4 эластические свойства и растяжимость легких. Растяжимость легких (легочной ткани)

ТЕМА ЛЕКЦИИ: «Физиология дыхательной системы. Внешнее дыхание».

Дыхание-совокупностьпоследовательнопротекающихпроцессов, обеспечивающих потребление организмом О 2 и выделение СО 2 .

Кислород поступает в составе атмосферного воздуха в легкие, транспортируется кровью и тканевыми жидкостями к клеткам и используется для биологического окисления. В процессе окисления образуется двуокись углерода, которая поступает в жидкие среды организма, транспортируется ими в легкие и выводится в окружающую среду.

Дыхание включает определенную последовательность процессов: 1) внешнее дыхание, обеспечивающее вентиляцию легких; 2) обмен газов между альвеолярным воздухом и кровью; 3) транспорт газов кровью; 4) обмен газов между кровью в капиллярах и тканевой жидкостью; 5) обмен газов между тканевой жидкость и клетками; 6) биологическое окисление в клетках (внутреннее дыхание). Предметом рассмотрения физиологии являются первые 5 процессов; внутреннее дыхание изучают в курсе биохимии.

ВНЕШНЕЕ ДЫХАНИЕ

Биомеханика дыхательных движений

Внешнее дыхание осуществляется благодаря изменениям объема грудной полости, влияющим на объем легких. Объем грудной полости увели­чивается во время вдоха (инспирация) и уменьшается во время выдоха (экспирация). Легкие пассивно следуют за изменениями объема грудной полости, расширяясь при вдохе и спадаясь при выдохе. Эти дыхательные движения обеспечивают вентиляцию легких за счет того, что при вдохе воздух по воздухоносным путям поступает в альвеолы, а при выдохе покидает их. Изменение объема грудной полости осуществляется в результате сокращений дыхательных мышц.

. Дыхательные мышцы

Дыхательные мышцы обеспечивают ритмичное увеличение или умень­шение объема грудной полости. Функционально дыхательные мышцы де­лят на инспираторные (основные и вспомогательные) и экспираторные. Основную инспираторную группу мышц составляют диафрагма, наружные межреберные и внутренние межхрящевые мышцы; вспомогательные мышцы - лестничные, грудиноключично-сосцевидные, трапецевидная, боль­шая и малая грудные мышцы. Экспираторную группу мышц составляют абдоминальные (внутренняя и наружная косые, прямая и поперечная мышцы живота) и внутренние межреберные.

Важнейшей мышцей вдоха является диафрагма - куполообразная попереч­нополосатая мышца, разделяющая грудную и брюшную полости. Она прикрепляется к трем первым поясничным позвонкам (позвоночная часть диафраг­мы) и к нижним ребрам (реберная часть). К диафрагме подходят нервы от III - V шейных сегментов спинного мозга. При сокращении диафрагмы ор­ганы брюшной полости смещаются вниз и вперед и вертикальные размеры грудной полости возрастают. Кроме того, при этом поднимаются и расходятся ребра, что приводит к увеличению поперечного размера грудной полости. При спокойном дыхании диафрагма является единственной активной инспираторной мышцей и ее купол опускается на 1 - 1,5 см. При глубоком форсированном дыхании увеличивается амплитуда движений диафрагмы (экскурсия может достигать 10 см) и активизируются наружные межреберные и вспомогательные мышцы. Из вспомогательных мышц наиболее значимыми являются лестничные и грудиноключично-сосцевидные мышцы.

Наружные межреберные мышцы соединяют соседние ребра. Их волокна ориентированы наклонно вниз и вперед от верхнего к нижнему ребру. При сокращении этих мышц ребра поднимаются и смещаются вперед, что приводит к увеличению объема грудной полости в переднезаднем и боковом направлениях. Паралич межреберных мышц не вызывает серьезных расстройств дыхания, поскольку диафрагма обеспечивает вентиляцию.

Лестничные мышцы, сокращаясь во время вдоха, поднимают 2 верхних ребра, а вместе сними всю грудную клетку. Грудиноключично-сосцевидные мышцы поднимают I ребро и грудину. При спокойном дыхании они практически не задействованы, однако при увеличении легочной вентиля­ции могут интенсивно работать.

Выдох при спокойном дыхании происходит пассивно. Легкие и грудная клетка обладают упругостью, и поэтому после вдоха, когда они активно растягиваются, стремятся вернуться в прежнее положение. При физической нагрузке, когда повышено сопротивление воздухоносных путей, вы­дох становится активным.

Наиболее важными и сильными экспираторными мышцами являются абдоминальные мышцы, которые образуют переднебоковую стенку брюшной полости. При их сокращении повышается внутрибрюшное давление, диафрагма поднимается вверх и объем грудной полости, а следовательно и легких, уменьшается.

В активном выдохе участвуют также внутренние межреберные мышцы. При их сокращении ребра опускаются и объем грудной клетки уменьшается. Кроме того, сокращение этих мышц способствует укреплению межреберных промежутков.

У мужчин преобладает брюшной (диафрагмальный) тип дыхания, при котором увеличение объема грудной полости осуществляется преимущест­венно за счет перемещений диафрагмы. У женщин - грудной (реберный) тип дыхания, при котором больший вклад в изменения объема грудой полости вносят сокращения наружных межреберных мышц, расширяющих грудную клетку. Грудной тип дыхания облегчает вентиляцию легких при беременности.

Изменения давления в легких

Дыхательные мышцы изменяют объем грудной клетки и создают гради­ент давления, необходимый для возникновения воздушного потока по воздухоносным путям. Во время вдоха легкие пассивно следуют за объем­ным приращением грудной клетки, в результате давление в альвеолах становится ниже атмосферного на 1,5-2 мм рт. ст. (отрицательное). Под воздействием отрицательного градиента давления в легкие входит воздух из внешней среды. Напротив, при выдохе уменьшается объем легких, давление в альвеолах становится выше атмосферного (положительное) и альвеолярный воздух выходит во внешнюю среду. В конце вдоха и выдоха объем грудной полости прекращает изменяться, и при открытой голосо­вой щели давление в альвеолах становится равным атмосферному . Альвеолярное давление (Ра1у) представляет собой сумму плеврального давления (Рр1) и давления, создаваемого эластической тягой паренхимы легкого (Ре1) : Ра1у = Рр1 + Ре1.

