Экраны электронно-лучевых трубок. Электронно-лучевая трубка конструкция и принцип действия

Используемая как для передачи, так и для приема электронно-лучевая трубка снабжена устройством, испускающим электронный луч, а также устройствами, обеспечивающими управление его интенсивностью, фокусировку и отклонение. Здесь рассказывается обо всех этих операциях. В заключение профессор Радиоль заглядывает в будущее телевидения.

Итак, мой любезный Незнайкин, я должен объяснить тебе устройство и принципы работы электронно-лучевой трубки, так как она применяется в телевизионных передатчиках и приемниках.

Электронно-лучевая трубка существовала задолго до появления телевидения. Она использовалась в осциллографах - измерительных приборах, позволяющих наглядно увидеть формы электрических напряжений.

Электронная пушка

Электронно-лучевая трубка имеет катод обычно с косвенным накалом, который испускает электроны (рис. 176). Последние притягиваются анодом, имеющим положительный относительно катода потенциал. Интенсивностью потока электронов управляет потенциал другого электрода, установленного между катодом и анодом. Этот электрод носит название модулятора, имеет форму цилиндра, частично охватывающего катод, а в его дне есть отверстие, через которое проходят электроны.

Рис. 176. Пушка электронно-лучевой трубки, испускающая пучок электронов. Я - нить накала; К - катод; М - модулятор; А - анод.

Я чувствую, что ты сейчас испытываешь определенное недовольство мною. "Почему он не сказал мне, что это просто-напросто триод?!" - возможно, думаешь ты. На самом деле, модулятор играет ту же самую роль, что и сетка в триоде. А все эти три электрода вместе образуют электршпую пушку. Почему? Стреляет она чем-нибудь? Да. В аноде проделано отверстие, через которое пролетает значительная часть притягиваемых анодом электронов.

В передатчике электронный луч «просматривает» различные элементы изображения, пробегая по светочувствительной поверхности, на которую проецируется это изображение. В приемнике луч создает изображение на флуоресцирующем экране.

Чуть позже мы более подробно рассмотрим эти функции. А сейчас я должен изложить тебе две основные проблемы: как концентрируется луч электронов и как заставляют его отклоняться, чтобы обеспечить просмотр всех элементов изображения.

Способы фокусировки

Фокусировка необходима для того, чтобы сечение луча в месте его соприкосновения с экраном не превышало размеров элемента изображения. Луч в этой точке соприкосновения обычно называют пятном.

Для того чтобы пятно было достаточно малым, луч нужно пропустить через электронную линзу. Так называют устройство, использующее электрические или магнитные поля и воздействующее на электронный луч так же, как двояковыпуклая стеклянная линза на световые лучи.

Рис. 177. Благодаря воздействию нескольких анодов электронный луч фокусируется в одну точку на экране.

Рис. 178. Фокусировка электронного луча обеспечивается магнитным полем, создаваемым катушкой, к которой приложено постоянное напряжение.

Рис. 179. Отклонение электронного луча переменным полем.

Рис. 180. Две пары пластин позволяют отклонять электронный луч в вертикальном и горизонтальном направлениях.

Рис. 181. Синусоида на экране электронного осциллографа, в котором на горизонтальные отклоняющие пластины приложено переменное напряжение, а на вертикальные пластины - линейное напряжение такой же частоты.

Фокусировка осуществляется электрическими силовыми линиями, для чего за первым анодом устанавливают второй (также снабженный отверстием), на который подают более высокий потенциал. Можно также установить за вторым анодом третий и подать на него еще более высокий потенциал, чем на второй. Разность потенциалов между анодами, через которые проходит электронный луч, воздействует на электроны наподобие электрических силовых линий, идущих от одного анода к другому. И это воздействие имеет тенденцию направить к оси луча все электроны, траектория которых отклонилась (рис. 177).

Потенциалы анодов в используемых в телевидении электронно-лучевых трубках часто достигают нескольких десятков тысяч вольт. Величина же анодных токов, наоборот, очень небольшая.

Из сказанного ты должен понять, что мощность, какую нужно отдать в трубке, не представляет собой ничего сверхъестественного.

