонентом, из которого мы построены. Каждый человек на планете Земля – уникален. Он индивид. Стоит это осознавать, ценить и беречь в каждом из нас.

Видео

История открытия хромосом

Рисунок из книги В. Флемминга, изображающий разные стадии деления клеток эпителия саламандры (W. Flemming. Zellsubstanz, Kern und Zelltheilung. 1882 г.)

В разных статьях и книгах приоритет открытия хромосом отдают разным людям, но чаще всего годом открытия хромосом называют 1882 год, а их первооткрывателем - немецкого анатома В. Флеминга . Однако справедливее было бы сказать, что он не открыл хромосомы, а в своей фундаментальной книге "Zellsubstanz, Kern und Zelltheilung" (нем.) собрал и упорядочил сведения о них, дополнив результатами собственных исследований. Термин «хромосома» был предложен немецким гистологом Генрихом Вальдейером в 1888 году, «хромосома» в буквальном переводе означает «окрашенное тело», поскольку оснóвные красители хорошо связываются хромосомами.

Сейчас сложно сказать, кто сделал первое описание и рисунок хромосом. В 1872 году швейцарский ботаник Карл фон Нэгили опубликовал работу, в которой изобразил некие тельца, возникающие на месте ядра во время деления клетки при образовании пыльцы у лилии (Lilium tigrinum ) и традесканции (Tradescantia ). Однако его рисунки не позволяют однозначно утверждать, что К. Нэгили видел именно хромосомы. В том же 1872 году ботаник Э. Руссов привёл свои изображения деления клеток при образовании спор у папоротника из рода ужовник (Ophioglossum ) и пыльцы лилии (Lilium bulbiferum ). На его иллюстрациях легко узнать отдельные хромосомы и стадии деления. Некоторые же исследователи полагают, что первыми увидел хромосомы немецкий ботаник Вильгельм Гофмайстер задолго до К. Нэгили и Э. Руссова, ещё в 1848-1849 годах. При этом ни К. Нэгили, ни Э. Руссов, ни тем более В. Гофмейстер не осознавали значения того, что видели.

После переоткрытия в 1900 году законов Менделя потребовалось всего один-два года для того, чтобы стало ясно, что хромосомы ведут себя именно так, как это ожидалось от «частиц наследственности». В 1902 году Т. Бовери и в 1902-1903 годах У. Сеттон (Walter Sutton ) независимо друг от друга первыми выдвинули гипотезу о генетической роли хромосом. Т. Бовери обнаружил, что зародыш морского ежа Paracentrotus lividus может нормально развиваться только при наличии хотя бы одного, но полного набора хромосом. Также он установил, что разные хромосомы не идентичны по своему составу. У. Сеттон изучал гаметогенез у саранчового Brachystola magna и понял, что поведение хромосом в мейозе и при оплодотворении полностью объясняет закономерности расхождения менделевских факторов и образования их новых комбинаций.

Экспериментальное подтверждение этих идей и окончательное формулирование хромосомной теории было сделано в первой четверти XX века основателями классической генетики, работавшими в США с плодовой мушкой (D.melanogaster ): Т. Морганом , К. Бриджесом (C.B.Bridges ), А. Стёртевантом (A.H.Sturtevant ) и Г. Мёллером . На основе своих данных они сформулировали «хромосомную теорию наследственности», согласно которой передача наследственной информации связана с хромосомами, в которых линейно, в определенной последовательности, локализованы гены. Эти выводы были опубликованы в 1915 году в книге «The mechanisms of mendelian heredity» (англ.).

В 1933 году за открытие роли хромосом в наследственности Т. Морган получил Нобелевскую премию по физиологии и медицине .

Хромосомы эукариот

Основу хромосомы составляет линейная (не замкнутая в кольцо) макромолекула дезоксирибонуклеиновой кислоты (ДНК) значительной длины (например, в молекулах ДНК хромосом человека насчитывается от 50 до 245 миллионов пар азотистых оснований). В растянутом виде длина хромосомы человека может достигать 5 см. Помимо неё, в состав хромосомы входят пять специализированных белков - H1, H2A, H2B, H3 и H4 (так называемые гистоны) и ряд негистоновых белков. Последовательность аминокислот гистонов высококонсервативна и практически не различается в самых разных группах организмов.

Первичная перетяжка

Хромосомная перетяжка (X. п.), в которой локализуется центромера и которая делит хромосому на плечи.

Вторичные перетяжки

Морфологический признак, позволяющий идентифицировать отдельные хромосомы в наборе. От первичной перетяжки отличаются отсутствием заметного угла между сегментами хромосомы. Вторичные перетяжки бывают короткими и длинными и локализуются в разных точках по длине хромосомы. У человека это 9, 13, 14, 15, 21 и 22 хромосомы.

Типы строения хромосом

Различают четыре типа строения хромосом:

  • телоцентрические (палочковидные хромосомы с центромерой, расположенной на проксимальном конце);
  • акроцентрические (палочковидные хромосомы с очень коротким, почти незаметным вторым плечом);
  • субметацентрические (с плечами неравной длины, напоминающие по форме букву L);
  • метацентрические (V-образные хромосомы, обладающие плечами равной длины).

Тип хромосом является постоянным для каждой гомологичной хромосомы и может быть постоянным у всех представителей одного вида или рода .

Спутники (сателлиты)

Сателлит - это округлое или удлинённое тельце, отделённое от основной части хромосомы тонкой хроматиновой нитью, по диаметру равный или несколько меньший хромосоме. Хромосомы, обладающие спутником принято обозначать SAT-хромосомами. Форма, величина спутника и связывающей его нити постоянны для каждой хромосомы.

Зона ядрышка

Зоны ядрышка (организаторы ядрышка ) - специальные участки, с которыми связано появление некоторых вторичных перетяжек.

Хромонема

Хромонема - это спиральная структура, которую удаётся увидеть в декомпактизованных хромосомах через электронный микроскоп. Впервые наблюдалась Баранецким в 1880 году в хромосомах клеток пыльников традесканции , термин ввёл Вейдовский. Хромонема может состоять из двух, четырёх и более нитей, в зависимости от исследуемого объекта. Эти нити образуют спирали двух типов:

  • паранемическую (элементы спирали легко разъединить);
  • плектонемическую (нити плотно переплетаются).

Хромосомные перестройки

Нарушение структуры хромосом происходит в результате спонтанных или спровоцированных изменений (например, после облучения).