Плевральное давление

Давление в герметично замкнутой плевральной полости между висцера­льным и париетальным листками плевры зависит от величин и направле­ния сил, создаваемых эластической паренхимой легких и грудной стенкой. Плевральное давление можно измерить манометром, соединенным с плевральной полостью полой иглой. В клинической практике часто применяют косвенный метод оценки величины плеврального давления, измеряя давление в нижней части пищевода с помощью пищеводного баллонного катетера. Внутрипищеводное давление во время дыхания отражает изменения внутриплеврального давления.

Плевральное давление ниже атмосферного во время вдоха, а во время выдоха может быть ниже, выше или равным атмосферному в зависимости от форсированности выдоха. При спокойном дыхании плевральное давле­ние перед началом вдоха составляет -5 см вод.с т., перед началом выдоха оно понижается еще на 3-4 см вод.ст. При пневмотораксе (нарушение герметичности грудной клетки и сообщение плевральной полости с внешней средой) выравниваются плевральное и атмосферное давления, что вы­зывает спадение легкого и делает невозможной его вентиляцию.

Разница между альвеолярным и плевральным давлениями называется Щанспульмональным давлением (Р1р = Рагу - Рр1 ), величина которого в со­отношении с внешним атмосферным давлением и является основным фактором, вызывающим движение воздуха в воздухоносных путях легких.

В области контакта легкого с диафрагмой давление называется транс-диафрагмальным (Р1с1); рассчитывают как разницу между внутрибрюшным (РаЬ) и плевральным давлением: РШ = РаЬ - Рр1 .

Измерение трансдиафрагмального давления представляет собой наибо­лее точный способ оценки сократительной способности диафрагмы. При ее активном сокращении содержимое брюшной полости сжимается и рас­тет внутрибрюшное давление, трансдиафрагмальное давление становится положительным.

Эластические свойства легких

Если изолированное легкое поместить в камеру и снизить давление в ней ниже атмосферного, то легкое расширится. Его объем можно изме­рить с помощью спирометра, что поволяет построить статическую кривую давление-объем (рис. 7.2). В отсутствие потока кривые вдоха и выдоха различны. Это различие между кривыми характеризует способность всех эластических структур легче реагировать на уменьшение, чем на увеличе­ние объема. На рисунке видно несовпадение начала кривых с началом ко­ординат, что свидетельствует о содержании в легких определенного коли­чества воздуха даже в отсутствие растягивающего давления.

Растяжимость легких

Отношение между давлением и изменением объема легких может быть выражено как Р = Е-дУ, где Р - растягивающее давление, Е - эластичность, ДУ - изменение объема легких. Эластичность - мера упругости легочной ткани. Величина, обратная эластичности (С$1а1 = 1/Е), называется статической растяжимостью. Таким образом, растяжимость - это изменение объема на единицу давления. У взрослых она равна 0,2 л/см вод. с т. Легкое более растяжимо при низких и средних объемах. Статическая растяжимость зависит от размеров легких. Легкое крупных размеров подвержено большим изменениям своего объема на единицу изменения давления, чем маленькое легкое.

Поверхность альвеол изнутри покрыта тонким слоем жидкости, содержащей сурфактант. Сурфактант секретируется альвеолярными эпителиаль­ными клетками II типа и состоит из фосфолипидов и протеинов.

Эластические свойства грудной клетки

Упругостью обладают не только легкие, но и грудная стенка. При оста­точном объеме легких эластическая отдача грудной стенки направлена на­ружу. По мере того как объем грудной полости увеличивается, отдача стенки, направленная наружу, снижается и при объеме грудной полости около 60 % жизненной емкости легких падает до нуля П ри дальнейшем расширении грудной клетки до уровня общей емкости легких от­дача ее стенки направляется внутрь. Нормальная растяжимость грудной стенки равна 0,2 л/см вод. с т. Легкие и грудная стенка функционально объединены посредством плевральной полости. н а уровне общей емкости легких эластические отдачи легких и грудной стенки, суммируются, создавая большое давление отдачи всей дыхательной системы. На уровне остаточного объема направленная наружу эластическая отдача грудной стенки значительно превосходит отдачу легких, направлен­ную внутрь. В результате в дыхательной системе возникает суммарное давление отдачи, направленное наружу. На уровне функциональной остаточ­ной емкости (РКС) эластическая тяга легких, направленная внутрь, урав­новешена эластической тягой грудной клетки, направленной наружу. Таким образом, при РК.С дыхательная система находится в равновесии. Статическая растяжимость всей дыхательной системы в норме составляет 0,1 л/см вод.с т.

Сопротивление в дыхательной системе

Продвижение воздуха через дыхательные пути встречает сопротивление сил трения о стенки бронхов, величина которого зависит от характера по­тока воздуха. В воздухоносных путях встречаются 3 режима потока: ламинарный , турбулентный и переходный . Наиболее характерным видом потока в условиях дихотомического разветвления трахеобронхиального дерева является переходный , тогда как ламинарный наблюдается лишь в мелких воздухоносных путях.

Сопротивление воздухоносных путей можно рассчитать, разделив раз­ность давлений в ротовой полости и альвеолах на объемную скорость воз­душного потока. Сопротивление воздухоносных путей распределяется неравномерно У взрослого человека при дыхании через рот на глотку и гортань приходится около 25 % общего сопротивления; на долю внутригрудных крупных воздухоносных путей (трахея, долевые и сегмен­тарные бронхи) - около 65 % общего сопротивления, остальные 15 % - на долю воздухоносных путей с диаметром менее 2 мм. Мелкие воздухоносные пути вносят незначительный вклад в общее сопротивление, так как их общая площадь поперечного сечения велика и, следовательно, сопротивление мало.

На сопротивление воздухоносных путей существенно влияет изменение объема легких. Бронхи растягиваются окружающей их легочной тканью; их просвет при этом увеличивается, а сопротивление снижается. Аэроди­намическое сопротивление зависит также от тонуса гладких мышц брон­хов и физических свойств воздуха (плотность, вязкость).

Нормальное сопротивление воздухоносных путей у взрослых на уровне функциональной остаточной емкости (РК.С ) равно примерно 15 см вод. ст./л/с.