Сфокусировать луч можно также воздействием на поток электронов магнитным полем, создаваемым протекающим по катушке током (рис. 178).

Отклонение электрическими полями

Итак, нам удалось настолько сфокусировать луч, что его пятно на экране имеет крохотные размеры. Однако неподвижное пятно в центре экрана не дает никакой практической пользы. Нужно заставить пятно пробегать по чередующимся строкам обоих полукадров, как это объяснил тебе Любознайкин во время вашей последней беседы.

Как обеспечить отклонение пятна, во-первых, по горизонтали, чтобы оно быстро пробегало по строкам, и, во-вторых, по вертикали, чтобы пятно переходило с одной нечетной строки на следующую нечетную или же с одной четной на следующую четную? Кроме того, нужно обеспечить очень быстрый возврат с конца одной строки к началу той, которую пятну предстоит пробежать. Когда же пятно закончит последнюю строку одного полукадра, оно должно очень быстро подняться кверху и занять исходное положение в начале первой строки следующего полукадра.

В этом случае отклонение электронного луча может также осуществляться изменением электрических или магнитных полей. Позднее ты узнаешь, какую форму должны иметь управляющие разверткой напряжения или токи и как их получить. А сейчас посмотрим, как устроены трубки, отклонение в которых осуществляется электрическими полями.

Эти поля создают путем приложения разности потенциалов между двумя металлическими пластинами, расположенными по одну и другую сторону от луча. Можно сказать, что пластины представляют собой обкладки конденсатора. Ставшая положительной обкладка притягивает электроны, а ставшая отрицательной - их отталкивает (рис. 179).

Ты легко поймешь, что две расположенные горизонтально пластины определяют отклонение электронного луча но вертикали. Для перемещения луча по горизонтали нужно использовать две пластины, расположенные вертикально (рис. 180).

В осциллографах как раз и используют этот способ отклонения; там устанавливают как горизонтальные, так и вертикальные пластины. На первые подают периодические напряжения, форму которых мужно определить, - эти напряжения отклоняют пятно по вертикали. На вертикальные пластины подают напряжение, отклоняющее пятно по горизонтали с постоянной скоростью и почти мгновенно возвращающее его к началу строки.

При этом появляющаяся на экране кривая отображает форму изменения изучаемого напряжения. По мере перемещения пятна слева направо рассматриваемое напряжение заставляет его подниматься или опускаться в зависимости от своих мгновенных значений. Если ты будешь таким образом рассматривать напряжение сети переменного тока, то на экране электронно-лучевой трубки увидишь красивую синусоидальную кривую (рис. 181).

Флуоресценция экрана

А теперь пора тебе объяснить, что экран электронно-лучевой трубки изнутри покрыт слоем флуоресцентного вещества. Так называют вещество, которое под воздействием ударов электронов светится. Чем мощнее эти удары, тем выше вызываемая ими яркость.

Не путай флуоресценцию с фосфоресценцией. Последняя присуща веществу, которое под воздействием дневного света или света электрических ламп само становится светящимся. Именно так светятся ночью стрелки твоего будильника.

Телевизоры оснащают электронно-лучевыми трубками, экран которых сделан из полупрозрачного флуоресцентного слоя. Под воздействием электронных лучей этот слой становится светящимся. В черно-белых телевизорах производимый таким образом свет - белый. Что же касается цветных телевизоров, то в них флуоресцентный слой состоит из 1500000 элементов, одна треть которых излучает красный свет, другая треть светится синим светом, а последняя треть - зеленым.

Рис. 182. Под воздействием магнитного поля магнита (тонкие стрелки) электроны отклоняются в перпендикулярном ему направлении (толстые стрелки).

Рис. 183. Катушки, создающие магнитные поля, обеспечивают отклонение электронного луча.

Рис. 184. По мере увеличения угла отклонения трубку делают короче.

Рис. 185. Размещение проводящего слоя, необходимого для отвода с экрана во внешнюю цепь первичных и вторичных электронов.

