Бикарбонатная буферная система. Физико — химические гомеопатические механизмы — буферные системы внутренней среды организма

Кислотно-основное равновесие.

Кислотно-основное равновесие – это соотношение концентрации водородных (Н +) и гидроксильных (ОН -) ионов в жидкостях организма.

Постоянство рН внутренней среды организма обусловлено совместным действием буферных систем и ряда физиологических механизмов.

1. Буферные системы крови и тканей:

Бикарбонатная: NaHCO 3 + Н 2 СО 3

Фосфатная: NaHРO 4с + NaHРO 4к

Белковая: протеин-Na + + протеин-Н +

Гемоглобиновая: HbK+HbH +

2. Физиологический контроль:

Дыхательная функция легких

Выделительная функция почек

КЩР отражает клеточный метаболизм, газотранспортную функцию крови, внешнее дыхание и водно-солевой обмен.

В норме рН крови колеблется от 7,37 до 7,44, среднее значение рН=7,4.

Буферные системы поддерживают постоянство рН при поступлении кислых и основных (ОН -) продуктов. Буферное действие объясняется связыванием свободных Н + и ОН - ионов компонентами буфера и переводом их в недиссоциированную форму слабой кислоты или воды.

Буферные системы организма состоят из слабых кислот и их солей с сильными основаниями.

Для устранения сдвига рН необходимо различное время:

Буферные системы – 30 сек

Дыхательный контроль – 1 – 3 мин

Выделительная функция почек – 10 – 20 час.

Буферные системы устраняют только сдвиги рН. Физиологические механизмы восстанавливают и буферную емкость.

Бикарбонатная буферная система.

На долю бикарбонатного буфера приходится около 10% всей буферной емкости крови.

Бикарбонатный буфер состоит из угольной кислоты, выполняющей роль донора протона, и бикарбонат-иона , выполняющего роль акцептора протона.

Н 2 СО 3 – слабая кислота, трудно диссоциирует

Н 2 СО 3 Н + +

NaНСО 3 – соль слабой кислоты и сильного основания диссоциирует полностью:

NaНСО 3 Na + +

Механизм действия буфера

1. При поступлении в кровь кислых продуктов водородные ионы взаимодействуют с ионами бикарбоната , образуется слабо диссоциирующая угольная кислота:

Н + + NaНСО 3 Na + + Н 2 СО 3

Восстанавливается соотношение Н 2 СО 3 / NaНСО 3 , рН не изменяется (концентрация NaНСО 3 незначительно понижается).



Легкие обеспечивают выведение углекислого газа.

2. При поступлении в кровь оснований из тканей, ионы ОН - взаимодействуют со слабой угольной кислотой (ионы ОН - взаимодействуют с Н + из буфера, образуя Н 2 О)

Н 2 СО 3 + ОН - Н 2 О +

рН сохраняется, увеличивается. Избыток усиливает диссоциацию Н 2 СО 3 , расход Н + восполняется усилением диссоциации Н 2 СО 3 .

При нормальном значении рН крови концентрация ионов бикарбоната в плазме крови превышает концентрацию углекислого газа примерно в 20 раз:

Фосфатная буферная система

Компоненты буфера:

Na 2 НРО 4с – соль – двузамещенный фосфат

NaН 2 РО 4к – слабая кислота – однозамещенный фосфат

Соотношение

На долю фосфатной буферной системы приходится 1% буферной емкости крови.

Механизм действия буфера.

1. При поступлении в кровь кислых продуктов обмена веществ происходит связывание ионов Н + с двузамещенным фосфатным ионом , образуется кислый однозамещенный ион , избыток которого удаляется почками с мочой:

Фосфатный буфер действует при изменении рН в интервале от 6,1 до 7,7. В крови максимальная емкость фосфатного буфера проявляется при 7,2.

Огромную роль для нормального функционирования человеческого организма играет кислотно-основное равновесие. Циркулирующая в организме кровь представляет собой смесь живых клеток, которые находятся в жидкой среде обитания. Первой чертой охраны, что контролирует уровень pH в крови, выступает . Это физиологический механизм, который обеспечивает сохранение параметров кислотно-основного баланса, препятствуя перепадам pH. Что он собой представляет и какие имеет разновидности, узнаем ниже.

Описание

Буферная система - это уникальный механизм. В организме человека существует их несколько, и все они состоят из плазмы и клеток крови. Буферы представляют собою основания (белки и неорганические соединения), которые связывают или отдают Н+ и ОН-, уничтожая сдвиг pH в течение тридцати секунд. Способность буфера поддерживать кислотно-основный баланс зависит от количества элементов, из которых он слагается.

Виды буферов крови

Кровь, которая постоянно движется, представляет собой живые клетки, которые существуют в жидкой среде. pH в норме составляет 7,37-7,44. Связка же ионов происходит определенным буфером, приведена ниже. Сам же он состоит из плазмы и кровяных клеток и может быть фосфатным, белковым, бикарбонатным или гемоглобиновым. Все эти системы имеют достаточно действия. Их деятельность нацелена на урегулирование уровня ионов в крови.

Особенности буфера гемоглобинового

Гемоглобиновая буферная система является самой мощной из всех, она представляет собой щелочь в капиллярах тканей и кислоту в таком внутреннем органе, как легкие. На ее долю приходится около семидесяти пяти процентов всей буферной емкости. Этот механизм участвует во множестве процессах, что происходят в крови человека, и имеет в своем составе глобин. При переходе гемоглобинового буфера в другую форму (оксигемоглобин), наблюдается изменение этой формы, изменяются и кислотные свойства действующего вещества.

Качество восстановленного гемоглобина меньшее, чем у угольной кислоты, но становится намного лучше, когда он окисляется. Когда приобретается кислотность pH, гемоглобин соединяет ионы водорода, получается так, что он уже восстановленный. Когда происходит очищение углекислого газа в легких, pH получается щелочным. В это время гемоглобин, который окислился, выступает донором протонов, при помощи чего происходит уравновешивание кислотно-основного баланса. Так, буфер, что состоит из оксигемоглобина и его калиевой соли, способствует выделению из организма углекислоты.

Эта буферная система выполняет немаловажную роль в дыхательном процессе, так как совершает транспортную функцию по переносу к тканям и внутренним органам кислорода и удалению из них углекислоты. Кислотно-основное равновесие внутри эритроцитов при этом придерживается на постоянном уровне, следовательно, в крови также.

Таким образом, когда кровь насыщается кислородом, гемоглобин превращается в сильную кислоту, а когда кислород он отдает, то превращается в достаточно слабую органическую кислоту. Системы оксигемоглобина и гемоглобина - взаимопревращающиеся, они существуют как одно целое.