Работа дыхания

Дыхательные мышцы, развивая силу, приводящую в движение легкие и грудную стенку, выполняют определенную работу. Работу дыхания (А) выражают как произведение общего давления, приложенного к аппарату вентиляции в данный момент дыхательного цикла (Р), и изменения объ­ема (V ):

А = Р ■ V .

Во время вдоха внутриплевральное давление падает, объем легких ста­новится выше РК.С. При этом работа, затраченная на наполнение легких (вдох), состоит из двух компонентов: один необходим для преодоления эластических сил и представлен площадью ОАЕСДО; другой - для прео­доления сопротивления воздухоносных путей - представлен площадью АБСЕА. Работа выдоха - это площадь АЕСВА. Поскольку последняя находится внутри площади ОАЕСДО, эта работа выполняется за счет энергии, накопленной эластической паренхимой легких в процессе растяжения во время вдоха.

В норме при спокойном дыхании работа невелика и составляет 0,03- 0,06 Вт мин"" 1 . На преодоление эластического сопротивления приходит­ся 70 %, а неэластического - 30 % всей работы дыхания. Работа дыхания возрастаетприснижениирастяжимостилегких(увеличениеплощади ОАЕСДО) или при увеличении со­противления воздухоносных путей (увеличение площади АБСЕА).

Работа, необходимая для прео­доления эластических (площадь ОАЕСДО) и резистивных (площадь АБСЕА) сил, может быть определе­на для каждого дыхательного цикла.

ВЕНТИЛЯЦИЯ ЛЕГКИХ

Вентиляция легких - непрерывный регулируемый процесс обновления газового состава воздуха, содержащегося в легких. Вентиляция легких обеспечивается введением в них атмосферного воздуха, богатого Ог, и вы­ведением при выдохе газа, содержащего избыток СО2 .

Легочные объемы и емкости

Для характеристики вентиляционной функции легких и ее резервов бо­льшое значение имеет величина статических и динамических объемов и емкостей легких. К статическим объемам относятся величины, которые измеряют после завершения дыхательного маневра без ограничения ско­рости (время) его выполнения. К статическим показателям относятся че­тыре первичных легочных объема: дыхательный объем (ДО-УТ), резерв­ный объем вдоха (РОвд-1КУ), резервный объем выдоха (РОвыд-ЕКУ) и остаточный объем (ОО-КУ), а также и емкости: жизненная емкость легких (ЖЕЛ-УС), емкость вдоха (Евд-1С), функциональная остаточная емкость (ФОЕ-РКС) и общая емкость легких (ОЕЛ-ТЪС).

При спокойном дыхании с каждым дыхательным циклом в легкие по­ступает объем воздуха, называемый дыхательным (УТ). Величина УТ у взрослого здорового человека весьма вариабельна; в состоянии покоя УТ составляет в среднем около 0,5 л.

Максимальный объем воздуха, который дополнительно человек способен вдохнуть после спокойного вдоха, называется резервным объемом вдоха (1КУ). Этот показатель для человека среднего возраста и средних антропометрических данных составляет около 1,5-1,8 л.

Максимальный объем воздуха, который человек дополнительно может выдохнуть после спокойного выдоха, называется резервным объемом вы­доха (ЕКУ) и составляет 1,0-1,4 л. Гравитационный фактор оказывает вы­раженное влияние на этот показатель, поэтому он выше в вертикальном положении, чем в горизонтальном.

Остаточный объем (КУ) - объем воздуха, который остается в легких после максимального экспираторного усилия; он составляет 1,0-1,5 л. Его объем зависит от эффективности сокращения экспираторных мышц и ме­ханических свойств легких. С возрастом КУ увеличивается. КУ подразделяют на коллапсный (покидает легкое при полном двустороннем пневмото­раксе) и минимальный (остается в легочной ткани после пневмоторакса).

Жизненная емкость легких (УС) - это объем воздуха, который можно выдохнуть при максимальном экспираторном усилии после максимально­го вдоха. УС включает в себя УТ, 1КУ и ЕКУ. У мужчин среднего возраста УС варьирует в пределах 3,5-5 л, у женщин - 3-4 л.

Емкость вдоха (1С) - это сумма УТ и 1КУ. У человека 1С составляет 2,0-2,3 л и не зависит от положения тела.

Функциональная остаточная емкость (РКС) - объем воздуха в легких после спокойного выдоха - составляет около 2,5 л. РКС называют также конечным экспираторным объемом. При достижении легкими РКС их внутренняя эластическая отдача уравновешивается наружной эластиче­ской отдачей грудной клетки, создавая отрицательное плевральное давле­ние. У здоровых взрослых лиц это происходит на уровне примерно 50 %. ТЬС при давлении в плевральной полости - 5 см вод. с т. РКС является суммой ЕКУ и КУ. На величину РКС существенно влияет уровень физической активности человека и положение тела в момент измерения. РЯС в горизонтальном положении тела меньше, чем в положении сидя или стоя из-за высокого стояния купола диафрагмы. РКС может уменьшаться, если тело находится под водой вследствие уменьшения общей растяжимости грудной клетки. Общая емкость легких (ТЬС) - объем воздуха, находя­щийся в легких по завершении максимального вдоха. ТЬС представляет собой сумму УС и КУ или РКС и 1С.

Динамические величины характеризуют объемную скорость воздушного потока. Их определяют с учетом времени, затраченного на выполнение дыхательного маневра. К динамическим показателям относятся: объем форсированного выдоха за первую секунду (ОФВ) - РЕУ[ ); форсирован­ная жизненная емкость (ФЖЕЛ - РУС); пиковая объемная (РЕУ) ско­рость выдоха (ПОСвыд. - РЕУ) и др. Объемы и емкости легких здорового человека определяет ряд факторов: 1) рост, масса тела, возраст, расовая принадлежность, конституциональные особенности человека; 2) эластиче­ские свойства легочной ткани и дыхательных путей; 3) сократительные характеристики инспираторных и экспираторных мышц.

Для определения легочных объемов и емкостей используются методы спирометрии, спирографии, пневмотахометрии и бодиплетизмографии. Для сопоставимости результатов измерений легочных объемов и емкостей полученные данные должны соотноситься со стандартными условиями: температуры тела 37 °С , атмосферного давления 101 кПа (760 мм рт.ст.), относительной влажности 100 %. Эти стандартные условия обозначают аб­бревиатурой ВТРЗ (от англ. Ъойу гетрегаШге, ргеззиге, заШгагес!).