Позднее тебе объяснят, как комбинации этих трех цветов позволяют получить всю гамму самых разнообразных цветов, в том числе и белый свет.

Магнитное отклонение

Вернемся к проблеме отклонения электронного луча. Я описал тебе способ, основанный на изменении электрических полей. В настоящее время в телевизионных электронно-лучевых трубках используется отклонение луча магнитными полями. Эти поля создают электромагниты, расположенные вне трубки.

Напомню, что магнитные силовые линии стремятся отклонить электроны в направлении, которое образует с ними прямой угол. Следовательно, если полюсы намагничивания расположены слева и справа от электронного луча, то силовые линии идут в горизонтальном направлении и отклоняют электроны сверху вниз.

А полюсы, расположенные сверху и снизу от трубки, смещают электронный луч по горизонтали (рис. 182). Пропуская по таким магнитам переменные токи соответствующей формы, заставляют луч совершать требующийся путь полной развертки изображений.

Итак, как ты видишь, электронно-лучевая трубка окружена немалым количеством катушек. Вокруг нее находится соленоид, обеспечивающий фокусировку электронного луча. А отклонением этого луча управляют две пары катушек: в одной витки расположены в горизонтальной плоскости, а в другой - в вертикальной, Первая пара катушек отклоняет электроны справа налево, вторая -г вверх и вниз (рис. 183).

Угол отклонения луча от оси трубки раньше не превышал , полное же отклонение луча составляло 90°. В наши дни изготовляют трубки с полным отклонением луча до 110°. Благодаря этому длина трубки уменьшилась, что позволило изготовить телевизоры меньшего объема, так как глубина их футляра уменьшилась (рис. 184).

Возвращение электронов

Ты, может быть, спрашиваешь себя, каков конечный путь электронов, ударившихся о флуоресцентный слой экрана. Так знай, что этот путь заканчивается ударом, вызывающим испускание вторичных электронов. Совершенно недопустимо, чтобы экран накапливал первичные и вторичные электроны, так как их масса создала бы отрицательный заряд, когорый стал бы отталкивать другие излучаемые электронной пушкой электроны.

Для предотвращения такого накопления электронов внешние стенки колбы от экрана до анода покрывают проводящим слоем. Таким образом, приходящие на флуоресцентный слой электроны притягиваются анодом, имеющим очень высокий положительный потенциал, и поглощаются (рис. 185).

Контакт анода выводят на боковую стенку трубки, тогда как все другие электроды соединяют со штырьками цоколя, расположенного на противоположном относительно экрана конце трубки.

Существует ли опасность взрыва?

Еще один вопрос, несомненно, рождается в твоем мозгу. Ты, должно быть, спрашиваешь себя, с какой силой атмосфера давит на эти большие вакуумные трубки, устанавливаемые в телевизорах. Ты знаешь, что на уровне земной поверхности атмосферное давление составляет около . Площадь же экрана, диагональ которого равна 61 см, составляет . Это означает, что воздух давит на этот экран с силой . Если учесть остальную часть поверхности колбы в ее конической и цилиндрической частях, то можно сказать, что трубка выдерживает общее давление, превышающее 39-103 Н.

Выпуклые участки трубки легче, чем плоские, выдерживают высокое давление. Поэтому раньше трубки изготовляли с весьма выпуклым экраном. В наши дни научились делать экраны достаточно прочными, чтобы даже при плоской форме они успешно выдерживали давление воздуха. Поэтому риск взрыва, направленного внутрь, исключен. Я умышленно сказал взрыва, направленного внутрь, а не просто взрыва, так как если разрывается электронно-лучевая трубка, то ее осколки устремляются внутрь.

В старых телевизорах из предосторожности перед экраном устанавливали толстое защитное стекло. В настоящее время обходятся без него.

Плоский экран будущего

Ты молод, Незнайкин. Перед тобой открывается будущее; ты увидишь эволюцию и прогресс электроники во всех областях. В телевидении, несомненно, наступит такой день, когда электронно-лучевая трубка в телевизоре будет заменена плоским экраном. Такой экран будут вешать на стену как простую картину. А все схемы электрической части телевизора благодаря микроминиатюризации будут размещены в раме этой картины.