Особенности бикарбонатного буфера

Бикарбонатная буферная система выступает также мощной, но и самой управляемой в организме. На ее долю приходится около десяти процентов всей буферной емкости. Она имеет универсальные свойства, которые обеспечивают ее двухстороннюю эффективность. В состав этого буфера входит сопряженная кислотно-щелочная пара, что состоит из таких молекул, как угольная протона) и бикарбонат аниона (акцептор протона).

Так, бикарбонатная буферная система способствует протеканию систематического процесса, где в кровь попадает мощная кислота. Этот механизм связывает кислоту с бикарбонатом анионов, образуя кислоту угольную и ее соль. При попадании щелочи в кровь буфер связывается с угольной кислотой, образуя бикарбонатную соль. Так как гидрокарбоната человека больше, чем угольной кислоты, данная буферная емкость будет иметь высокую кислотность. Другими словами, гидрокарбонатная буферная система (бикарбонатная)очень хорошо проводит компенсацию веществ, которые повышают кислотность крови. К ним относится и молочная кислота, концентрация которой увеличивается при интенсивных физических нагрузках, а данный буфер очень быстро реагирует на изменения кислотно-основного баланса в крови.

Особенности фосфатного буфера

Фосфатная буферная система человека занимает близко двух процентов всей буферной емкости, что связано с содержанием в крови фосфатов. Этот механизм поддерживает показатель pH в моче и жидкости, что находится внутри клеток. Буфер состоит из неорганических фосфатов: одноосновного (выполняет роль кислоты) и двухосновного (выполняет роль щелочи). При нормальном показателе pH соотношение кислоты и основания равняется 1:4. При увеличении количества ионов водорода связывается с ними, образуя кислоту. Этот механизм больше кислотный, чем щелочной, поэтому он отлично нейтрализует поступающие в кровь человека кислые метаболиты, например, молочную кислоту.

Особенности белкового буфера

Белковый буфер играет не такую особую роль в стабилизации кислотно-щелочного баланса, по сравнению с другими системами. На его долю приходится около семи процентов всей буферной емкости. Белки состоят из молекул, которые объединяются в кислотно-щелочные соединения. В они выступают щелочами, которые связывают кислоты, в щелочной среде все происходит наоборот.

Это приводит к тому, что образуется , которая достаточно эффективна при значении pH от 7,2 до 7,4. Большая доля белков представлена альбуминами и глобулинами. Так как белковый заряд нулевой, то при нормальном показателе pH он находится в виде щелочи и соли. Эта буферная емкость зависит от количества белков, их структуры и свободных протонов. Данный буфер может нейтрализовать и кислые, и щелочные продукты. Но емкость она имеет больше кислотную, чем щелочную.

Особенности эритроцитов

В норме эритроциты имеют постоянный показатель pH - 7,25. Здесь оказывают действие гидрокарбонатный и фосфатный буферы. Но по мощности они отличаются от тех, что находятся в крови. В эритроцитах белковый буфер играет особую роль в обеспечении органов и тканей кислородом, а также удалению из них углекислоты. Кроме этого, он поддерживает постоянное значение внутри эритроцитов pH. Белковый буфер в эритроцитах тесно связан с гидрокарбонатной системой, так как соотношение кислоты и соли здесь меньшее, чем в крови.

Пример буферной системы

Растворы сильных кислот и щелочей, которые обладаю слабыми реакциями, имеют непостоянный показатель pH. Но смесь кислоты уксусной с ее солью сохраняет имеет стабильное значение. Даже если к ним добавить кислоту или щелочь, кислотно-основное равновесие не изменится. В качестве примера можно рассмотреть ацетатный буфер, который состоит из кислоты СН 3 СООН и ее соли СН 3 СОО. Если добавить сильную кислоту, то основание соли свяжет ионы Н+ и превратится в кислоту уксусную. Снижение уровня анионов соли уравновешивается увеличением молекул кислоты. В результате этого наблюдается незначительное изменение в соотношении кислоты и ее соли, поэтому pH изменяется совсем незаметно.

Механизм действия буферных систем

При поступлении в кровь кислых или щелочных продуктов буфер обеспечивает постоянное значение pH до тех пор, пока поступившие продукты не выведутся или не используются в процессах метаболизма. В крови человека представлены четыре буфера, каждый из которых состоит из двух частей: кислоты и ее соли, а также сильной щелочи.

Эффект буфера обуславливается тем, что он связывает и нейтрализует ионы, которые поступают соответствующим ему составом. Поскольку в природе организм больше всего сталкивается с недоокисленными продуктами обмена, свойства буфер имеет антикислотные больше, чем антищелочные.

Каждая буферная система имеет свой принцип работы. При снижении уровня pH ниже отметки 7,0 начинается их активная деятельность. Они начинают связывать излишки свободных ионов водорода, образуя комплексы, которые перемещают кислород. Он, в свою очередь, перемещается к системе пищеварения, легким, коже, почкам и так далее. Такая транспортировка способствует их разгрузке и выведению.

В организме человека только четыре буферные системы играют важные роли в сохранении кислотно-основного равновесия, но существуют и другие буферы, например, ацетатная буферная система, которая имеет слабую кислоту (донор) и ее соль (акцептор). Способность этих механизмов противостоять изменениям pH при попадании кислоты или соли в кровь является ограниченной. Они поддерживают кислотно-щелочное равновесие только в том случае, когда сильная кислота или щелочь поступают в определенном количестве. Если оно будет превышено, pH резко изменится, буферная система прекратит свое действие.

Эффективность буферов

Буферы крови и эритроцитов имеют различную эффективность. У последних она выше, так как здесь присутствует гемоглобиновый буфер. Уменьшение количества ионов происходит по направлению от клетки до межклеточной среды, а затем до крови. Это говорит о том, что самая большая буферная емкость у крови, а меньшую имеет внутриклеточная среда.

При метаболизме в клетках появляются кислоты, которые проходят в межклеточную жидкость. Это происходит тем легче, чем их больше появляется в клетках, поскольку переизбыток ионов водорода увеличивает проницаемость мембраны клетки. Нам уже известна . В эритроцитах они имеют более эффективные свойства, так как здесь еще играют роль коллагеновые волокна, которые реагируют набуханием на накопление кислоты, они ее поглощают и освобождают от ионов водорода эритроциты. Такая его способность обуславливается свойством абсорбции.