Количественная характеристика вентиляции легких

Количественным показателем вентиляции легких является минутный объем дыхания (МОД - У Е) величина, характеризующая общее количество воздуха, которое проходит через легкие в течение 1 мин. Ее можно определить как произведение частоты дыхания (К.) на дыхательный объем (УТ) : У Е = УТ К. Величина минутного объема дыхания определяется метаболическими потребностями организма и эффективностью газообме­на. Необходимая вентиляция достигается различными комбинациями ча­стоты дыхания и дыхательного объема. У одних людей прирост минутной вентиляции осуществляется учащением, у других - углублением дыхания.

У взрослого человека в условиях покоя величина МОД в среднем составляет 8 л.

Максимальная вентиляция легких (МВЛ) - объем воздуха, который проходит через легкие за 1 мин при выполнении максимальных по частоте и глубине дыхательных движений. Эта величина чаще всего имеет теоретическое значение, так как невозможно поддерживать максимально возможный уровень вентиляции в течение 1 мин даже при максимальной физической нагрузке из-за нарастающей гипокапнии. Поэтому для его косвенной оценки используют показатель максимальной произвольной вентиляции легких. Он измеряется при выполнении стандартного 12-секундного теста с максимальными по амплитуде дыхательными движениями, обеспе­чивающими величину дыхательного объема (УТ) до 2-4 л, и с частотой дыхания до 60 в 1 мин.

МВЛ в значительной степени зависит от величины ЖЕЛ (УС). У здоро­вого человека среднего возраста она составляет 70-100 л -м ин" 1 ; у спортс­мена доходит до 120-150 л мин~".

Альвеолярная вентиляция

Газовая смесь, поступившая в легкие при вдохе, распределяется на две неравные по объему и функциональному значению части. Одна из них не принимает участия в газообмене, так как заполняет воздухонос­ные пути (анатомическое мертвое пространство - Уё) и неперфузируемые кровью альвеолы (альвеолярное мертвое пространство). Сумма анатомического и альвеолярного мертвых пространств называется физиологическим мертвым пространством. У взрослого человека в положении стоя объем мертвого пространства (Ус1 ) составляет 150 мл воздуха, находяще­гося в основном в воздухоносных путях. Эта часть дыхательного объема участвует в вентиляции дыхательных путей и неперфузируемых альвеол. Отношение УсЗ к УТ составляет 0,33. Ее величину можно рассчитать по уравнению Бора

Ус! = (Р А СО 2 - Р Е СО 2 /Р А СО 2 - Р,С О 2) ■ УТ,

где Р А, Р Е, Р[ СО 2 - концентрация СО2 в альвеолярном, выдыхаемом и вдыхаемом воздухе.

Другая часть дыхательного объема поступает в респираторный отдел, представленный альвеолярными протоками, альвеолярными мешочками и собственно альвеолами, где принимает участие в газообмене. Эта часть дыхательного объема называется альвеолярным объемом. Она обеспечивает

вентиляцию альвеолярного пространства.Объем альвеолярнойвентиля­ции (Уд) рассчитывают по формуле:

У А = У Е - (К Ус!).

Как следует из формулы, не весь вдыхаемый воздух участвует в газообмене, поэтому альвеолярная вентиляция всегда меньше легочной вентиля­ции. Показатели альвеолярной вентиляции, легочной вентиляции и мертвого пространства связаны следующей формулой:

Уй/Уе = Ус1 /УТ = 1 - Уа/Уе.

Отношение объема мертвого пространства к дыхательному объему ред­ко меньше чем 0,3.

Газообмен наиболее эффективен, если альвеолярная вентиляция и ка­пиллярная перфузия распределены равномерно по отношению друг к другу. В норме вентиляция обычно преимущественно осуществляется в верхних отделах легких, в то время как перфузия - преимущественно в ниж­них. Вентиляционно-перфузионное соотношение становится более равномерным при нагрузке.

Не существует простых критериев для оценки неравномерности распре­деления вентиляции к кровотоку. Повышение соотношения объема мерт­вого пространства к дыхательному объему (У6 /УТ) или увеличенная раз­ница парциального напряжения кислорода в артериях и альвеолах (А-аЭОг) являются неспецифическими критериями неравномерности рас­пределения газообмена, однако эти изменения могут быть вызваны и дру­гими причинами (снижение дыхательного объема, повышенное анатоми­ческое мертвое пространство).

Наиболее важными особенностями альвеолярной вентиляции являются:

Интенсивность обновления газового состава, определяемая соотношени­ем альвеолярного объема и альвеолярной вентиляции;

Изменения альвеолярного объема, которые могут быть связаны либо с увеличением или уменьшением размера вентилируемых альвеол, либо с изменением количества альвеол, вовлеченных в вентиляцию;

Различия внутрилегочных характеристик сопротивления и эластичности, приводящие к асинхронности альвеолярной вентиляции;

Поток газов в альвеолу или из нее определяется механическими характе­ристиками легких и дыхательных путей, а также силами (или давлени­ем), воздействующими на них. Механические характеристики обуслов­лены главным образом сопротивлением дыхательных путей потоку воз­духа и эластическими свойствами легочной паренхимы.

Хотя существенные изменения размеров альвеол могут произойти за короткий промежуток времени (диаметр может измениться в 1,5 раза в те­чение 1 с), линейная скорость потока воздуха внутри альвеол очень мала.

Размеры альвеолярного пространства таковы, что смешивание газа в альвеолярной единице происходит практически мгновенно как следствие дыхательных движений, кровотока и движения молекул (диффузия).

Неравномерность альвеолярной вентиляции обусловлена и гравитационным фактором - разницей транспульмонального давления в верхних и нижних отделах грудной клетки (апико-базальный градиент). В верти­кальном положении в нижних отделах это давление выше примерно на 8 см вод. с т. (0,8 кПа). Апико-базальный градиент всегда присутствует независимо от степени воздухонаполненности легких и в свою очередь определяет наполнение воздухом альвеол в разных отделах легких. В нор­ме вдыхаемый газ смешивается практически мгновенно с альвеолярным газом. Состав газа в альвеолах практически гомогенен в любую респира­торную фазу и в любой момент вентиляции.