  • Генные (точковые) мутации (изменения на молекулярном уровне);
  • Аберрации (микроскопические изменения, различимые при помощи светового микроскопа):

Гигантские хромосомы

Такие хромосомы, для которых характерны огромные размеры, можно наблюдать в некоторых клетках на определённых стадиях клеточного цикла . Например, они обнаруживаются в клетках некоторых тканей личинок двукрылых насекомых (политенные хромосомы) и в ооцитах различных позвоночных и беспозвоночных (хромосомы типа ламповых щёток). Именно на препаратах гигантских хромосом удалось выявить признаки активности генов .

Политенные хромосомы

Впервые обнаружены Бальбиани в -го, однако их цитогенетическая роль была выявлена Костовым, Пайнтером, Гейтцем и Бауером. Содержатся в клетках слюнных желёз , кишечника , трахей , жирового тела и мальпигиевых сосудов личинок двукрылых .

Хромосомы типа ламповых щёток

Имеются данные о наличии у бактерий белков, связанных с ДНК нуклеоида , но гистонов у них не обнаружено.

Хромосомы человека

В каждой ядросодержащей соматической клетке человека содержится 23 пары линейных хромосом, а также многочисленные копии митохондриальной ДНК . В нижеприведённой таблице показано число генов и оснований в хромосомах человека.

Хромосома Количество генов Всего оснований Секвенированых оснований
4 234 247 199 719 224 999 719
1 491 242 751 149 237 712 649
1 550 199 446 827 194 704 827
446 191 263 063 187 297 063
609 180 837 866 177 702 766
2 281 170 896 993 167 273 993

В составе капсида .

Энциклопедичный YouTube

    1 / 5

    ✪ Хромосомы, хроматиды, хроматин и т.п.

    ✪ Гены, ДНК и хромосомы

    ✪ Самые важные термины генетики. Локусы и гены. Гомологичные хромосомы. Сцепление и кроссинговер.

    ✪ Биология в картинках: Строение хромосомы (Вып. 70)