Использование интегральных схем даст возможность до минимума сократить размер многочисленных схем, составляющих электрическую часть телевизора. Применение интегральных схем уже получило широкое распространение.

И наконец, если все ручки и кнопки управления телевизором придется размещать на окружающей экран раме, то наиболее вероятно, что для регулировки телевизора будут применяться дистанционные устройства управления. Не поднимаясь со своего кресла, телезритель сможет переключать телевизор с одной программы на другую, изменять яркость и контрастность изображения и громкость звукового сопровождения. Для этой цели у него под рукой будет маленькая коробочка, излучающая электромагнитные волны или ультразвуки, которые заставят телевизор произвести все заданные переключения и регулировки. Впрочем, такие устройства уже существуют, но пока не получили широкого распространения...

А теперь вернемся из будущего в настоящее. Я предоставляю Любознайкину возможность объяснить тебе, как электронно-лучевые трубки в настоящее время используются для передачи и приема телевизионных изображений.

На экран электронно-лучевой трубки люминофоры наносятся в виде крошечных точек, причем эти точки собираются по три; в каждой тройке, или триаде, имеются одна красная, одна синяя и одна зеленая точки. На рисунке я вам показал несколько таких триад. Всего на экране трубки имеется около 500 тысяч триад. Картина, которую вы видите в телевизоре, вся состоит из светящихся точек. Там, где детали изображения более светлые, на точки попадает больше электронов, и они светятся ярче. На темные места изображения электронов попадает, соответственно, меньше. Если в цветном изображении имеется белая деталь, то повсюду в пределах этой детали все три точки в каждой триаде светятся с одинаковой яркостью. Наоборот, если в цветном изображении имеется деталь красного цвета, то повсюду в пределах этой детали светятся только красные точки каждой триады, а зеленые и синие не светятся совсем.

Вы поняли, что значит создать цветное изображение на экране телевизора? Это, во-первых, заставить электроны попадать в нужные места, то есть на те люминофорные точки, которые должны светиться, и не попадать в другие места, то есть на те точки, которые светиться не должны. Во-вторых, электроны должны попадать в нужные места в нужное время. Ведь изображение на экране постоянно меняется, и там, где в какой-то момент, например, было ярко-оранжевое пятно, через мгновение должно появиться, скажем, темно-фиолетовое. Наконец, в-третьих, в нужное место и в нужное время должно попадать нужное количество электронов. Больше - туда, где свечение должно быть ярче, и меньше - туда, где свечение темнее.

Поскольку на экране размещается почти полтора миллиона люминофорных точек, задача на первый взгляд представляется исключительно сложной. На самом деле - ничего сложного. Прежде всего в электронно-лучевой трубке имеется не один, а три отдельных нагретых катода. Точно таких, как в обычной электронной лампе. Каждый катод испускает электроны, и вокруг него создается электронное облачко. Около каждого катода находятся сетка и анод. Количество электронов, прошедших сквозь сетку к аноду, зависит от напряжения на сетке. Пока все происходит, как в обычной трехэлектродной лампе - триоде.

Какое отличие? Анод здесь не сплошной, а с отверстием в самом центре. Поэтому большинство электронов, движущихся от катода к аноду, не задерживается на аноде - они вылетают через отверстие наружу в виде круглого пучка. Конструкция, состоящая из катода, сетки и анода, так и называется: электронная пушка. Пушка как бы выстреливает пучком электронов, а количество электронов в пучке зависит от напряжения на сетке.

Нацелены электронные пушки так, чтобы пучок, вылетающий из первой пушки, всегда попадал только в красные точки триад, пучок из второй пушки - только в зеленые точки, а пучок из третьей пушки - только в синие точки. Таким образом решается одна из трех задач по образованию цветного изображения. Подавая нужные напряжения на сетки каждой из трех пушек, устанавливают нужные интенсивности красного, зеленого и синего свечения, а значит, обеспечивают нужную окраску каждой детали изображения.