Любое повышение альвеолярного транспорта О 2 и СО 2 , например при физической нагрузке, сопровождается повышением градиентов концентрации газов, которые способствуют возрастанию их смешивания в альвеолах. Нагрузка стимулирует альвеолярное смешивание путем повышения потока вдыхаемого воздуха и возрастания кровотока, повышает альвеолярнокапиллярный градиент давления для О2 и СО2.

Феномен коллатеральной вентиляции важен для оптимального функционирования легких. Существует три типа коллатеральных соединений:

Интеральвеолярные, или поры Кона. Каждая альвеола в норме имеет около 50 интеральвеолярных соединений от 3 до 13 мкм в диаметре; эти поры увеличиваются в размере с возрастом;

Бронхоальвеолярные соединения, или каналы Ламберта, которые присутствуют в норме у детей и взрослых и иногда достигают в диаметре 30 мкм;

Межбронхиолярныесоединения,иликаналыМартина,которыене встречаются у здорового человека и появляются при некоторых заболе­ваниях, поражающих дыхательные пути и легочную паренхиму.

Гравитация также оказывает влияние на легочный кровоток. Региональная перфузия единицы легочного объема возрастает по направлению от верхушек к базальным отделам легких в большей степени, чем это происходит с вентиляцией. Поэтому в норме вентиляционно-перфузионное отношение (Уа/Ос) снижается от верхушек к нижним отделам. Вентиляци-онно-перфузионные отношения зависят от положение тела, возраста и величины растяжения легких.

Не вся кровь, перфузирующая легкие, участвует в газообмене. В норме небольшая порция крови может перфузировать невентилируемые альвео­лы (так называемое шунтирование). У здорового человека отношение У а/С>с может варьировать в различных участках от нуля (циркуляторный шунт) до бесконечности (вентиляция мертвого пространства). Однако в большей части легочной паренхимы вентиляционно-перфузионное отношение составляет примерно 0,8. Состав альвеолярного воздуха оказывает влияние на кровоток в легочных капиллярах. При низком содержании Ог (гипоксии), а также понижении содержания СОг (гипокапнии) в альвеолярном воздухе отмечается повышение тонуса гладких мышц легочных сосудов и их констрикция с возрастанием сосудистого сопротивлен

Функциональные методы исследования

Исследование эластических свойств легких в клинической практике

М.Ю. Каменева

В статье описан метод исследования эластических свойств легких с пищеводным зондом и представлены возможности его применения в клинической практике.

Ключевые слова: эластические свойства легких, растяжимость легких, работа дыхания, эмфизема легких, фиброз легких.

Под эластическими (упругими) свойствами легких понимают их способность изменять объем в зависимости от приложенной силы. Являясь важнейшей характеристикой механики дыхания, податливость легких, т.е. их способность к растяжению, определяет величины статических легочных объемов и просвета дыхательных путей, особенно их периферических отделов. Кроме того, физическое свойство эластических структур - способность аккумулировать энергию при растяжении - позволяет здоровому человеку осуществлять спокойный выдох пассивно, без участия дыхательных мышц, минимизируя, таким образом, энергетическую стоимость дыхания.

Эластические свойства легких формируются за счет соединительнотканного каркаса, представленного эластическими, коллагеновыми и ретикулярными волокнами, сил поверхностного натяжения, кровенаполнения легочных сосудов и тонуса гладких мышц. Для изучения эластических свойств легких используют методику с пищеводным зондом. В клинической практике она не нашла широкого применения, что лишь отчасти связано с трудоемкостью и инвазивным характером исследования, а в большей степени обусловлено недостаточной осведомленностью специалистов о возможностях метода. Указанное исследование позволяет не только определить, каким образом изменяются упругие свойства легких - увеличиваются или, наоборот, снижаются, но и ответить на ряд важных для практикующего специалиста вопросов: поражение самих легких

Марина Юрьевна Каменева - докт. мед. наук, вед. науч. сотр. Научно-исследовательского центра ФГБОУ ВО "Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова" МЗ РФ. Контактная информация: [email protected]

(интерстициальное воспаление, фиброз, отек) или какие-то патологические изменения внелегочных структур (слабость дыхательных мышц, деформация грудной клетки) послужили причиной снижения легочных объемов? связана ли обструкция дыхательных путей с разрушением эластического каркаса легких - эмфиземой или обусловлена внутрибронхиальными причинами (отек, воспаление, спазм гладкой мускулатуры)? за счет чего изменяется работа дыхания?

Методологические аспекты проведения исследования

К показателям, характеризующим эластические свойства легких, относятся растяжимость легких (lung compliance, CL), их эластичность (lung elastance, EL) и работа дыхания (work of breathing, W). В основу метода положено измерение транспульмонального давления (Ртп) с помощью пищеводного зонда и специального блока, интегрированного, как правило, в бодиплетиз-мограф.

Способность легких к растяжению зависит от их эластического давления (elastic pressure of the lung, lung recoil pressure - Plel), величину которого определяют по разнице давлений, действующих на легкие изнутри (альвеолярное давление, PA) и снаружи (плевральное давление, Рпл):

Прямое измерение Рпл возможно только в условиях эксперимента, поскольку сопряжено с опасными и травматичными манипуляциями, поэтому в клинической практике вместо Рпл с помощью специального зонда определяют давление внутри пищевода (Р). Пищеводный зонд пред-

ставляет собой жесткий полиэтиленовый катетер с внутренним диаметром 1-1,5 мм, на конце которого закреплен тонкостенный латексный баллон (рис. 1). В специальных исследованиях было установлено, что абсолютная величина Р

несколько превышает Рпл, но при вертикальном положении тела колебания давления в латекс-ном баллоне, размещенном в нижней трети пищевода, практически равны изменениям Рпл .

Прямого измерения РА также не производят и при расчете Ртп его величину считают равной давлению в полости рта (Ррот) :

тп рот пищ

Зонд в пищевод вводят через нижний носовой ход под местной анестезией - раствор анестетика закапывают в нижний носовой ход 3-4 раза с 15-минутными интервалами. Для фиксации зонда используют носовой зажим. Схематическое изображение правильного расположения пищеводного зонда представлено на рис. 2. Поскольку спазмы пищевода не позволяют выполнить корректные измерения, исследование проводят спустя 1,5-2 ч после легкой еды.