    ✪ Хромосома. Рассказывают Надежда Шилова и Вячеслав Тарантул. 07.11.2011

    Субтитры

    Перед погружением в механизм деления клеток, я думаю, будет полезно поговорить о лексике, связанной с ДНК. Есть много слов, и некоторые из них сходны по звучанию друг с другом. Они могут сбивать с толку. Для начала я бы хотел поговорить о том, как ДНК генерирует больше ДНК, создаёт свои копии, или о том, как она вообще делает белки. Мы уже говорили об этом в ролике о ДНК. Давайте я нарисую небольшой участок ДНК. У меня есть A, Г, T, пусть у меня Есть два Т и потом два Ц. Такой небольшой участок. Он продолжается вот так. Конечно, это двойная спираль. Каждой букве соответствует своя. Я нарисую их этим цветом. Итак, A соответствует T, Г соответствует Ц, (точнее Г образует водородные связи с Ц), T - с A, T - с A, Ц - с Г, Ц - с Г. Вся эта спираль тянется, допустим, в этом направлении. Итак, есть пара различных процессов, которые эта ДНК должна осуществить. Один из них связан с клетками вашего тела - необходимо произвести больше клеток вашей кожи. Ваша ДНК должна скопировать себя. Этот процесс называется репликацией. Вы реплицируете ДНК. Я покажу вам репликацию. Как эта ДНК может скопировать себя? Это одна из самых замечательных особенностей структуры ДНК. Репликация. Я делаю общее упрощение, но идея заключается в том, что две цепи ДНК разделяются, и это происходит не само по себе. Этому способствует масса белков и ферментов, но в деталях я буду рассказывать о микробиологии в другом ролике. Итак, эти цепи отделяются друг от друга. Я перенесу цепь сюда. Они отделяются друг от друга. Я возьму другую цепь. Эта слишком большая. Эта цепь будет выглядеть как-то так. Они отделяются друг от друга. Что же может произойти после этого? Я удалю лишние фрагменты здесь и здесь. Итак, вот наша двойная спираль. Они все были связаны. Это пары оснований. Теперь они отделяются друг от друга. Что может делать каждая из них после разделения? Они теперь могут стать матрицей друг для друга. Смотрите… Если эта цепь находится сама по себе, сейчас, неожиданно может прийти тиминовое основание и присоединится здесь, и эти нуклеотиды начнут выстраиваться в линию. Тимин и цитозин, и потом аденин, аденин, гуанин, гуанин. И так продолжаться. И тогда, в этой другой части, на зелёной цепи, которая была до этого прикреплена к этой голубой, будет происходить то же самое. Будет аденин, гуанин, тимин, тимин, цитозин, цитозин. Что произошло только что? Разделением и привлечением комплементарных оснований, мы создали копию этой молекулы. Мы займёмся микробиологией этого в будущем, это только для общего представления о том, как ДНК копирует себя. Особенно, когда мы рассматриваем митоз и мейоз, я могу сказать: «Это стадия, где происходит репликация». Теперь, другой процесс, о котором вы ещё много услышите. Я говорил о нём в ролике о ДНК. Это транскрипция. В ролике о ДНК я не уделял много внимания тому, как ДНК удваивает сама себя, но одна из великолепных особенностей устройства двойной цепи - это лёгкая возможность самоудвоения. Вы просто разделяете 2 полоски, 2 спирали, а потом они становятся матрицей для другой цепи, и тогда появляется копия. Теперь транскрипция. Это то, что должно произойти с ДНК для того, чтобы образовались белки, но транскрипция - это промежуточная стадия. Это стадия, когда вы переходите от ДНК к мРНК. Тогда эта мРНК покидает ядро клетки и направляется к рибосомам. Я буду говорить об этом через несколько секунд. Итак, мы можем сделать то же самое. Эти цепи опять в ходе транскрипции разделяются. Одна отделяется сюда, а другая отделяется... а другая будет отделятся вот сюда. Прекрасно. Может быть имеет смысл использовать только одну половину цепи - я удалю одну. Вот таким образом. Мы собираемся транскрибировать зелёную часть. Вот она. Всё это я удалю. Не тот цвет. Итак, я удаляю всё это. Что произойдёт, если вместо нуклеотидов дезоксирибонуклеиновой кислоты, которые образуют пары с этой цепью ДНК, у вас есть рибонуклеиновая кислота, или РНК, образующая пары. Изображу РНК пурпурным цветом. РНК будет образовывать пары с ДНК. Тимин, находящийся в ДНК, будет образовывать пару с аденином. Гуанин, теперь, когда мы говорим о РНК, вместо тимина у нас будет урацил, урацил, цитозин, цитозин. И это будет продолжаться. Это мРНК. Информационная РНК. Теперь она отделяется. Эта мРНК отделяется и покидает ядро. Она покидает ядро, и тогда происходит трансляция. Трансляция. Запишем этот термин. Трансляция. Это идёт от мРНК... В ролике о ДНК у меня была маленькая тРНК. Транспортная РНК была как бы грузовиком, перевозящим аминокислоты к мРНК. Всё это происходит в части клетки, называемой рибосомой. Трансляция происходит от мРНК к белку. Мы видели, как это происходит. Итак, от мРНК к белку. У вас есть эта цепь - я сделаю копию. Скопирую всю цепь сразу. Эта цепь отделяется, покидает ядро, и тогда у вас есть эти маленькие грузовики тРНК, которые, собственно, и, так сказать, подъезжают. Итак, допустим, у меня есть тРНК. Давайте посмотрим, аденин, аденин, гуанин и гуанин. Это РНК. Это кодон. Кодон имеет 3 пары оснований и прикреплённую к нему аминокислоту. У вас есть некоторые другие части тРНК. Скажем, урацил, цитозин, аденин. И прикреплённая к нему другая аминокислота. Тогда аминокислоты соединяются и образуют длинную цепь аминокислот, которая является белком. Белки образуют эти странные сложные формы. Чтобы убедиться, что вы поняли. Мы начнём с ДНК. Если мы производим копии ДНК - это репликация. Вы реплицируете ДНК. Итак, если мы производим копии ДНК - это репликация. Если вы начинаете с ДНК и создаёте мРНК с матрицы ДНК, то это транскрипция. Запишем. "Транскрипция" . То есть вы транскрибируете информацию с одной формы на другую - транскрипция. Теперь, когда мРНК покидает ядро клетки… Я нарисую клетку, чтобы обратить на это внимание. Мы займёмся структурой клетки в будущем. Если это целая клетка, ядро - это центр. Это место, где находятся все ДНК, все репликации и транскрипции происходят здесь. Затем мРНК покидает ядро, и тогда в рибосомах, которые мы более подробно обсудим в будущем, происходит трансляция и формируется белок. Итак, от мРНК к белку - это трансляция. Вы транслируете с генетического кода, в так называемый белковый код. Итак, это и есть трансляция. Это именно те слова, которые обычно используются для описания этих процессов. Убедитесь, что вы правильно их используете, называя различные процессы. Теперь другая часть терминологии ДНК. Когда я впервые встретился с ней, я решил, что она чрезвычайно сбивает с толку. Это слово «хромосома». Запишу слова здесь - вы сами можете оценить, как они сбивают с толку: хромосома, хроматин и хроматида. Хроматида. Итак, хромосома, мы уже говорили о ней. У вас может быть цепь ДНК. Это двойная спираль. Эта цепь, если я увеличу её, - на самом деле две разных цепи. Они имеют соединённые пары оснований. Я только что нарисовал пары оснований, соединённые вместе. Я хочу, чтобы было ясно: я нарисовал эту небольшую зелёную линию здесь. Это двойная спираль. Она оборачивается вокруг белков, которые называются гистонами. Гистоны. Пусть она оборачивается вот так и как-то так, а потом как-нибудь так. Здесь у вас есть вещества, называемые гистонами, которые являются белками. Нарисуем их вот таким образом. Вот так. Это структура, то есть ДНК в комбинации с белками, которые её структурируют, заставляя оборачиваться вокруг дальше и дальше. В конечном счёте, в зависимости от стадии жизни клетки, будут образовываться различные структуры. И когда вы говорите о нуклеиновой кислоте, которая является ДНК, и объединяете её с белками, то вы говорите о хроматине. Значит, хроматин - это ДНК плюс структурные белки, которые придают ДНК форму. Структурные белки. Идея хроматина была впервые использована из-за того, что люди видели, когда смотрели на клетку… Помните? Каждый раз я рисовал клеточное ядро определённым образом. Скажем, так. Это ядро клетки. Я рисовал очень хорошо различимые структуры. Это одна, это другая. Может быть, она короче, и у неё есть гомологичная хромосома. Я нарисовал хромосомы, так? И каждая из этих хромосом, как я уже показывал в прошлом видео, - по существу - длинные структуры ДНК, длинные цепи ДНК, плотно обёрнутые друг вокруг друга. Я рисовал это как-то так. Если мы увеличим, то увидим одну цепь, и она действительно обёрнута вокруг себя подобно этому. Это её гомологичная хромосома. Вспомните, в ролике, посвящённом изменчивости, я говорил о гомологичной хромосоме, которая кодирует те же гены, но другую их версию. Синий - от папы, а красный - от мамы, но они по существу кодируют те же гены. Итак, это одна цепь, которую я получил от папы с ДНК этой структуры, мы называем её хромосомой. Итак, хромосома. Я хочу, чтобы это было ясно, ДНК принимает эту форму только на определённых жизненных стадиях, когда она воспроизводит сама себя, т.е. реплицируется. Точнее не так… Когда клетка делится. Перед тем как клетка становится способной к делению, ДНК принимает эту хорошо определённую форму. Большую часть жизни клетки, когда ДНК делает свою работу, когда она создаёт белки, то есть белки транскрибируются и транслируются с ДНК, она не сворачивается таким образом. Если бы она была свёрнута, для репликационной и транскрипционной системы было бы затруднительно проникнуть к ДНК, произвести белки и делать что-то ещё. Обычно ДНК… Давайте я ещё раз нарисую ядро. Чаще всего вы даже не можете увидеть её в обычный световой микроскоп. Она настолько тонкая, что вся спираль ДНК полностью распределена в ядре. Я рисую это здесь, другая может быть здесь. А потом у вас есть более короткая цепь, типа этой. Вы даже не можете её увидеть. Она не находится в этой, хорошо определённой структуре. Обычно это выглядит таким образом. Пусть будет ещё такая короткая цепь. Вы можете увидеть только подобный беспорядок, состоящий из путаницы комбинаций ДНК и белков. Это то, что люди в общем-то и называют хроматином. Это нужно записать. "Хроматин" Таким образом, слова могут быть очень неоднозначны и очень запутанны, но общее использование, когда вы говорите о хорошо определённой одной цепи ДНК, вот таким образом хорошо определённой структуры, то это хромосома. Понятие "хроматин" может относиться либо к структуре типа хромосомы, комбинации ДНК и белков, структурирующих ее, либо к беспорядку множества хромосом, в которых есть ДНК. То есть из множества хромосом и белков, перемешанных вместе. Я хочу, чтобы это было понятно. Теперь следующее слово. Что такое хроматида? На всякий случай, если я ещё не сделал этого… Я не помню, помечал ли я это. Эти белки, которые обеспечивают структуру хроматина или составляют хроматин, а также обеспечивают структуру называются "гистонами". Есть различные типы, которые обеспечивают структуру на различных уровнях, мы ещё рассмотрим их детально. Итак, что такое хроматида? Когда ДНК реплицируется… Скажем, это была моя ДНК, она находится в нормальном состоянии. Одна версия - от папы, одна версия - от мамы. Теперь она реплицируется. Версия от папы сначала выглядит так. Это большая цепь ДНК. Она создаёт другую версию себя, идентичную, если система работает правильно, и эта идентичная часть выглядит так. Они изначально прикреплены друг к другу. Они прикреплены друг к другу в месте, называемом центромерой. Теперь, несмотря на то что у меня здесь 2 цепи, скрепленные вместе. Две одинаковые цепи. Одна цепь здесь, одна тут… Хотя давайте я изображу иначе. В принципе это можно изобразить множеством разных способов. Это одна цепь здесь, и вот другая цепь тут. То есть у нас имеются 2 копии. Они кодируют абсолютно одинаковую ДНК. Так вот. Они идентичны, поэтому я всё ещё называю это хромосомой. Запишем это тоже. Всё это вместе называется хромосомой, но теперь каждая отдельная копия называется хроматидой. Итак, это одна хроматида и это другая. Иногда их называют сестринскими хроматидами. Также их можно назвать хроматидами-близнецами, потому что у них одна и та же генетическая информация. Итак, эта хромосома имеет 2 хроматиды. Теперь перед репликацией или перед удвоением ДНК вы можете сказать, что эта хромосома вот здесь имеет одну хроматиду. Вы можете называть это хроматидой, но это не обязательно. Люди начинают говорить о хроматидах тогда, когда две из них присутствуют в хромосоме. Мы узнаем, что в митозе и мейозе эти 2 хроматиды разделяются. Когда они разделяются, тут же цепь ДНК, которую вы однажды называли хроматидой, теперь вы будете называть отдельной хромосомой. Итак, это одна из них, и вот другая, которая могла отделиться в этом направлении. Обведу эту зелёным. Итак, эта может отойти в эту сторону, а эта, которую я обвёл оранжевым, например, в эту … Теперь, когда они отделены и больше не связаны центромерой, то, что мы изначально называли одной хромосомой с двумя хроматидами, теперь вы называете двумя отдельными хромосомами. Или можно сказать, что теперь у вас есть две отдельные хромосомы, каждая из которых состоит из одной хроматиды. Я надеюсь, что это немного проясняет значение терминов, связанных с ДНК. Я всегда находил их довольно запутанными, но они будут полезным инструментом, когда мы начнём митоз и мейоз и я буду говорить о том, что хромосома становится хроматидой. Вы будете спрашивать, как одна хромосома стала двумя хромосомами, и как хроматида стала хромосомой. Всё это вращается вокруг лексики. Я бы выбрал другую, вместо того чтобы называть это хромосомой и каждую из этих отдельными хромосомами, но так решили называть за нас. Возможно, вам интересно узнать, откуда это слово - «хромо». Может быть, вы знаете старую плёнку «Кодак», которая называлась «хромо цвет». В принципе «хромо» означает «цвет». Я думаю, оно происходит от греческого слова «цвет». Когда люди первый раз стали рассматривать ядро клетки, они использовали краситель, и то, что мы называем хромосомами, окрашивалось красителем. И мы могли видеть это в световой микроскоп. Часть «сома» происходит от слова «сома», обозначающего «тело», то есть мы получаем окрашенное тело. Так появилось слово «хромосома». Хроматин также окрашивается… Надеюсь, это немного проясняет понятия «хроматида», «хромосома», «хроматин», и теперь мы подготовлены к изучению митоза и мейоза.