Взаимодействие буферов в организме

Все механизмы, которые находятся в организме, взаимосвязаны между собой. Буферы крови состоят из нескольких систем, вклад которых в поддержание кислотно-щелочного баланса различный. При попадании крови в легкие она получает кислород путем его связывания в эритроцитах гемоглобином, образуя оксигемоглобин (кислоту), что поддерживает уровень pH. При содействии карбоангидразы происходит параллельное очищение крови легких от углекислоты, которая в эритроцитах представлена в виде слабой двухосновной угольной кислотой и карбаминогемоглобином, а в крови - углекислотой и водой.

При уменьшении в эритроцитах количества слабой двухосновной угольной кислоты происходит проникновение ее из крови в эритроцит, и очищение крови от углекислоты. Таким образом, из клеток в кровь постоянно проходит слабая двухосновная угольная кислота, а из крови в эритроциты для соблюдения нейтральности поступают неактивные анионы хлорида. В результате этого в красных клетках крови среда более кислотная, чем в плазме. Все системы буферов обосновываются отношением донор-акцептор протона (4:20), что связано с особенностями метаболизма организма человека, который образует большее число кислотных продуктов, чем щелочных. Очень важным здесь является показатель кислотных буферных емкостей.

Обменные процессы в тканях

Кислотно-основной баланс поддерживается буферами и метаболическими превращениями в тканях организма. Этому помогают биохимические и Они способствуют потере кислотно-щелочных свойств продуктов обмена веществ, их связыванию, образованию новых соединений, которые быстро выводятся из организма. Например, большое количество молочной кислоты выводится в гликоген, органические кислоты нейтрализуются солями натрия. Сильные кислоты и щелочи растворяются в липидах, а органические кислоты подвергаются окислению, образуя угольную кислоту.

Таким образом, буферная система - это первый помощник при нормализации кислотно-щелочного баланса в организме человека. Стабильность pH нужна для нормальной работы биологических молекул и структур, органов и тканей. При нормальных условиях буферные процессы поддерживают равновесие между появлением и удалением ионов водорода и углекислого газа, что способствует обеспечению в крови постоянного уровня pH.

Если происходит сбой в работе буферных систем, то у человека появляются такие патологии, как алкалоз или ацидоз. Все буферные системы взаимосвязаны и направлены на поддержание стабильного кислотно-основного равновесия. В организме человека постоянно образуется большое число кислых продуктов, которое эквивалентно тридцати литрам сильной кислоты.

Постоянство реакций внутри организма обеспечивают мощные буферы: фосфатный, белковый, гемоглобиновый и бикарбонатный. Существуют и другие буферные системы, но эти являются основными и самыми нужными для живого организма. Без их помощи у человека начнут развиваться различные патологии, которые могут привести к коме или летальному исходу.

Введение

Буферные системы организма

Организм можно определить как физико-химическую систему, существующую в окружающей среде в стационарном состоянии. Именно эта способность живых систем сохранять стационарное состояние в условиях непрерывно меняющейся среды и обусловливает их выживание. Для обеспечения стационарного состояния у всех организмов – от морфологически самых простых до наиболее сложных – выработались разнообразные анатомические, физиологические и поведенческие приспособления, служащие одной цели – сохранению постоянства внутренней среды.

Это относительное динамическое постоянство внутренней среды (крови, лимфы, тканевой жидкости) и устойчивость основных физиологических функций (кровообращения, дыхания, терморегуляции, обмена веществ и т.д.) организма человека и животных называется гомеостазом.

Этот процесс осуществляется преимущественно деятельностью лёгких и почек за счёт дыхательной и выделительной функции. В основе гомеостаза лежит сохранение кислотно-основного баланса.

Основная функция буферных систем предотвращение значительных сдвигов рН путём взаимодействия буфера как с кислотой, так и с основанием. Действие буферных систем в организме направлено преимущественно на нейтрализацию образующихся кислот.

Н+ + буфер- <==> Н-буфер

В организме одновременно существует несколько различных буферных систем. В функциональном плане их можно разделить на бикарбонатную и небикарбонатную. Небикарбонатная буферная система включает гемоглобин, различные белки и фосфаты. Она наиболее активно действует в крови и внутри клеток.

Биологические буферные системы

Большинство биожиткостей организма способно сохранять значение pH при незначительных внешних воздействий, так как они являются буферными растворами.

Буферный раствор – это раствор, содержащий протолитическую равновесную систему, способную поддерживать практически постоянное значение pH при разбавлении или при добавлении небольших количеств кислот или щелочи.

В протолитических буферных растворах компонентами являются донор протона и акцептор протона, представляющие собой сопряженную кислотно- основную пару.

По принадлежности слабого электролита к классу кислот или оснований буферные системы делятся на кислотные и основные.

Кислотными буферными системами называются растворы, содержащие слабую кислоту (донор протона) и соль этой кислоты (акцептор протона). Кислотные буферные растворы могут содержать различные системы: ацетатную (CH3COO-, CH3COOH), гидрокарбонатную (HCO3-, H2CO3), гидрофосфатную(HPO22-, H2PO4-).

Основными буферными системами называются растворы, содержащие слабые основания (акцептор протона) и соль этого основания (донор протона).

Гидрокарбонатная буферная система

Гидрокарбонатная буферная система образована оксидом углерода (IV).

СО2 + Н2О- СО2 Н2О - Н2СО3- Н+ + НСО3-

В этой системе донором протона является угольная кислота H2CO3, а акцептором протона – гидрокарбонат-ион HCO3-.С учетом физиологии условно весь CO2в организме, как просто растворенный, так и гидратированный до угольной кислоты, принято рассматривать как угольную кислоту.

Угольная кислота при физиологическом значении pH= 7,40 находится преимущественно в виде моноаниона, а отношение концентраций компонентов в гидрокарбонатной буферной системе крови [ HCO3-]\ =20:1. Следовательно, гидрокарбонатная система имеет буферную емкость по кислоте значительно больше буферной емкости по основанию. Это отвечает особенностям нашего организма.

Если в кровь поступает кислота и увеличивается концентрация иона водорода, то он, взаимодействует с HCO3- , смещает в сторону H2CO3и приводит к выделению газообразного углекислого газа, который выделяется из организма в процессе дыхания через легкие.

Н+ + НСО3- - Н2СО3 - СО2^ + Н2О

При поступлении в кровь оснований, они связываются угольной кислотой, и равновесие смещается в сторону HCO3-.

ОН- + Н2СО3 - НСО3- + Н2О

Главное назначение гидрокарбонатного буфера заключается в нейтрализации кислот. Он является системой быстрого и эффективного реагирования, так как продукт его взаимодействия с кислотами – углекислый газ – быстро выводится через легкие. Нарушение кислотно- основного равновесия в организме прежде всего компенсируется с помощью гидрокарбонатной буферной системы (10-15 мин.)