Сужение и деформация носовых ходов, склонность к носовым кровотечениям и повышенный рвотный рефлекс являются противопоказаниями к назначению исследования наряду с общими для всех легочных функциональных тестов противопоказаниями, такими как отсутствие контакта с пациентом, заболевания и состояния, не позволяющие пациенту выполнять необходимые дыхательные маневры, травмы и заболевания челюстно-лицевого аппарата, препятствующие правильному подсоединению загубника и носового зажима.

Во время измерения пациент дышит через пневмотахометр, что позволяет одновременно с изменениями Ртп регистрировать изменения объема легких (V). Запись отображается на экране монитора в координатах V-Pтп в виде замкнутых петель - кривых растяжимости. Кривые растяжимости, регистрируемые при спокойном или частом дыхании, имеют эллипсоидную форму (рис. 3а), а записанные при максимально глубоком и замедленном дыхании - Я-образную, что связано со снижением растяжимости в области предельных объемов (рис. 3б).

Одновременная запись изменений Ртп и V позволяет рассчитать Сь и обратную ей величину Еь :

~- Пневмотахометр - Пищеводный зонд

Пищеводный зонд Диафрагма

Рис. 2. Схематическое изображение правильного положения пищеводного зонда (в нижней трети пищевода) при измерении транспульмо-нального давления (VIASYS Healthcare Gmbh, Германия).

CL = AV/AP; El = 1/CL = AP/AV.

Следовательно, CL характеризует способность легких изменять объем в зависимости от приложенной силы, а El, наоборот, соответствует тому усилию, которое затрачивается дыхательными мышцами на расправление легких. Чем жестче легкое, что наблюдается, например, у больных идиопатическим легочным фиброзом, тем больше сил требуется на его растяжение - EL возрастает, а CL снижается, поскольку даже хорошая работа дыхательных мышц неспособна адекватно увеличить объем ригидного легкого. Противоположная картина наблюдается при эмфиземе легких, когда разрушение эластического каркаса делает легкие податливыми и даже небольшое усилие приводит к их быстрому расправлению на вдохе, за которым следует такое же скорое спадение их на выдохе - CL возрастает, а EL снижается.

Растяжимость, определяемую при спокойном или учащенном дыхании, принято называть динамической (dynamic compliance - Cldyn), а определяемую при глубоком и максимально замедленном дыхании - статической (static compliance - Clstat). Исследование эластических свойств легких требует создания статических

2-101234 Транспульмональное давление, кПа

Рис. 3. Кривые растяжимости здорового человека: а - при спокойном дыхании; б - при замедленном дыхании с максимальной амплитудой изменения объема (от уровня общей емкости легких до уровня остаточного объема легких). Нулевая отметка на оси ординат соответствует уровню функциональной остаточной емкости легких.

условий, под которыми понимают отсутствие воздушного потока при полном расслаблении дыхательной мускулатуры. Поскольку в истинно статических условиях провести исследование у человека невозможно, на практике Сь измеряют в максимально приближенных к ним условиях, называемых квазистатическими. Для Съйуп такие условия возникают в момент смены фаз ды-

Транспульмональное давление, кПа

Рис. 4. Схематическое изображение кривых растяжимости - динамической (1), квазистатической (2) и статической (3). Точками обозначены моменты измерения, соответствующие квазистатическим условиям: для кривой динамической растяжимости - моменты смены фаз дыхательного цикла; для кривой квазистатической растяжимости - моменты прерывания потока воздуха заслонкой. Пояснения в тексте. ЖЕЛ -жизненная емкость легких. Здесь и на рис. 5: ДО - дыхательный объем.

хательного цикла (рис. 4 (1)), а при измерении используют специальный прием: во время глубокого медленного выдоха с уровня общей емкости легких (ОЕЛ) до уровня остаточного объема легких (ООЛ) поток воздуха многократно прерывается при помощи заслонки (см. рис. 4 (2)). В момент срабатывания заслонки измеряют Ртп и по этим точкам строят кривую статической растяжимости (см. рис. 4 (3)). Определение растяжимости легких на выдохе связано с необходимостью нивелировать влияние сил поверхностного натяжения, действующих внутри альвеол.

Определяют Сь как по кривой динамической растяжимости, так и по кривой статической растяжимости. При расчете Съйуп изменение Ртп определяют при изменении объема на величину, равную дыхательному объему (рис. 5 (1)), а при расчете - при изменении объема на 0,5 л

от уровня функциональной остаточной емкости легких (ФОЕ) (см. рис. 5 (2)).

Помимо показателей растяжимости одномоментная регистрация изменений Ртп и V позволяет оценить энергетические затраты дыхательных мышц, связанные с вентиляцией, по выполненной ими работе (W):

Общая работа дыхания (total work of breathing, Wtot) состоит из эластической фракции (elastic work of breathing, Wel) - работы по преодолению эластических сил легких, грудной клетки и действующих внутри альвеол сил поверхностного натяжения, и неэластической (ре-зистивной) (resistive (viscous) work of breathing, W) - работы по преодолению аэродинамиче-

ского сопротивления дыхательных путей (бронхиального сопротивления) и тканевого сопротивления . Определение работы дыхания проводят как в покое, так и при различных режимах увеличения вентиляции - физической нагрузке или произвольной гипервентиляции.

Оценка результатов исследования

Для интерпретации полученных данных трудно рекомендовать определенную систему должных величин, поскольку исследований эластических свойств легких у большого числа здоровых лиц обоего пола в широком возрастном диапазоне не проводилось. В практической работе используют референсные значения, которые заложены в программное обеспечение прибора и представляют собой совокупность данных из различных источников и исследований, проведенных по инициативе производителя оборудования .