История открытия хромосом

Первые описания хромосом появились в статьях и книгах разных авторов в 70-х годах XIX века, и приоритет открытия хромосом отдают разным людям. Среди них такие имена, как И. Д. Чистяков (1873), А. Шнейдер (1873), Э. Страсбургер (1875), О. Бючли (1876) и другие . Чаще всего годом открытия хромосом называют 1882 год, а их первооткрывателем - немецкого анатома В. Флеминга , который в своей фундаментальной книге «Zellsubstanz, Kern und Zelltheilung» собрал и упорядочил сведения о них, дополнив результатами собственных исследований. Термин «хромосома» был предложен немецким гистологом Г. Вальдейером в 1888 году. «Хромосома» в буквальном переводе означает «окрашенное тело», поскольку оснóвные красители хорошо связываются хромосомами .

После переоткрытия в 1900 году законов Менделя потребовалось всего один-два года для того, чтобы стало ясно, что хромосомы при мейозе и оплодотворении ведут себя именно так, как это ожидалось от «частиц наследственности». В 1902 году Т. Бовери и в 1902-1903 годах У. Сеттон (Walter Sutton ) независимо друг от друга выдвинули гипотезу о генетической роли хромосом .

В 1933 году за открытие роли хромосом в наследственности Т. Морган получил Нобелевскую премию по физиологии и медицине .

Морфология метафазных хромосом

На стадии метафазы митоза хромосомы состоят из двух продольных копий, которые называются сестринскими хроматидами и которые образуются при репликации . У метафазных хромосом сестринские хроматиды соединены в районе первичной перетяжки , называемой центромерой . Центромера отвечает за расхождение сестринских хроматид в дочерние клетки при делении. На центромере происходит сборка кинетохора - сложной белковой структуры, определяющей прикрепление хромосомы к микротрубочкам веретена деления - движителям хромосомы в митозе . Центромера делит хромосомы на две части, называемые плечами . У большинства видов короткое плечо хромосомы обозначают буквой p , длинное плечо - буквой q . Длина хромосомы и положение центромеры являются основными морфологическими признаками метафазных хромосом.