Осциллографическая электронно-лучевая трубка предназначена для отображения на люминесцентном экране электрических сигналов. Изображение на экране служит не только для визуальной оценки формы сигнала, но и для измерения его параметров, а в некоторых случаях - для фиксации его на фотоплёнку.

Энциклопедичный YouTube

  • 1 / 5

    Осциллографическая ЭЛТ представляет собой вакуумированную стеклянную колбу, внутри которой находятся электронная пушка , отклоняющая система и люминесцентный экран. Электронная пушка предназначена для формирования узкого пучка электронов и его фокусировки на экран. Электроны испускаются катодом косвенного накала с подогревателем за счет явления термоэлектронной эмиссии . Интенсивность электронного пучка и следовательно яркость пятна на экране регулируется отрицательным относительно катода напряжением на управляющем электроде. Первый анод служит для фокусировки, второй для ускорения электронов. Управляющий электрод и система анодов образуют фокусирующую систему .

    Отклоняющая система состоит из двух пар пластин, расположенных горизонтально и вертикально. К горизонтальным пластинам, которые называются пластинами вертикального отклонения , прикладывается исследуемое напряжение. К вертикальным пластинам, которые называются пластинами горизонтального отклонения , прикладывается пилообразное напряжение от генератора развёртки. Под влиянием образующегося электрического поля летящие электроны отклоняются от своей первоначальной траектории пропорционально приложенному напряжению. Светящееся пятно на экране ЭЛТ рисует форму исследуемого сигнала. Благодаря пилообразному напряжению пятно движется по экрану слева направо.

    Если на вертикальные и горизонтальные отклоняющие пластины подать два различных сигнала, то на экране можно наблюдать фигуры Лиссажу .

    На экране ЭЛТ можно наблюдать различные функциональные зависимости, например вольт-амперную характеристику двухполюсника , если подать на пластины горизонтального отклонения сигнал, пропорциональный приложенному к нему изменяющемуся напряжению, а на пластины вертикального отклонения - сигнал, пропорциональный протекающему через него току.

    В осциллографических ЭЛТ применяется электростатическое отклонение луча, потому что исследуемые сигналы могут иметь произвольную форму и широкий частотный спектр , и применение в этих условиях электромагнитного отклонения невозможно из-за зависимости импеданса отклоняющих катушек от частоты.

    Трубки «низкочастотного» диапазона (до 100 МГц)

    Электростатическая система отклонения таких трубок состоит из двух пар отклоняющих пластин, вертикального и горизонтального отклонения, находящихся внутри ЭЛТ.

    При наблюдении сигналов, имеющих частотный спектр менее 100 МГц, можно пренебречь временем пролёта электронов сквозь отклоняющую систему. Время пролёта электронов оценивается формулой:

    t ≈ l m 2 e U a {\displaystyle t\approx l{\sqrt {\frac {m}{2eU_{a}}}}}

    где e {\displaystyle e} и m {\displaystyle m} - соответственно заряд и масса электрона, l {\displaystyle l} - длина пластин, U a {\displaystyle U_{a}} - напряжение анода.

    Отклонение луча Δ {\displaystyle \Delta } в плоскости экрана пропорционально приложенному к пластинам напряжению U O T {\displaystyle U_{OT}} (считая, что за время пролёта электронов в поле отклоняющих пластин напряжение на пластинах остаётся постоянным):

    Δ = U O T l D 2 U a d {\displaystyle \Delta ={\frac {U_{OT}lD}{2U_{a}d}}}

    где D {\displaystyle D} - расстояние от центра отклонения пластин до экрана, d {\displaystyle d} - расстояние между пластинами.

    В ЭЛТ, используемых для наблюдения редко повторяющихся и однократных сигналов, применяются люминофоры с длительным временем послесвечения.