Диапазон нормальных значений CL довольно широкий - 100 ± 50% от должного значения, что связано с выраженной зависимостью тонуса гладких мышц и кровенаполнения легочных капилляров от состояния нервной системы и воздействия гуморальных факторов . При анализе растяжимости используют также ее удельные, т.е. рассчитанные на единицу объема (ФОЕ или ОЕЛ), величины: специфическую динамическую (CLdyn/ФОЕ, &ауп/ОЕЛ) и специфическую статическую (Cl^/фОе, Cl^/ОЕЛ) растяжимость . Реже оценивают величины Ртп при различной воз-духонаполненности легких - на уровне 50, 60, 70, 80, 90 и 100% ОЕЛ (Ртп 100% ОЕЛ). Однако наиболее информативным считается индекс ретракции легких (coefficient of retraction, CR), рассчитываемый с учетом величин ОЕЛ и Ртп 100% ОЕЛ :

тп 100% ОЕЛ

Диапазон нормальных значений CR для мужчин и женщин одинаковый и составляет 0,30-0,60 кПа/л .

Повышение массы интерстициальной ткани при диссеминированных заболеваниях легких, застойных явлениях в малом круге кровообращения приводит к снижению CL, а разрушение эластического каркаса легких при эмфиземе - к ее увеличению . Изменение растяжимости может предшествовать появлению других функциональных признаков вентиляционных нарушений. В работе P.W. Boros et al. у больных с I-III стадией саркоидоза органов дыхания CL была снижена в 24,5% случаев, в то время как ОЕЛ оставалась в пределах физиологической нормы . Изменение растяжимости не только

Транспульмональное давление, кПа

Рис. 5. Схематическое изображение измерения растяжимости: синим цветом обозначены данные, относящиеся к динамической растяжимости, красным - относящиеся к статической растяжимости. 1 - кривая динамической растяжимости: ДУ, - изменение объема и соот-

ветствующее ему изменение транспульмональ-ного давления (ДРтПйуп), необходимые для расчета Сьйуп; 2 - кривая статической растяжимости: ДУа4а4 - изменение объема и соответствующее ему изменение транспульмонального давления (ДРТп8Ш), необходимые для расчета СъяШ.

предшествовало появлению рестриктивных нарушений, но и выявлялось у больных с нормальной диффузионной способностью легких, т.е. было самым первым функциональным признаком поражения легких. Поскольку CR характеризует не растяжимость, а эластичность легких, то он изменяется противоположным Сь образом - повышается при интерстициальном отеке или фиброзе и снижается при эмфизематозной деструкции легких . Благодаря хорошей чувствительности и специфичности показатели легочной растяжимости и эластичности успешно применяются в торакальной хирургии для оценки результатов хирургической редукции объема легких, трансплантации легких .

Анализ кривых статической растяжимости позволяет наглядно продемонстрировать различие в податливости легочной паренхимы, когда одно и то же изменение Ртп, например равное 1 кПа, у больного с эмфиземой легких вызывает изменение объема легких (Ух), практически в 5 раз большее, чем у больного с легочным фиброзом (У2) (рис. 6).

Показатели работы дыхания информативны при диагностике обструктивных нарушений. У здорового человека при спокойном дыхании

Эмфизема легких

А В Норма

Фиброз легких

Обструкция дыхательных путей

Транспульмональное давление, кПа

Рис. 7. Схематическое изображение кривых динамической растяжимости при спокойном дыхании в норме, при фиброзе легких и обструкции дыхательных путей: AD/AB - динамическая растяжимость легких; ADC - эластическая фракция общей работы дыхания; синяя штриховка - неэластическая (резистивная) фракция общей работы дыхания на вдохе; красная штриховка - неэластическая (резистивная) фракция общей работы дыхания на выдохе, требующем активного участия дыхательных мышц.

большая часть работы дыхания («65-70%) связана с преодолением эластического сопротивления. Эта энергия накапливается в эластических структурах по мере их растяжения на вдохе и покрывает энерготраты спокойного выдоха. При заболеваниях, связанных с поражением ин-терстициальной ткани легких, увеличение Wtot происходит в основном за счет возрастания Wel (рис. 7) . При обструктивной патологии основные энерготраты приходятся на преодоление возрастающего сопротивления дыхательных путей . Характерным признаком наличия обструкции дыхательных путей является не про-

сто увеличение W , а появление W при спо-

койном выдохе, что свидетельствует о неспособности в условиях возросшего бронхиального сопротивления осуществить спокойный выдох без активной работы дыхательной мускулатуры (см. рис. 7). Следует отметить, что увеличение как W , так и W, можно отнести к самым ранним

функциональным признакам респираторных заболеваний. У здорового человека потребность в активной Wres на выдохе возникает только при значительной физической нагрузке .

Несмотря на инвазивный характер исследования эластических свойств легких, оно хорошо переносится больными. Метод обладает высокой информативностью, поскольку определяемые параметры непосредственно характеризуют свойства легочной паренхимы. Диагностированное повышение упругости легочной ткани (увеличение CR и уменьшение CL) позволяет связать снижение легочных объемов с патологией легких, исключив при этом внелегочные причины рестриктивных нарушений (слабость дыхательных мышц, ограничение подвижности грудной клетки и др.). Снижение эластичности легочной паренхимы специфично для эмфиземы легких и помогает выявлять бронхиальную обструкцию, связанную с экспираторным коллапсом дыхательных путей. Это имеет важное значение при диагностике поражения периферических отделов дыхательных путей и определении тактики ведения больных с бронхообструктивным синдромом. Показатели растяжимости и работы дыхания успешно применяются для оценки эффективности хирургического лечения эмфиземы легких. Особая ценность метода состоит в том, что изменения эластических свойств легких как в сторону увеличения, так и в сторону снижения могут быть самыми ранними признаками легочных заболеваний, появляющимися еще до того, как регистрируются отклонения параметров традиционных методов исследования механики дыхания - спирометрии и бодиплетизмографии. Исследование эластических свойств легких, особенно работы дыхания, информативно при детализации вентиляционных нарушений смешанного характера.

Список литературы

1. Кузнецова В.К., Любимов Г.А. Механика дыхания. В кн.: Физиология дыхания. Отв. ред. Бреслав И.С., Исаев Г.Г. СПб.: Наука 1994: 54-104.

2. Yernault J.C. Lung mechanics I: lung elasticity. Bull Eur Physiopathol Respir 1983; 19(Suppl. 5): 28-32.

3. Руководство по клинической физиологии дыхания. Под ред. Шика Л.Л., Канаева Н.Н. Л.: Медицина 1980; 376с.

4. Yernault J.C., Englert M. Static mechanical lung properties in young adults. Bull Physiopathol Respir (Nancy) 1974; 10(4): 435-450.