В зависимости от расположения центромеры различают три типа строения хромосом:

Эту классификацию хромосом на основе соотношения длин плеч предложил в 1912 году российский ботаник и цитолог С. Г. Навашин . Помимо вышеуказанных трёх типов С. Г. Навашин выделял ещё и телоцентрические хромосомы, то есть хромосомы только с одним плечом. Однако по современным представлениям истинно телоцентрических хромосом не бывает. Второе плечо, пусть даже очень короткое и невидимое в обычный микроскоп, всегда присутствует .

Дополнительным морфологическим признаком некоторых хромосом является так называемая вторичная перетяжка , которая внешне отличается от первичной отсутствием заметного угла между сегментами хромосомы. Вторичные перетяжки бывают различной длины и могут располагаться в различных точках по длине хромосомы. Во вторичных перетяжках находятся, как правило, ядрышковые организаторы , содержащие многократные повторы генов, кодирующих рибосомные РНК . У человека вторичные перетяжки, содержащие рибосомные гены, находятся в коротких плечах акроцентрических хромосом, они отделяют от основного тела хромосомы небольшие хромосомные сегменты, называемые спутниками . Хромосомы, обладающие спутником, принято называть SAT-хромосомами (лат. SAT (Sine Acid Thymonucleinico) - без ДНК).

Дифференциальная окраска метафазных хромосом

При монохромном окрашивании хромосом (ацето-кармином, ацето-орсеином, окрашиванием по Фёльгену или Романовскому-Гимзе) можно идентифицировать число и размеры хромосом; их форму, определяемую прежде всего положением центромер, наличием вторичных перетяжек, спутников. В подавляющем числе случаев для идентификации индивидуальных хромосом в хромосомном наборе этих признаков недостаточно. Кроме того, монохромно окрашенные хромосомы часто очень похожи у представителей разных видов. Дифференциальное окрашивание хромосом, различные методики которого были разработаны в начале 70-х годов XX века, снабдило цитогенетиков мощнейшим инструментом для идентификации как индивидуальных хромосом в целом, так и их частей, облегчив тем самым процедуру анализа генома .

Методы дифференциального окрашивания делятся на две основные группы:

Уровни компактизации хромосомной ДНК

Основу хромосомы составляет линейная макромолекула ДНК значительной длины. В молекулах ДНК хромосом человека насчитывается от 50 до 245 миллионов пар азотистых оснований . Суммарная длина ДНК из одной клетки человека составляет величину порядка двух метров. При этом типичное ядро клетки человека, которое можно увидеть только при помощи микроскопа, занимает объём около 110 мкм³, а митотическая хромосома человека в среднем не превышает 5-6 мкм. Подобная компактизация генетического материала возможна благодаря наличию у эукариот высокоорганизованной системы укладки молекул ДНК как в интерфазном ядре, так и в митотической хромосоме. Надо отметить, что у эукариот в пролиферирующих клетках осуществляется постоянное закономерное изменение степени компактизации хромосом. Перед митозом хромосомная ДНК компактизуется в 10 5 раз по сравнению с линейной длиной ДНК, что необходимо для успешной сегрегации хромосом в дочерние клетки, в то время как в интерфазном ядре для успешного протекания процессов транскрипции и репликации хромосоме необходимо декомпактизоваться . При этом ДНК в ядре никогда не бывает полностью вытянутой и всегда в той или иной степени упакована. Так, расчётное уменьшение размера между хромосомой в интерфазе и хромосомой в митозе составляет всего примерно 2 раза у дрожжей и 4-50 раз у человека .

Одним из самых последних уровней упаковки в митотическую хромосому некоторые исследователи считают уровень так называемой хромонемы , толщина которой составляет около 0,1-0,3 мкм . В результате дальнейшей компактизации диаметр хроматиды достигает ко времени метафазы 700 нм. Значительная толщина хромосомы (диаметр 1400 нм) на стадии метафазы позволяет, наконец, увидеть её в световой микроскоп. Конденсированная хромосома имеет вид буквы X (часто с неравными плечами), поскольку две хроматиды, возникшие в результате репликации, соединены между собой в районе центромеры (подробнее о судьбе хромосом при клеточном делении см. статьи митоз и мейоз).

Хромосомные аномалии

Анеуплоидия

При анеуплоидии происходит изменение числа хромосом в кариотипе, при котором общее число хромосом не кратно гаплоидному хромосомному набору n . В случае утраты одной хромосомы из пары гомологичных хромосом мутантов называют моносомиками , в случае одной дополнительной хромосомы мутантов с тремя гомологичными хромосомами называют трисомиками , в случае утраты одной пары гомологов - нуллисомиками . Анеуплоидия по аутосомным хромосомам всегда вызывает значительные нарушения развития, являясь основной причиной спонтанных абортов у человека . Одной из самых известных анеуплоидий у человека является трисомия по хромосоме 21, которая приводит к развитию синдрома Дауна . Анеуплоидия характерна для опухолевых клеток, особенно для клеток сóлидных опухолей .

Полиплоидия

Изменение числа хромосом, кратное гаплоидному набору хромосом (n ), называется полиплоидией. Полиплоидия широко и неравномерно распространена в природе. Известны полиплоидные эукариотические микроорганизмы - грибы и водоросли , часто встречаются полиплоиды среди цветковых, но не среди голосемянных растений. Полиплоидия клеток всего организма у многоклеточных животных редка, хотя у них часто встречается эндополиплоидия некоторых дифференцированных тканей, например, печени у млекопитающих, а также тканей кишечника, слюнных желёз, мальпигиевых сосудов ряда насекомых .

Хромосомные перестройки

Хромосомные перестройки (хромосомные аберрации) - это мутации, нарушающие структуру хромосом. Они могут возникнуть в соматических и зародышевых клетках спонтанно или в результате внешних воздействий (ионизирующее излучение, химические мутагены, вирусная инфекция и др.). В результате хромосомной перестройки может быть утрачен или, наоборот, удвоен фрагмент хромосомы (делеция и дупликация , соответственно); участок хромосомы может быть перенесён на другую хромосому (транслокация) или он может изменить свою ориентацию в составе хромосомы на 180° (инверсия). Существуют и другие хромосомные перестройки.