Гидрокарбонатный буфер является основной буферной системой плазмы крови, обеспечивающей около 55% от всей буферной емкости крови. Гидрокарбонатный буфер содержится также в эритроцитах, межклеточной жидкости и в почечной ткани.

Гидрофосфатная буферная система

Гидрофосфатная буферная система содержится как в крови, так и в клеточной жидкости других тканей, особенно почек. В клетках она представлена К2НРО4 и КН2РО4 , а в плазме крови и межклеточной жидкости

Nа2НРО4и NаН2РО4. Роль донора протона в этой системе играет ион Н2РО4-, а акцептора – ион НРО42-.

В норме отношение форм [НРО42-]\[ Н2РО4-] =4:1. Следовательно, и эта система имеет буферную емкость по кислоте больше, чем по основанию. При увеличении концентрации катионов водорода во внутриклеточной жидкости, например в результате переработки мясной пищи, происходит их нейтрализация ионами НРО42-.

Н+ + НРО42- - Н2РО4-

Образующийся избыточный дигидрофосфат выводится почками, что приводит к снижению величины рН мочи.

При увеличении концентраций оснований в организме, например при употреблении растительной пищи, они нейтрализуются ионами Н2РО4-

ОН- + Н2РО4- - НРО42-+ Н2О

Образующийся избыточный гидрофосфат выводится почками, при этом рН мочи повышается.

В отличии от гидрокарбонатной, фосфатная система более « консервативная», так как избыточные продукты нейтрализации выводятся через почки и полное восстановление отношений [НРО42-]\[ Н2РО4-] происходит только через 2-3 сут. Длительности легочной и почечной компенсации нарушений отношения компонентов в буферных системах необходимо учитывать при терапевтической коррекции нарушений кислотно- основного равновесия организма.

Гемоглобиновая буферная система

гемоглобиновая буферная система является сложной буферной системой эритроцитов, которая включает в качестве донора протона две слабые кислоты: гемоглобин ННb и оксигемоглобин ННbО2. роль акцептора протона играет сопряженные этим кислотам основания, т.е. их анионы Нb- и НbО2-.

Н+ + Нb-ННb Н+ + НbО2- - ННb + О2

При добавлении кислот поглощать ионы Н+ в первую очередь будут анионы гемоглобина, которые имеют большое сродство к протону. При действии основания оксигемоглобин будет проявлять большую активность, чем гемоглобин.

ОН- + ННbО2 - НbО2- + Н2О ОН- + ННb- Нb- + Н2О

Таким образом, гемоглобиновая система крови играет значительную роль сразу в нескольких важнейших физиологических процессах организма: дыхании, транспорте кислорода в ткани и поддержании постоянства рН внутри эритроцитах, а конечном итоге - в крови. Эта система эффективно функционирует только в сочетании с другими буферными системами организма.

Белковые (протеиновые) буферные системы

Белковые буферные системы в зависимости от кислотно-основных свойств белка, характеризующиеся его изоэлектрической точкой, бывают анионного и катионного типа.

Анионный белковый буфер работает при рН>рIбелка и состоит из донора протонов – молекулы белка НРrot, имеющей биполярно- ионное строение, и акцептора протонов – анион Рrot-.

Н3N+ – Рrot – СООН - Н+ + Н3N – Рrot – СОО-

кратко Н2Рrot - Н+ + (НРrot)-

При добавлении кислоты это равновесие смещается в сторону образование молекулы белка, а при добавлении основания в системе увеличивается содержание аниона белка.

Катионная белковая буферная система работает при рН<рIбелка и состоит из донора протона – катиона белка Н2Рrot и акцептора протона - молекулы белка НРrot.

Н3N+ – Рrot – СООН- Н+ + Н3N – Рrot – СОО-

кратко (Н2Рrot)+ + НРrot

Катионная буферная система НРrot, (Н2Рrot)+ обычно поддерживает величину рН в физиологических средах с рН < 6, а анионная белковая буферная система (Рrot)- , НРrot – в средах с рН >6. В крови работает анионный белковый буфер.

Ацидоз

Ацидоз (от лат. acidus - кислый) - cмещение кислотно-щелочного баланса организма в сторону увеличения кислотности (уменьшению рН).

Причины ацидоза

Обычно продукты окисления органических кислот быстро удаляются из организма. При лихорадочных заболеваниях, кишечных расстройствах, беременности, голодании и др. они задерживаются в организме, что проявляется в лёгких случаях появлением в моче ацетоуксусной кислоты и ацетона (т. н. ацетонурия), а в тяжёлых (например, при сахарном диабете) может привести к коме.

характеризуется абсолютным или относительным избытком кислот, т.е. веществ, отдающих ионы водорода (протоны), по отношению к основаниям, присоединяющим их.

Ацидоз может быть компенсированным и некомпенсированным в зависимости от значения рН - водородного показателя биологической среды (обычно крови), выражающего концентрацию водородных ионов. При компенсированном ацидозе рН крови смещается к нижней границе физиологической нормы (7,35). При более выраженном сдвиге в кислую сторону (рН менее 7,35) ацидоз считается некомпенсированным. Такой сдвиг обусловлен значительным избытком кислот и недостаточностью физико-химических и физиологических механизмов регуляции кислотно-щелочного равновесия. (Кислотно-щелочное равновесие)

По происхождению А. может быть газовым, негазовым и смешанным. Газовый А. возникает вследствие альвеолярной гиповентиляции (недостаточного выведения СО2 из организма) либо в результате вдыхания воздуха или газовых смесей, содержащих повышенные концентрации углекислоты. При этом парциальное давление углекислого газа (рСО2) в артериальной крови превышает максимальные значения нормы (45 мм рт. ст.), т.е. имеет место гиперкапния.

Негазовый А. характеризуется избытком нелетучих кислот, первичным снижением содержания бикарбоната в крови и отсутствием гиперкапнии. Основными его формами являются метаболический, выделительный и экзогенный ацидоз.