    Трубки диапазона свыше 100 МГц

    Для быстро меняющихся сигналов синусоидальной формы чувствительность к отклонению начинает уменьшаться, а при приближении периода синусоиды к времени пролёта чувствительность отклонения падает до нуля. В частности, при наблюдении импульсных сигналов, имеющих широкий спектр (период верхней гармоники равен или превышает время пролёта), указанный эффект приводит к искажению формы сигнала из-за разной чувствительности отклонения к разным гармоникам. Увеличением анодного напряжения или уменьшением длины пластин можно сократить время пролёта и уменьшить эти искажения, но при этом падает чувствительность к отклонению. Поэтому для осциллографирования сигналов, частотный спектр которых превышает 100 МГц, отклоняющие системы делаются в виде линии бегущей волны, обычно спирального типа. Сигнал подаётся на начало спирали и виде электромагнитной волны движется вдоль оси системы с фазовой скоростью v f {\displaystyle v_{f}} :

    v f = c h c l c {\displaystyle v_{f}={\frac {ch_{c}}{l_{c}}}}

    где c {\displaystyle c} - скорость света, h c {\displaystyle h_{c}} - шаг спирали, l c {\displaystyle l_{c}} - длина витка спирали. В результате можно исключить влияние времени пролёта, если выбрать скорость пролёта электронов равной фазовой скорости волны в направлении оси системы.

    Для уменьшения потерь мощности сигнала выводы отклоняющей системы таких ЭЛТ делаются коаксиальными . Геометрия коаксиальных вводов подбирается так, чтобы их волновое сопротивление соответствовало волновому сопротивлению спиральной отклоняющей системы.

    Трубки с послеускорением

    Для увеличения чувствительности к отклонению надо иметь невысокое анодное напряжение, однако это приводит к уменьшению яркости изображения из-за снижения скорости электронов. Поэтому в осциллографических ЭЛТ применяют систему послеускорения. Она представляет собой систему электродов, расположенную между отклоняющей системой и экраном, в виде токопроводящего покрытия, нанесённого на внутреннюю поверхность корпуса ЭЛТ.

    Трубки с усилителем яркости

    В широкополосных ЭЛТ, работающих в диапазоне несколько ГГц, для увеличения яркости без потери чувствительности, применяют усилители яркости. Усилитель яркости представляет собой микроканальную пластину, расположенную внутри ЭЛТ перед люминесцентным экраном. Пластина изготовлена из специального полупроводящего стекла с высоким коэффициентом вторичной эмиссии. Электроны пучка, попадая в каналы (диаметр которых много меньше их длины) выбивают из его стенок вторичные электроны. Они ускоряются полем, создаваемым металлическим покрытием на торцах пластины и, попадая на стенки канала, выбивают новые электроны. Общий коэффициент усиления микроканального усилителя может составлять 10 5 … 10 6 . Однако, из-за накопления зарядов на стенках каналов, микроканальный усилитель эффективен только для импульсов наносекундного диапазона, однократных или следующих с малой частотой повторения.

    Шкала

    Для измерения параметров сигнала, воспроизводимого на экране ЭЛТ, отсчёт должен производиться по шкале с делениями. При нанесении шкалы на наружнюю поверхность экрана ЭЛТ, точность измерений снижается из-за параллакса , вызванного толщиной экрана. Поэтому в современных ЭЛТ шкала делается непосредственно на внутренней поверхности экрана, то есть практически совмещается с изображением сигнала.

    Трубки для фотографической регистрации

    Для повышения качества контактного фотографирования сигнала, экран делается в виде стекловолоконного диска. Это решение позволяет переносить изображение с внутренней поверхности на внешнюю с сохранением его чёткости. Расплывание изображения при этом ограничивается диаметром стекловолоконных нитей, который обычно не превышает 20 мкм. В ЭЛТ, предназначенных для фоторегистрации, применяются люминофоры , спектр излучения которых согласован со спектральной чувствительностью фотоплёнки.

    Литература

    • Вуколов Н. И., Гербин А. И., Котовщиков Г. С. Приёмные электронно-лучевые трубки: Справочник.. - М. : Радио и связь, 1993. - 576 с. - ISBN 5-256-00694-0 .
    • Жигарев А. А., Шамаева Г. Т. Электронно-лучевые и фотоэлектронные приборы: Учебник для вузов. - М. : Высшая школа, 1982. - 463 с. , ил.