Необычные типы хромосом

Микрохромосомы

B-хромосомы

B-хромосомы - это добавочные хромосомы, которые имеются в кариотипе только у отдельных особей в популяции. Они часто встречаются у растений , описаны у грибов , насекомых и животных . Некоторые В-хромосомы содержат гены, часто это гены рРНК , однако не ясно, насколько эти гены функциональны. Наличие В-хромосом может влиять на биологические характеристики организмов, особенно у растений, где их наличие ассоциируется с пониженной жизнеспособностью. Предполагается, что В-хромосомы постепенно утрачиваются в соматических клетках в результате нерегулярности их наследования .

Голоцентрические хромосомы

Голоцентрические хромосомы не имеют первичной перетяжки, они имеют так называемый диффузный кинетохор, поэтому во время митоза микротрубочки веретена деления прикрепляются по всей длине хромосомы. Во время расхождения хроматид к полюсам деления у голоцентрических хромосом они идут к полюсам параллельно друг другу, в то время как у моноцентрической хромосомы кинетохор опережает остальные части хромосомы, что приводит к характерной V-образной форме расходящихся хроматид на стадии анафазы. При фрагментации хромосом, например, в результате воздействия ионизирующего излучения, фрагменты голоцентрических хромосом расходятся к полюсам упорядоченно, а не содержащие центромеры фрагменты моноцентрических хромосом распределяются между дочерними клетками случайным образом и могут быть утрачены .

Голоцентрические хромосомы встречаются у протист , растений и животных. Голоцентрическими хромосомами обладает нематода C. elegans .

Гигантские формы хромосом

Политенные хромосомы

Политенные хромосомы - это гигантские скопления объединённых хроматид, возникающие в некоторых типах специализированных клеток. Впервые описаны Е. Бальбиани (Edouard-Gerard Balbiani ) в 1881 году в клетках слюнных желёз мотыля (Chironomus ), их исследование было продолжено уже в 30-х годах XX века Костовым, Т. Пэйнтером, Э. Хайцем и Г. Бауером (Hans Bauer ). Политенные хромосомы обнаружены также в клетках слюнных желёз, кишечника , трахей , жирового тела и мальпигиевых сосудов личинок двукрылых .

Хромосомы типа ламповых щёток

Хромосомы типа ламповых щёток - это гигантская форма хромосом, которая возникает в мейотических женских клетках на стадии диплотены профазы I у некоторых животных, в частности, у некоторых земноводных и птиц . Эти хромосомы являются крайне транскрипционно активными и наблюдаются в растущих ооцитах тогда, когда процессы синтеза РНК , приводящие к образованию желтка , наиболее интенсивны. В настоящее время известно 45 видов животных, в развивающихся ооцитах которых можно наблюдать такие хромосомы. Хромосомы типа ламповых щёток не образуются в ооцитах млекопитающих .

Впервые хромосомы типа ламповых щёток были описаны В. Флеммингом в 1882 году. Название «хромосомы типа ламповых щёток» было предложено немецким эмбриологом И. Рюккертом (J. Rϋckert ) в 1892 году.

По длине хромосомы типа ламповых щёток превышают политенные хромосомы. Например, общая длина хромосомного набора в ооцитах некоторых хвостатых амфибий достигает 5900 мкм.

Бактериальные хромосомы

Имеются данные о наличии у бактерий белков, связанных с ДНК нуклеоида , но гистонов у них не обнаружено.

Хромосомы человека

Нормальный кариотип человека представлен 46 хромосомами. Это 22 пары аутосом и одна пара половых хромосом (XY в мужском кариотипе и XX - в женском). В нижеприведённой таблице показано число генов и оснований в хромосомах человека.

Хромосома Всего оснований Количество генов Количество белок-кодирующих генов
249250621 3511 2076
243199373 2368 1329
198022430 1926 1077
191154276 1444 767
180915260 1633 896
171115067 2057 1051
159138663 1882 979
146364022 1315 702
141213431 1534 823
135534747 1391 774
135006516 2168 1914
133851895 1714 1068
115169878 720 331
107349540 1532 862
102531392 1249 615
90354753 1326 883
81195210 1773 1209
78077248 557 289
59128983 2066 1492
63025520 891 561
48129895 450 246
51304566 855 507
X-хромосома 155270560 1672 837
Y-хромосома 59373566 429 76
Всего 3 079 843 747 36463

См. также

Примечания

  1. Тарантул В. З. Толковый биотехнологический словарь. - М. : Языки славянских культур, 2009. - 936 с. - 400 экз. - ISBN 978-5-9551-0342-6 .

Если рассматривать организм на клеточном уровне, его структурной единицей является хромосома, которая содержит гены. Такое греческое слово дословно переводится как «окраска тела». Обозначает это, что при делении клетки хромосомы окрашиваются при наличии натуральных красителей. По сути, это ценный носитель информации, и несоответствие хромосомного ряда свидетельствует о течение патологического процесса.

Сколько хромосом у нормального человека

Согласно статистике, 1% всех новорожденных появляется с физиологическими отклонениями на фоне неполного генетического ряда. Именно поэтому врачи озадачены столь глобальной проблемой со здоровьем, в мировой практике исследуют ее на клеточном уровне. Итак, в здоровом организме насчитывается 23 пары хромосом, то есть 46 единиц. До 1955 года ученые не сомневались, что таких всего пар 24. Ошибку в подсчете допустил известный ученый Теофилус Пейнтер, а исправили ее другие светила медицины - Джо-Хин Тьо и Альберт Леван.

Общие сведения о хромосомном наборе

Важно понимать, что морфологические признаки хромосом одинаковые, тогда как соматические и половые клетки имеют отличный хромосомный набор. Дипломированные специалисты подробно объясняют, в чем различия:

  1. Половые клетки (гаметы) имеют гаплоидный набор хромосом, а в случае успешного оплодотворения мужская и женская гамета объединяются в одной зиготе. Отличия хромосом структурные, морфологические, например, у женщин пара ХХ, у мужчин – XY .
  2. Соматические клетки имеют диплоидный набор хромосом, т.е. удвоенный, разделенный на классические пары – мужская и женская клетка. Хромосомы сходны по величине, морфологическим признакам.

Морфологические изменения хромосом наблюдаются при делении клеток, когда их общее количество удваивается. Несмотря на такие многочисленные процессы, общее число пар остается неизменным. От количества хромосом зависит здоровье и интеллектуальное развитие человека, поэтому врачи начинают всерьез заниматься столь глобальным вопросом еще при планировании беременности. Именно поэтому гинеколог настоятельно рекомендует посетить генетика, провести по необходимости ряд клинических исследований.