Метаболический А. возникает вследствие накопления избытка кислых продуктов в тканях, недостаточного их связывания или разрушения; при увеличении продукции кетоновых тел (кетоацидоз), молочной кислоты (лактат-ацидоз) и других органических кислот. Кетоацидоз развивается чаще всего при сахарном диабете, а также при голодании (особенно углеводном), высокой лихорадке, тяжелой инсулиновой гипогликемии, при некоторых видах наркоза, алкогольной интоксикации, гипоксии, обширных воспалительных процессах, травмах, ожогах и др. Лактат-ацидоз встречается наиболее часто. Кратковременный лактат-ацидоз возникает при усиленной мышечной работе, особенно у нетренированных людей, когда увеличивается продукция молочной кислоты и происходит недостаточное ее окисление вследствие относительного дефицита кислорода. Длительный лактат-ацидоз отмечается при тяжелых поражениях печени (цирроз, токсическая дистрофия), декомпенсации сердечной деятельности, а также при уменьшении поступления кислорода в организм вследствие недостаточности внешнего дыхания и при других формах кислородного голодания. В большинстве случаев метаболический А. развивается в результате избытка в организме нескольких кислых продуктов.

Выделительный А. в результате уменьшения выведения из организма нелетучих кислот отмечается при заболеваниях почек (например, при хроническом диффузном гломерулонефрите), приводящих к затруднению удаления кислых фосфатов, органических кислот. Усиленное выведение с мочой ионов натрия, обусловливающее развитие почечного А., наблюдается в условиях торможения процессов ацидо- и аммониогенеза, например при длительном применении сульфаниламидных препаратов, некоторых мочегонных средств. Выделительный А. (гастроэнтеральная форма) может развиться при увеличенной потере оснований через желудочно-кишечный тракт, например при поносах, упорной рвоте забрасываемым в желудок щелочным кишечным соком, а также при длительно усиленном слюноотделении. Экзогенный А. наступает при введении в организм большого количества кислых соединений, в т.ч. некоторых лекарственных препаратов.

Развитие смешанных форм А. (сочетание газового и различных видов негазового А.) обусловлено, в частности, тем обстоятельством, что СО2 диффундирует через альвеолокапиллярные мембраны примерно в 25 раз легче, чем О2. Поэтому затруднение выделения СО2 из организма вследствие недостаточного газообмена в легких сопровождается снижением оксигенации крови и, следовательно, развитием кислородного голодания с последующим накоплением недоокисленных продуктов межуточного обмена (главным образом молочной кислоты). Такие формы А. наблюдаются при патологии сердечно-сосудистой или дыхательной систем.

Умеренный компенсированный А. протекает практически бессимптомно и распознается путем исследования буферных систем крови, а также состава мочи. При углублении А. одним из первых клинических симптомов является усиленное дыхание, которое затем переходит в резкую одышку, патологические формы дыхания. Некомпенсированный А. характеризуется значительными расстройствами функций ц.н.с., сердечно-сосудистой системы, желудочно-кишечного тракта и др. А. приводит к повышению содержания катехоламинов в крови, поэтому при его появлении сначала отмечается усиление сердечной деятельности, учащение пульса, повышение минутного объема крови, подъем АД. По мере углубления А. снижается реактивность адренорецепторов, и несмотря на повышенное содержание катехоламинов в крови, сердечная деятельность угнетается, АД падает. При этом нередко возникают различные виды сердечных аритмий, вплоть до фибрилляции желудочков. Кроме того, А. приводит к резкому усилению вагусных эффектов, вызывая бронхоспазм, увеличение секреции бронхиальных и пищеварительных желез; нередко возникают рвота, понос. При всех формах А. кривая диссоциации оксигемоглобина смещается вправо, т.е. сродство гемоглобина к кислороду и его оксигенация в легких уменьшаются.

В условиях А. изменяется проницаемость биологических мембран, часть ионов водорода перемещается внутрь клеток в обмен на ионы калия, которые отщепляются от белков в кислой среде. Развитие гиперкалиемии в сочетании с низким содержанием калия в миокарде приводит к изменению его чувствительности к катехоламинам, лекарственным препаратам и другим воздействиям. При некомпенсированном А. наблюдаются резкие расстройства функции ц.н.с. - головокружение, сонливость, потеря сознания и выраженные расстройства вегетативных функций.

Алкалоз

Алкало́з (позднелат. alcali щелочь, от арабск. al-quali) - нарушение кислотно-щелочного равновесия организма, характеризующееся абсолютным или относительным избытком оснований.

Классификация

Алкалоз может быть компенсированным и некомпенсированным.

Компенсированный алкалоз - нарушение кислотно-щелочного равновесия, при котором рН крови удерживается в пределах нормальных величин (7,35-7,45) и отмечаются лишь сдвиги в буферных системах и физиологических регуляторных механизмах.

При некомпенсированном алкалозе рН превышает 7,45, что обычно связано со значительным избытком оснований и недостаточностью физико-химических и физиологических механизмов регуляции кислотно-щелочного равновесия.

Этиология

По происхождению алкалоза выделяют следующие группы.

Газовый (респирато́рный) алкалоз

Возникает вследствие гипервентиляции лёгких, приводящей к избыточному выведению СО2 из организма и падению парциального напряжения двуокиси углерода в артериальной крови ниже 35 мм рт. ст., то есть к гипокапнии. Гипервентиляция лёгких может наблюдаться при органических поражениях головного мозга (энцефалиты, опухоли и др.), действии на дыхательный центр различных токсических и фармакологических агентов (например, некоторых микробных токсинов, кофеина, коразола), при повышенной температуре тела, острой кровопотере и др.

Негазовый алкалоз

Основными формами негазового алкалоз являются: выделительный, экзогенный и метаболический. Выделительный алкалоз может возникнуть, например, вследствие больших потерь кислого желудочного сока при желудочных свищах, неукротимой рвоте и др. Выделительный алкалоз может развиться при длительном приёме диуретиков, некоторых заболеваниях почек, а также при эндокринных расстройствах, приводящих к избыточной задержке натрия в организме. В некоторых случаях выделительный алкалоз связан с усиленным потоотделением.

Экзогенный алкалоз наиболее часто наблюдается при избыточном введении бикарбоната натрия с целью коррекции метаболического ацидоза или нейтрализации повышенной кислотности желудочного сока. Умеренный компенсированный алкалоз может быть обусловлен длительным употреблением пищи, содержащей много оснований.

Метаболический алкалоз встречается при некоторых патологических состояниях, сопровождающихся нарушениями обмена электролитов. Так, он отмечается при гемолизе, в послеоперационном периоде после некоторых обширных оперативных вмешательств, у детей, страдающих рахитом, наследственными нарушениями регуляции электролитного обмена.

Смешанный алкалоз

Смешанный алкалоз (сочетание газового и негазового алкалоза) может наблюдаться, например, при травмах головного мозга, сопровождающихся одышкой, гипокапнией и рвотой кислым желудочным соком.