    Электронно-лучевая трубка (ЭЛТ) - электронный прибор, имеющий форму трубки, удлиненной (часто с коническим расширением) в направлении оси электронного луча, который формируется в ЭЛТ. ЭЛТ состоит из электронно-оптической системы, отклоняющей системы и флуоресцентного экрана или мишени. Ремонт телевизоров в Бутово , обращайтесь к нам за помощью.

    Классификация ЭЛТ

    Классификация ЭЛТ чрезвычайно затруднена, что объясняется их чрезвычайн

    о широким применением в науке и технике и возможностью модификации конструкции с целью получения технических параметров, которые необходимы для реализации конкретной технической идеи.

    Зависимости от метода управления электронным лучом ЭЛТ подразделяются на:

    электростатические (с электростатической системой отклонения лучей);

    электромагнитные (с электромагнитной системой отклонения лучей).

    В зависимости от назначения ЭЛТ подразделяются на:

    электронно-графические трубки (приемные, телевизионные, осциллографические, индикаторные, телевизионные знакодрукувальни, кодирующие и др..)

    оптико-электронные претворюючи трубки (передающие телевизионные трубки, электронно-оптические преобразователи и др..)

    электронно-лучевые переключатели (коммутаторы);

    другие ЭЛТ.

    Электронно-графические ЭЛТ

    Электронно-графические ЭЛТ - группа электронно-лучевых трубок, применяемых в различных областях техники, для преобразования электрических сигналов в оптические (преобразование типа «сигнал - свет»).

    Электронно-графические ЭЛТ подразделяются:

    В зависимости от области применения:

    приемной телевизионные (кинескопы, ЭЛТ с сверхвысоким разрешением для специальных телевизионных систем, и др..)

    приемной осциллографические (низкочастотные, высокочастотные, сверхвысокочастотные, импульсные высоковольтные и др..)

    приемной индикаторные;

    запоминающие;

    знакодрукувальни;

    кодирующие;

    другие ЭЛТ.

    Строение и действие ЭЛТ с электростатической системой отклонения лучей

    Электронно-лучевая трубка состоит из катода (1), анода (2), выравнивающего цилиндра (3), экрана (4), регуляторов плоскости (5) и высоты (6).

    Под действием фото-или термоэмиссии из металла катода (тонкая проводниковая спираль) выбиваются электроны. Поскольку между анодом и катодом поддерживается напряжение (разность потенциалов) в несколько кило вольт, то эти электроны, выравниваясь цилиндром, движутся по направлению анода (пустотелый цилиндр). Пролетая сквозь анод электроны попадают к регуляторам плоскости. Каждый регулятор - это две металлические пластины, разноименно заряженные. Если левую пластину зарядить отрицательно, а правую положительно, то электроны проходя сквозь них будут отклоняться вправо, и наоборот. Аналогично действуют и регуляторы высоты. Если же на эти пластины подать переменный ток, то можно будет контролировать поток электронов как в горизонтальной, так и вертикальной плоскостях. В конце своего пути поток электронов попадает на экран, где может вызвать изображения.

    Задачи работы

    1. общее знакомство с устройством и принципом действия электронных осциллографов,
    2. определение чувствительности осциллографа,
    3. проведение некоторых измерений в цепи переменного тока при помощи осциллографа.

    Общие сведения об устройстве и работе электронного осциллографа

    С помощью катода электронно-лучевой трубки осциллографа создается электронный поток, который формируется в трубке в узкий пучок, направленный к экрану. Сфокусированный на экране трубки электронный пучок вызывает в месте падения светящееся пятно, яркость которого зависит от энергии пучка (экран покрыт специальным люминесцирующим составом, светящимся под воздействием пучка электронов). Электронный луч является практически безынерционным, поэтому световое пятно можно практически мгновенно перемещать в любом направлении по экрану, если воздействовать на электронный пучок электрическим полем. Поле создается с помощью двух пар плоскопараллельных пластин, называемых отклоняющими пластинами. Малая инерционность луча обуславливает возможность наблюдения быстропеременных процессов с частотой 10 9 Гц и более.