Одна хромосома из пары достается человеку от биологической матери, другая – от отца, а 23 пара определяет пол будущего ребенка. Женское начало характеризуется символьной комбинацией ХХ, а мужское – XY. Изучая кариотип человека, положено пояснить, что в хромосомном наборе здорового человека 22 пары аутосом, плюс одна женская, одна мужская хромосома (половые). Изучая совокупность признаков хромосомы в пределах одной клетки, можно с достоверность определить кариотип человека. Если имеет место нарушение кариотипа, его обладателя ожидают серьезные проблемы со здоровьем.

Потенциальные проблема на генном уровне

На самом деле проблем может быть несколько, и каждая рассматривается, как индивидуальная клиническая картина. Возможные патологии представлены ниже, не поддаются успешному лечению после появления больного ребенка на свет. Это:

  1. Анэуплоидия – патологический процесс с нарушением числа отдельных хромосом.
  2. Моносомия – патологический процесс при отсутствии гомологичной хромосомы.
  3. Полиплоидия – аномальное явление, когда число гаплоидных наборов превышает диплоидные.
  4. Трисомия – присутствие лишней хромосомы, тетрасомия – двух.

Такие состояния не являются показателем нормы, могут быть определены еще во внутриутробном периоде. Врачи рекомендуют беременной женщине выполнить аборт, иначе новорожденный родится с серьезными проблемами со здоровьем. Это абсолютное противопоказание к родам, иначе женщине придется всю жизнь воспитывать инвалида.

Сколько хромосом у человека с синдромом Дауна

Не всегда количество пар хромосом соответствует стандартам нормы. Проблему обнаруживает генетик, когда беременная женщина приходит на добровольное обследование. Нарушенное количество хромосом определяет проблемы со здоровьем, среди которых врачи выделяют:

  • болезнь Дауна;
  • синдром Кляйнфельтера;
  • синдром Шерешевкого-Тернера.

Восполнить генетический ряд консервативными методами не представляется возможности, а диагнозы по своей природе считаются уже неизлечимыми. Если проблема со здоровьем определена во внутриутробном периоде, будущей мамочке рекомендуют прервать беременность. При этом объясняют, что в противном случае на свет появится больной ребенок, не исключены внешние уродства.

Подробней о синдроме Дауна

Отдельно стоит описать синдром Дауна, который был впервые диагностирован еще в 17 веке. Определить количество пар хромосом в то время было весьма проблематично, а численность больных детей пугала цифрами. Так, на 1 000 младенцев приходилось 2 больных синдромом Дауна. В дальнейшем заболевание было изучено на генетическом уровне и определено, что происходит с хромосомным набором.

Оказывается, к 21 паре прикрепляется еще одна хромосома, которая делает общее количество хромосом – 47. Патологический процесс характеризуется своим спонтанным формированием, а предшествуют его развитию такие аномалии, как сахарный диабет, повышенная доза радиации, пожилой возраст биологических родителей, наличие отдельных хронических заболеваний.

Ребенок с синдромом Дауна имеет внешние отличия от здоровых детей. Среди таковых узкий и широкий лоб, большие уши, объемный язык, очевидная умственная отсталость. Помимо визуальных признаков у пациента наблюдаются серьезные проблемы со здоровьем, затрагивающие все внутренние органы, системы.

Остается только добавить, что хромосомный ряд будущего ребенка по большей части зависит от генома матери. Поэтому перед планированием беременности желательно пройти полное клиническое обследование, своевременно определить скрытые проблемы собственного организма. Только при отсутствии противопоказаний можно думать о благополучном зачатии и светлом будущем ребенка.

Мы найдём ответ на этот вопрос, а также определим, какую важность они имеют для живых организмов. Каков механизм их размещения и построения?

Небольшое отступление

Хромосомы являются важной частью генного механизма. Они выступают в качестве хранилища ДНК. Некоторые вирусы имеют одноцепочные молекулы, но в большинстве случаев они двуцепочные и являются линейными или замкнутыми в кольцо. Но размещается ДНК в хромосомах исключительно в клеточных организмах. То есть это хранилище в вирусах не используется в обычном понимании, поскольку сам микроорганизм выступает в такой роли. При свертывании в спираль молекулы размещаются более компактно. Хромосомы состоят из хроматина. Это специальное волокно, которое образуется, когда эукариотическая ДНК обматывает специальные белковые частицы, называемые гистонами. Они располагаются через определённый интервал, поэтому структура получается стабильной.

О хромосомах

Они являются основными структурными элементами клеточного ядра. Благодаря наличию способности самовоспроизведения, хромосомы могут обеспечивать генетическую связь между поколениями. Следует отметить разницу их длины у разных животных и людей: их размер может колебаться от долей к десяткам микрон. В качестве химической основы построения используются нуклеопротеиды, что формируются из таких белков, как протамины и гистоны. Хромосомы непрерывно находятся в И это относится ко всем возможным высшим формам жизни. Так, приведённое утверждение про то, где находятся хромосомы в животной клетке, с точно такой же уверенностью можно отнести и к растениям. Выгляните в окно. Какие деревья можете увидеть за ним? Липу, дуб, берёзу, орех? Или, может, кусты смородины и малины? Отвечая на вопрос о том, где находятся хромосомы у растений, что были перечислены, можно сказать, что они там же, где и в животных организмах, - в

Расположение хромосом в клетке: как делается выбор

Многоклеточный эукариот является обладателем Он составляется из генома отца и матери. Благодаря процессу мейоза они конъюгируют между собой. Это обеспечивает протекание процесса обмена участками - кроссинговера. Возможным в данных случаях является спаривание Это необходимо, чтобы обеспечить функционирование генов в клетках, что не делятся, а находятся в покоящемся состоянии. Вытекающим из этого является следствие, что хромосомы находятся в ядре и для продолжения функций делений они не должны покидать его пределы. Конечно, найти нуклеотидные остатки в самой клетке не составит труда. Но в большинстве случаев это или геном в митохондриях, или отдельные части целого, что откололись и сейчас в «свободном плавании». Встретить полноценную хромосому за пределами ядра очень сложно. А если такое и происходит, то исключительно из-за физических повреждений.