Патогенез

При алкалозе (особенно связанном с гипокапнией) происходят общие и регионарные нарушения гемодинамики: уменьшается мозговой и коронарный кровоток, снижаются АД и минутный объем крови. Возрастает нервно-мышечная возбудимость, возникает мышечный гипертонус вплоть до развития судорог и тетании. Нередко наблюдается угнетение моторики кишечника и развитие запоров; снижается активность дыхательного центра. Для газового алкалоза характерно снижение умственной работоспособности, головокружение, могут возникать обморочные состояния.

Терапия газового алкалоза заключается в устранении причины, вызвавшей гипервентиляцию, а также в непосредственной нормализации газового состава крови путем вдыхания смесей, содержащих углекислый газ (например - карбогена). Терапия негазового алкалоза проводится в зависимости от его вида. Применяют растворы хлоридов аммония, калия, кальция, инсулин, средства, угнетающие карбоангидразу и способствующие выделению почками ионов натрия и гидрокарбоната

Заключение

В заключение следует отметить,что в организме человека вследствие процессов дыхания и пищеварения происходит постоянное образование двух противоположностей:кислот и оснований, причем преимущественно слабых, что обеспечивает равновесный характер протолитическим процессам,протекающим в организме. В то же время из организма постоянно выводятся кислотно-основные продукты, в основном через легкие и почки. За счет сбалансированности процессов поступления и выведения кислот и оснований,а также за счет равновесного характера протолитических процессов,определяющих взаимодействие этих двух противоположностей, в организме поддерживается состояние протолитического (кислотно-основного) гомеостаза.

Список используемой литературы:

    В.И.Слесарев «Химия: Основы химии живого: Учебник для вузов»-СПб: Химиздат,2000.

    В.А.Попков, С.А. Пузаков «Общая химия:учебник»-М.:ГЭОТАР-Медиа,2009.

    Ю.А.Ершов,В.А.Попков,А.С.Берлянд и др.; Под ред. Ю.А.Ершова «Общая химия. Биофизическая химия. Химия биогенных элементов»-М.: Высш.шк.,1993

Интернет-ресурсы:

«Алкалоз» , «Ацидоз»- http://ru.wikipedia.org/wiki

Фосфатная буферная система составляет около 1-2% от всей буферной емкости крови и до 50% буферной емкости мочи.

Она образована дигидрофосфатом (NaH2PO4) и гидрофосфатом (Na2HPO4) натрия.

Первое соединение слабо диссоциирует и ведет себя как слабая кислота, второе обладает щелочными свойствами.

В норме отношение HРO42– к H2РO4– равно 4: 1.

При взаимодействии кислот (ионов водорода) с двузамещенным фосфатом натрия (Na2HPO4) натрий вытесняется, образуется натриевая соль дигидрофосфата (H2PO4–). В результате, благодаря связыванию введенной в систему кислоты, концентрация ионов водорода значительно понижается.

HPO42– + Н-Анион > H2PO4– + Анион–

При поступлении оснований избыток ОН– групп нейтрализуется имеющимися в среде Н+, а расход ионов Н+ восполняется повышением диссоциации NaH2PO4.

H2PO4– + Катион-ОН > Катион+ + HPO42– + Н2О

Основное значение фосфатный буфер имеет для регуляции pH интерстициальной жидкости и мочи.

В моче роль его состоит в сбережении бикарбоната натрия за счет дополнительного иона водорода (по сравнению с NaHCO3) в составе выводимого NaH2PO4:

Na2HPO4 + Н2СО3 > NaH2PO4 + NaНСО3

Кислотно-основная реакция мочи зависит только от содержания дигидрофосфата, т.к. бикарбонат натрия в почечных канальцах реабсорбируется.

Белковая буферная система

Буферная мощность этой системы составляет 5% от общей буферной емкости крови.

Белки плазмы, в первую очередь альбумин, играют роль буфера благодаря своим амфотерным свойствам.

В кислой среде подавляется диссоциация СООН-групп, а группы NH2 связывают избыток Н+, при этом белок заряжается положительно.

В щелочной среде усиливается диссоциация карбоксильных групп, образующиеся Н+ связывают избыток ОН–-ионов и pH сохраняется, белки выступают как кислоты и заряжаются отрицательно.

Гемоглобиновая буферная система

Наибольшей мощностью обладает гемоглобиновый буфер, который можно рассматривать как часть белкового. На него приходится до 30% всей буферной емкости крови.



В буферной системе гемоглобина существенную роль играет гистидин, который содержится в белке в большом количестве.

Изоэлектрическая точка гистидина равна 7,6, что позволяет гемоглобину легко принимать и легко отдавать ионы водорода при малейших сдвигах физиологической рН крови (в норме 7,35-7,45).

Данный буфер представлен несколькими подсистемами:

Пара ННb/ННbО2 является основной в работе гемоглобинового буфера.

Соединение ННbО2 является более сильной кислотой по сравнению с угольной кислотой, HHb - более слабая кислота, чем угольная. Установлено, что ННbО2 в 80 раз легче отдает ионы водорода, чем ННb.

Присоединение ионов водорода к остатку гистидина дезоксигемоглобина выглядит так:

Работа гемоглобинового буфера неразрывно связана с дыхательной системой (к вопросу о значении пранаямы! - ALG)

В легких после удаления СО2 (угольной кислоты) происходит защелачивание крови.

При этом присоединение О2 к дезоксигемоглобину H-Hb образует кислоту ННbО2 более сильную, чем угольная. Она отдает свои ионы Н+ в среду, предотвращая повышение рН:

Н-Hb + O2 > > НbO2 + Н+

В капиллярах тканей постоянное поступление кислот (в том числе и угольной) из клеток приводит к диссоциации оксигемоглобина НbO2 (Эффект Бора) и связыванию ионов Н+ в виде Н-Hb:

НbO2+ Н+ > > Н-Hb + O2

Длительная стабилизация сдвигов рН

Это так называемая физиологическая компенсация нарушений кислотно-основного состояния, которая происходит прежде всего за счет работы дыхательной системы и почек, и в меньшей степени - за счет печени и костной системы.

Дыхательная система

Легочная вентиляция обеспечивает удаление угольной кислоты, образованной при функционировании бикарбонатной буферной системы. По скорости реакции на изменение рН – это вторая система после буферных систем.

Дополнительная вентиляция легких приводит к удалению СО2, а значит и Н2СО3, и повышает рН крови, что компенсирует закисление межклеточной жидкости и плазмы крови продуктами метаболизма, в первую очередь, органическими кислотами.

Сдвиги значений рО2 не являются сильно значимыми для изменения легочной вентиляции. Только снижение рО2 до 8 кПа в артериальной крови (норма 11,04-14,36 кПа или 83-108 мм рт.ст.) приводит к увеличению активности дыхательного центра.