    Рассматривая существующие осциллографы, разнообразные по конструкции и назначению, можно увидеть, что функциональная схема их примерно одинакова. Основными и обязательными узлами должны быть:

    Электронно-лучевая трубка для визуального наблюдения исследуемого процесса;

    Источники питания для получения необходимых напряжений, подаваемых на электроды трубки;

    Устройство для регулировки яркости, фокусировки и смещения луча;

    Генератор развертки для перемещения электронного луча (и соответственно, светящегося пятна) по экрану трубки с определенной скоростью;

    Усилители (и аттенюаторы), используемые для усиления или ослабления напряжения исследуемого сигнала, если оно недостаточно для заметного отклонения луча на экране трубки или, напротив, слишком велико.

    Устройство электронно-лучевой трубки

    Прежде всего, рассмотрим устройство электронно-лучевой трубки (рис. 36.1). Обычно это стеклянная колба 3, откачанная до высокого вакуума. В узкой ее части расположен нагреваемый катод 4, из которого вылетают электроны за счет термоэлектронной эмиссии Система цилиндрических электродов 5, 6, 7 фокусирует электроны в узкий пучок 12 и управляет его интенсивностью. Далее следуют две пары отклоняющих пластин 8 и 9 (горизонтальные и вертикальные) и, наконец, экран 10 – дно колбы 3, покрытое люминесцирующим составом, благодаря которому становится видимым след электронного луча.

    В состав катода входит вольфрамовая нить – нагреватель 2, расположенная в узкой трубке, торец которой (для уменьшения работы выхода электронов) покрыт слоем окиси бария или стронция и собственно является источником потока электронов.

    Процесс формирования электронов в узкий луч с помощью электростатических полей во многом напоминает действие оптических линз на световой луч. Поэтому система электродов 5,6,7 носит название электронно-оптического устройства.

    Электрод 5 (модулятор) в виде закрытого цилиндра с узким отверстием находится под небольшим отрицательным потенциалом относительно катода и выполняет функции, аналогичные управляющей сетке электронной лампы. Изменяя величину отрицательного напряжения на модулирующем или управляющем электроде, можно изменять количество электронов, проходящих через его отверстие. Следовательно, с помощью модулирующего электрода можно управлять яркостью луча на экране. Потенциометр, управляющий величиной отрицательного напряжения на модуляторе, выведен на переднюю панель осциллографа с надписью ”яркость”.

    Система из двух коаксиальных цилиндров 6 и 7, называемых первым и вторым анодами, служит для ускорения и фокусировки пучка. Электростатическое поле в промежутке между первым и вторым анодами направлено таким образом, что отклоняет расходящиеся траектории электронов снова к оси цилиндра, подобно тому, как оптическая система из двух линз действует на расходящийся пучок света. При этом катод 4 и модулятор 5 составляют первую электронную линзу, а первому и второму анодам соответствует другая электронная линза.

    В итоге пучок электронов фокусируется в точке, которая должна лежать в плоскости экрана, что оказывается возможным при соответствующем выборе разности потенциалов между первым и вторым анодами. Ручка потенциометра, регулирующего это напряжение, выведена на переднюю панель осциллограф с надписью ”фокус”.

    При попадании электронного луча на экран на нем образуется резко очерченное светящееся пятно (соответствующее сечению пучка), яркость которого зависит от количества и скорости электронов в пучке. Большая часть энергии пучка при бомбардировке экрана превращается в тепловую. Во избежание прожога люминесцирующего покрытия не допустима большая яркость при неподвижном электронном луче. Отклонение луча осуществляется с помощью двух пар плоскопараллельных пластин 8 и 9, расположенных под прямым углом друг к другу.

    При наличии разности потенциалов на пластинах одной пары однородное электрическое поле между ними отклоняет траекторию пучка электронов в зависимости от величины и знака этого поля. Расчеты показывают, что величина отклонения луча на экране трубки D (в миллиметрах) связана с напряжением на пластинах U D и напряжением на втором аноде Ua 2 (в вольтах) следующим образом:

    (36.1),

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.