Хромосомный набор

Так называют всю совокупность хромосом, которые есть в ядре клетки. У каждого биологического вида есть свой постоянный и характерный для него набор, который закрепился во время эволюции. Он может быть двух типов: одиночный (или гаплоидный, встречается в животных) и двойной (или диплоидный). Наборы разнятся количеством хромосом, что в них присутствуют. Так, у лошадей их количество равняется двум. А вот у простейших и некоторых споровых растениях их количество может достигать тысяч. Кстати, если говорить про то, где находятся хромосомы у бактерий, то следует отметить, что у них они тоже, как правило, находятся в ядре, но не исключено и то, что они будут «свободно» плавать в цитоплазме. Но это относится исключительно к одноклеточным. Причем разнятся они не только количеством, но и размером. У человека в наборе имеется 46 хромосом.

Морфология хромосом

Она напрямую связана с их спирализацией. Так, когда они находятся в стадии интерфазы, то они наиболее развернуты. Но при начале процесса деления хромосомы начинают интенсивно укорачиваться путём проведения своей спирализации. Наибольшая степень этого состояния припадает на стадию метафазы. На ней формируются относительно короткие и плотные структуры. Метафазная хромосома формируется из двух хроматид. Они в свою очередь состоят из так называемых элементарных нитей (хромонем).

Индивидуальные хромосомы

Их различают в зависимости от места нахождения центромеры (первичная перетяжка). Если эта составляющая теряется, то хромосомы теряют способность к делению. И вот первичная перетяжка делит хромосому на два плеча. Также могут образовываться вторичные (в этом случае полученный результат называют спутником). Каждый вид организмов обладает своими специфическими (численно, по размеру или форме) наборами хромосом. Если он двойной, то его обозначают как кариотип.

Хромосомная теория наследственности

Впервые эти носители были описаны И.Д. Чистяковым в 1874 году. В 1901-м Уилсон обратил внимание на присутствие параллелизма в их поведении. Затем он сфокусировался на Менделеевских факторах наследственности в мейозе и при оплодотворении и пришел к выводу, что гены расположены в хромосомах. На протяжении 1915-1920 годов Морганом и его сотрудниками это положение было доказано. Они локализировали несколько сотен генов в хромосомах дрозофилы, создав первую генетическую карту. Данные, полученные в это время, легли в основу всего последующего развития науки в данном направлении. Также на основании этой информации была разработана хромосомная теория наследственности, по которой преемственность клеток и целых организмов обеспечивается благодаря именно этим носителям.

Химический состав

Исследования продолжались, и во время биохимических и цитохимических экспериментов в 30-50 годах прошлого столетия было установлено, из чего они скомпонованы. Их состав такой:

  1. Основные белки (протамины и гистоны).
  2. Негистонные белки.
  3. Переменные компоненты. В их качестве могут выступать РНК и кислый белок.

Хромосомы сформированы из дезоксирибонуклеопротеидных нитей. Они могут соединяться в пучки. В 1953 году было открыто строение и разобран механизм её авторепродукции. Знания, полученные о нуклеиновом коде, послужили основой для возникновения новой науки - генетики. Сейчас мы не только знаем, где в клетке находятся хромосомы, но также имеем представление, из чего они составляются. Когда в обычных бытовых разговорах говорят про наследственный аппарат, то обычно подразумевают одну ДНК, но вы-то теперь знаете, что она является только его составляющей.

Половые хромосомы

Гены, которые отвечают за пол млекопитающего (и человека в том числе), находятся в специальной паре. Могут быть и другие случаи организации, в которых всё определяется соотношением каждого вида половых хромосом. Животные, обладающие таким типом определения, называются аутосомами. У человека же (и других млекопитающих тоже) женский пол определяется одинаковыми хромосомами, которые обозначаются как Х. Для мужского используется Х и У. А как же происходит выбор, какого пола будет ребёнок? Первоначально созревает женский носитель (яйцеклетка), в котором размещена Х. А пол определяется всегда по содержимому сперматоцитов. Они в равной пропорции (плюс/минус) содержат и Х, и У-хромосомы. От носителя, который первым совершит оплодотворение, и зависит пол будущего ребёнка. И в результате может возникнуть или женщина (ХХ), или мужчина (ХУ). Итак, мы не только выяснили, где находятся хромосомы у человека, но также разобрались с особенностями их размещения и комбинирования при создании нового организма. Стоит заметить, что этот процесс является несколько облегченным у более простых форм жизни, поэтому, знакомясь с тем, что у них и как протекает, вы можете заметить небольшие отличия от описанной здесь модели.

Функционирование

Хромосомная ДНК может быть представлена как матрица, которая работает, чтобы синтезировать специфические молекулы информационной РНК. Но этот процесс может протекать только при условии деспирализации определённого участка. Говоря про возможность работы гена или целой хромосомы, следует отметить, что для их функционирования могут понадобиться определённые условия. Вы, наверное, слышали про инсулин? Ген, отвечающий за его выработку, есть во всём человеческом теле. Но вот активироваться и работать он может исключительно при нахождении в нужных клетках, которые создают поджелудочную железу. И таких случаев довольно много. Если говорить об исключении из метаболизма целой хромосомы, то тут можно вспомнить про образование тела полового хроматина.

Хромосомы человека

В 1922 году Пейтнером была выдвинута гипотеза о том, что человек имеет 48 хромосом. Конечно, это было сказано не на пустом месте, а основываясь на определённых данных. Но в 1956 году учеными Тиром и Леваном при использовании новейших методов исследования генома человека было установлено, что на самом деле человек имеет только 46 хромосом. Они же и дали описание нашего кариотипа. Нумерация пар идёт от единицы до двадцати трех. Хотя последней паре часто не присваивают число, а отдельно называют, из чего она состоит.

Заключение

Итак, мы определили на протяжении статьи, какую роль имеют хромосомы, где они размещены и как строятся. Конечно, главное внимание получил геном человека, но были рассмотрены и животные, а также растения. Мы знаем, где в клетке находятся хромосомы, особенности их расположения, а также возможные трансформации, которые с ними могут происходить. Если говорить про геном, то помните, что он может быть и в других частях, а не только ядре. Но вот на то, какими будут дочерние объекты, влияет именно то, что имеется в хромосомах. Причем от количества оных не сильно зависят особенности организма. Итак, рассказав о том, где находятся хромосомы в растительной клетке и организмах животных, считаем, что наша задача была выполнена.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.