Более существенным фактором для активации дыхательной системы является концентрация ионов Н+.

Накопление ионов Н+ в крови уже через 1-2 минуты вызывает максимальную (для данной их концентрации) стимуляцию дыхательного центра, повышая его активность до 4-5 раз, что приводит к снижению рСО2 до 10-15 мм рт.ст.

И, наоборот, снижение кислотности крови понижает активность дыхательного центра на 50-75%, рСО2 при этом способен возрастать до 60 мм рт.ст и выше.

Костная ткань

Это наиболее медленно реагирующая система. Механизм ее участия в регуляции рН крови состоит в возможности обмениваться с плазмой крови ионами Са2+ и Na+ в обмен на протоны Н+. Происходит растворение гидроксиапатитных кальциевых солей костного матрикса, освобождение ионов Са2+ и связывание ионов НРО42– с Н+ с образованием дигидрофосфата, который уходит с мочой.

Параллельно при снижении рН (закисление) происходит поступление ионов H+внутрь остеоцитов, а ионов калия – наружу.

Печень

Существенную, но пассивную роль в регуляции кислотно-основного состояния крови берет на себя печень, в которой происходит метаболизм низкомолекулярных органических кислот (молочная кислота и др). Кроме этого, кислые и щелочные эквиваленты выделяются с желчью.

Почки

Развитие почечной реакции на смещение кислотно-основного состояния происходит в течение нескольких часов.

Регуляция концентрации ионов H+ осуществляется опосредованно, через потоки ионов Na+, движущихся по градиенту концентрации, и через перераспределение потоков ионов К+ и Н+, которые выходят из эпителиоцитов (секретируются) в обмен на ионы Na+.

Также для обеспечения электронейтральности внутри- и внеклеточной жидкости при реабсорбции ионов Na+ усиливается реабсорбция ионов Cl–, однако их не хватает, поэтому возникает необходимость в усилении реабсорбции и дополнительном синтезе ионов HCO3– (и вот тут-то как раз и играет свою роль сода - бикарбонат натрия NaHCO3. Если мы поставляем организму дополнительное количество ионов HCO3 посредством соды, мы существенно снижаем нагрузку с почек и помогаем им в работе - ALG)

В почках активно протекают три процесса, связанных с уборкой кислых эквивалентов. Благодаря этим процессам рН мочи в состоянии снижаться до 4,5-5,2:

1. Реабсорбция бикарбонатных ионов HCO3–.

2. Ацидогенез – удаление ионов Н+ с титруемыми кислотами (в основном в составе дигидрофосфатов NaH2PO4).

3. Аммониегенез – удаление ионов Н+ в составе ионов аммония NH4+.

Реабсорбция бикарбонат-ионов

В проксимальных канальцах ионы Na+ мигрируют в цитозоль эпителиальных клеток в силу концентрационного градиента, который создается на базолатеральной мембране при работе фермента Na+,К+ АТФазы.

В обмен на ионы Na+ эпителиоциты канальцев активно секретируют в канальцевую жидкость ионы водорода.

Ионы HCO3– первичной мочи и секретируемые ионы Н+ образуют угольную кислоту Н2СО3.

В гликокаликсе эпителиоцитов фермент карбоангидраза катализирует распад угольной кислоты на СО2 и воду.

В результате возникает градиент концентрации углекислого газа между просветом канальцев и цитозолем и СО2 диффундирует в клетки.

Внутриклеточная карбоангидраза использует пришедший СО2 и образует угольную кислоту, которая диссоциирует.

Ионы НСО3– транспортируются в кровь, ионы Н+ – секретируются в мочу в обмен на ионы Na+. Таким образом, объем реабсорбции НСО3– полностью соответствует секреции ионов Н+.

Процесс реабсорбции бикарбонат-ионов

В проксимальных канальцах происходит реабсорбция 90% профильтрованного НСО3–.

В петле Генле и дистальных канальцах реабсорбируется оставшееся количество карбонат-иона. Всего в почечных канальцах реабсорбируется более 99% от фильтруемых бикарбонатов.

(Из всего вышесказанного становится очевидным, что дополнительное поступление в систему бикарбонат-ионов благодаря приему бикарбоната натрия - соды - снижает нагрузку на эту сторону работы почек. Чем больше свободных бикарбонат-ионов имеется в системе, тем меньше зависимость организма от этого процесса их реабсорбции. Соответственно, почки не сильно напрягаются в этом плане, в результате чего мы на выходе имеем мочу с более щелочной реакцией! Известно же, что у новорожденных показатель мочи близок к 8...ALG)

Ацидогенез

В процессе ацидогенеза в сутки с мочой выделяется 10-30 ммоль кислот, называемых титруемыми кислотами.

Фосфаты, являясь одной из этих кислот, играют роль буферной системы в моче.

Роль этой системы состоит экскреции кислых эквивалентов без потерь бикарбонат-ионов за счет дополнительного иона водорода в составе выводимого NaH2PO4 (по сравнению с NaHCO3):

Na2HPO4 + Н2СО3 > NaH2PO4 + NaНСО3

После того как бикарбонат натрия в почечных канальцах реабсорбируется, кислотность мочи зависит только от связывания ионов Н+с HPO42– и содержания дигидрофосфата.

Процесс ацидогенеза в почечных канальцах

Хотя в крови соотношение HРO42– : H2РO4– равно 4: 1, в клубочковом фильтрате оно меняется на 1: 9.

Происходит это из-за того, что менее заряженный H2РO4– лучше фильтруется в клубочках.

Связывание ионов Н+ ионами HРO42– на протяжении всего канальца приводит к увеличению количества H2РO4–.

В дистальных канальцах соотношение может достигать 1: 50.

Аммониегенез

Аммониегенез происходит на протяжении всего почечного канальца, но более активно идет в дистальных отделах – дистальных канальцах и собирательных трубочках коркового и мозгового слоев. Глутамин и глутаминовая кислота, попадая в клетки канальцев, быстро дезаминируются ферментами глутаминаза и глутаматдегидрогеназа с образованием аммиака.

Являясь гидрофобным соединением, аммиак диффундирует в просвет канальца и акцептирует ионы Н+ с образованием аммонийного иона.

Источником ионов H+ первичной мочи в проксимальных отделах канальца является Na+, H+-антипорт. В дистальных отделах, в отличие от проксимальных, секреция ионов Н+ происходит с участием Н+-АТФазы, локализованной на апикальной мембране вставочных клеток.

У всех живых организмов внутриклеточные и внеклеточные жидкости обычно имеют характерную и постоянную величину pH, которая поддерживается с помощью различных биологических систем. Однако первая линия защиты живых организмов, препятствующая изменениям их внутреннего pH, обеспечивается буферными системами.

Две наиболее важные буферные системы у млекопитающих - это фосфатная и бикарбонатная системы. Фосфатная буферная система, играющая важную роль в поддержании pH внутриклеточной жидкости, представляет собой сопряженную кислотно-основную пару, состоящую из иона (донора протона) и иона (акцептора протона).

Фосфатная буферная система работает точно так же, как ацетатная, с той разницей, что она функционирует в другом интервале значений pH. Эта система обладает максимальной эффективностью вблизи поскольку величина ионов равна 6,86 (см. табл. 4-4 и рис. 4-11). Фосфатная буферная пара способна сопротивляться изменениям pH в интервале между 6,1 и 7,7 и может, следовательно, обеспечивать достаточную буферную емкость внутриклеточной жидкости, величина pH которой лежит в пределе 6,9-7,4.

Главной буферной системой плазмы крови служит бикарбонатная система, представляющая собой сопряженную кислотно-основную пару, состоящую из молекулы угольной кислоты выполняющей роль донора протона и бикарбонат-иона выполняющего роль акцептора протона:

Эта система, которая имеет свою собственную константу равновесия

функционирует в качестве буфера так же, как и другие сопряженные кислотно-основные пары. Ее уникальная особенность состоит, однако, в том, что один из ее компонентов, а именно угольная кислота образуется в результате взаимодействия растворенной в воде () двуокиси углерода с водой в соответствии с обратимой реакцией:

константа равновесия которой равна

Поскольку при нормальных условиях двуокись углерода представляет собой газ, величина т.е. концентрация растворенной определяется равновесием с газовой фазы (г):

характеризуемым константой равновесия равной

Величина pH бикарбонатной буферной системы зависит от концентрации растворенных в ней компонентов и выполняющих роль донора и акцептора протонов. Поскольку, однако, концентрация в свою очередь зависит от концентрации растворенной а последняя - от парциального давления в газовой фазе, величина pH бикарбонатного буфера, находящегося в контакте с газовой фазой, в конечном счете определяется концентрацией ионов в водной фазе и парциальным давлением в газовой фазе (см. дополнение 4-3).

Бикарбонатная буферная система функционирует как эффективный физиологический буфер вблизи потому что донор протона в плазме крови находится в подвижном равновесии с большим резервным объемом газообразной в воздушном пространстве легких. В любых условиях, когда кровь почему-либо вынуждена поглощать избыток ионов ОН и повышается, количество угольной кислоты частично превратившейся в в результате взаимодействия с ионами быстро восстанавливается за счет большого запаса газообразной в легких.

Дополнение 4-3. Как работает бикарбонатная система крови

Буферная система крови включает три взаимосвязанных обратимых равновесия между газообразной в легких и бикарбонат-ионом () в плазме крови (рис. 1). Когда ионы попадают в кровь при ее протекании через сосуды тканей, их концентрация сразу же повышается. Это приводит к тому, что равновесие реакции 3 (рис. 1) смещается и устанавливается новое равновесие, соответствующее более высокой концентрации что в свою очередь приводит к повышению концентрации в крови.

Рис. 1. Между в воздушном пространстве легких и бикарбонатыым буфером в плазме крови, протекающей через капилляры легких, устанавливается равновесие. Так как концентрация растворенной может быть быстро отрегулирована путем изменений скорости дыхания, бикарбонатная буферная система крови находится почти в равновесии с обширным потенциальными резервуаром

В результате давление в газовой фазе легких тоже повышается и лишняя выдыхается. Наоборот, когда в плазму крови поступает некоторое количество ионов события происходят в обратной последовательности. Понижение концентрации ионов вызывает диссоциацию части молекул на ионы и , а это в свою очередь приводит к растворению в плазме крови некоторого дополнительного количества , содержащегося в легких. Таким образом, высокая интенсивность процесса дыхания, т.е. высокая скорость вдыхания воздуха и выдыхания может обеспечить достаточно быстрые сдвиги этих равновесий, что обусловливает сохранение постоянной величины pH в крови.

Растворяется в крови, образуя , которая вступает в реакцию с водой, что приводит к образованию (см. дополнение 4-3). И наоборот, когда величина pH крови почему-либо уменьшается, некоторое количество буферной системы связывается с избытком ионов и образуется избыток . Эта распадается, выделяя растворенную которая в свою очередь переходит в газовую фазу в легких и в конце концов выдыхается организмом. По мере того как кровь протекает через многочисленные капиллярные сосуды в легких, ее бикарбонатная буферная система быстро приходит почти в равновесное состояние с С02 в газовом пространстве легких.

Совместное функционирование бикарбонатной буферной системы и легких представляет собой очень ответственный механизм, обеспечивающий поддержание постоянной величины рн крови.

Величина pH плазмы крови поддерживается на удивительно постоянном уровне. В норме плазма крови имеет pH, близкий к 7,40. Нарушения механизмов, регулирующих величину pH, наблюдающиеся, например, при тяжелых формах диабета вследствие ацидоза, обусловленного «перепроизводством» метаболических кислот, вызывают падение pH крови до величины 6,8 и ниже, что в свою очередь, может приводить к непоправимым последствиям и смерти. При некоторых других заболеваниях величина pH крови иногда достигает столь высоких значений, что она уже не поддается нормализации. Поскольку повышение концентрации ионов всего лишь на (приблизительная разница между кровью при и кровью при может оказаться опасным для жизни, возникает вопрос: какие молекулярные механизмы обеспечивают поддержание величины pH в клетках со столь высокой точностью? Величина pH влияет на многие структурные и функциональные свойства клетки, однако к изменениям pH особенно чувствительна каталитическая активность ферментов. На рис. 4-13 приведены типичные кривые, характеризующие зависимость активности некоторых ферментов от pH. Видно, что каждый из этих ферментов проявляет максимальную активность при определенном значении pH, которое называется оптимумом pH. Отклонение величины pH в любую сторону от этого оптимального значения часто сопровождается резким падением активности фермента. Таким образом, небольшие сдвиги pH могут приводить к значительным изменениям скорости некоторых жизненно важных для организма ферментативных реакций, протекающих, например, в скелетных мышцах или в мозгу.

Рис. 4-13. Влияние на активность некоторых ферментов. Каждый фермент имеет характерную для него кривую зависимости - активность.

Биологический контроль, обеспечивающий постоянство pH в клетках и жидкостях организма, имеет, следовательно, исключительно важное значение для всех аспектов метаболизма и клеточной активности.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.