5. Galetke W., Feier C., Muth T., Ruehle K.H., Borsch-Galet-ke E., Randerath W. Reference values for dynamic and static pulmonary compliance in men. Respir Med 2007; 101(8): 1783-1789.

6. Zapletal A., Paul T., Samanek M. Pulmonary elasticity in children and adolescents. J Appl Physiol 1976; 40(6): 953-961.

7. Schlueter D.P., Immekus J., Stead W.W. Relationship between maximal inspiratory pressure and total lung capacity (coefficient of retraction) in normal subjects and in patients with emphysema, asthma, and diffuse pulmonary infiltration. Am Rev Respir Dis 1967; 96(4): 656-665.

8. Кузнецова В.К., Садовская М.П., Буланина Е.М. Хронический бронхит в свете функционально-диагностического исследования. В сб. науч. тр.: Современные проблемы клинической физиологии дыхания. Под ред. Клемента Р.Ф., Кузнецовой В.К. Л.: ВНИИ пульмонологии 1987: 71-88.

9. Каменева М.Ю. Исследование функции внешнего дыхания. В кн.: Интерстициальные заболевания легких. Руководство для врачей. Под ред. Ильковича М.М., Кокосова А.Н. СПб.: Нордмедиздат 2005: 50-58.

10. Клемент Р.Ф., Зильбер Н.А. Диагностика нарушений функции внешнего дыхания. В кн.: Диссеминированные процессы в легких. Под ред. Путова Н.В. М.: Медицина 1984: 53-66.

11. Гриппи М.А. Патофизиология легких. М.: Восточная книжная компания 1997; 344с.

12. Boros P.W., Enright P.L., Quanjer P.H., Borsboom G.L., We-solowski S.P., Hyatt R.E. Impaired lung compliance and DL, CO but no restrictive ventilatory defect in sarcoidosis. Eur Respir J 2010; 36(6): 1315-1322.

13. Кузнецова В.К., Любимов А.Г., Каменева М.Ю. Динамика сопротивления потоку воздуха в фазу его нарастания в процессе форсированного выдоха при различных нарушениях механики дыхания. Пульмонология 1995; 4: 36-41.

14. Norman M., Hillerdal G., Orre L., Jorfeldt L., Larsen F., Cederlund K., Zetterberg G., Unge G. Improved lung function and quality of life following increased elastic recoil after lung volume reduction surgery in emphysema. Respir Med 1998; 92(4): 653-658.

15. Sciurba F.S., Rogers R.M., Keenan R.J., Slivka W.A., Gorcsan J. 3rd, Ferson P.F., Holbert J.M., Brown M.L., Lan-dreneau R.J. Improvement in pulmonary function and elastic recoil after lung reduction surgery for diffuse emphysema. N Engl J Med 1996; 334: 1095-1099.

16. Scott J.P., Gillespie D.J., Peters S.G., Beck K.C., Midthun D.E., McDougall J.C., Daly R.C., McGregor C.G. Reduced work of breathing after single lung transplantation for emphysema. J Heart Lung Transplant 1995; 14(1 Pt. 1): 39-43.

17. Dellweg D., Haidl P., Siemon K., Appelhans P., Kohler D. Impact of breathing pattern on work of breathing in healthy subjects and patients with COPD. Respir Physiol Neurobiol 2008; 161(2): 197-200.

The Assessment of Elastic Properties of Lungs in Clinical Practice

The article deals with the method of assessment of elastic properties of lungs using esophageal probe. The role of elastic properties of lungs in clinical practice is discussed.

Key words: elastic properties of lungs, lung compliance, work of breathing, pulmonary emphysema, pulmonary fibrosis.

Монография издательства "Атмосфера"

ФУНКЦИОНАЛЬНАЯ

ДИАГНОСТИКА В ПУЛЬМОНОЛОГИИ

Функциональная диагностика в пульмонологии: Монография Под ред. З.Р. Айсанова, А.В. Черняка

(Серия монографий Российского респираторного общества; гл. ред. серии А.Г. Чучалин)

Монография фундаментальной серии Российского респираторного общества обобщает накопленный мировой и отечественный опыт по всему кругу проблем, связанных с функциональной диагностикой в пульмонологии. Излагаются физиологические основы каждого метода исследования легочной функции и особенности интерпретации результатов. Обобщен международный опыт использования и интерпретации различных методов функциональной диагностики легочных заболеваний, в том числе сравнительно мало применяемых в нашей стране, но крайне необходимых при диагностике функциональных тестов: измерение легочных объемов, оценка диффузионной способности легких и силы дыхательной мускулатуры, внелабораторные методы определения толерантности больных с бронхолегочной патологией к физической нагрузке и т.п. 184 с., ил., табл.

Для пульмонологов, терапевтов, врачей общей практики, семейных врачей, а также для специалистов по функциональной диагностике.

способность отвечать на нагрузку повышением напряжения, которая включает в себя:

    упругость – способность восстанавливать свою форму и объем после прекращения действия внешних сил, вызывающих деформацию

    жесткость – способность сопротивляться дальнейшей деформации при превышении предала упругости

Причины эластических свойств легких:

    напряжение эластических волокон паренхимы легких

    поверхностное натяжение жидкости, выстилающей альвеолы – создается сурфактантом

    кровенаполнение легких (чем выше кровенаполнение, тем меньше эластичность

Растяжимость – свойство обратное упругости, связано с наличием эластических и коллагеновых волокон, которые образуют спиральную сеть вокруг альвеол

Пластичность – свойство противоположное жесткости

Функции легких

Газообменная – обогащение крови кислородом, используемым тканями организма, и удаление из нее углекислого газа: достигается благодаря легочному кровообращению. Кровь от органов тела возвращается к правой стороне сердца и по легочным артериям направляется в легкие

Негазообменные:

    З ащитная – образование антител, фагоцитоз альвеолярными фагоцитами, выработка лизоцима, интерферона, лактоферрина, иммуноглобулинов; в капиллярах задерживаются и разрушаются микробы, агрегаты жировых клеток, тромбоэмболы

    Участие в процессах терморегуляции

    Участие в процессах выделения – удаление СО 2 , воды (около 0,5 л/сут.) и некоторых летучих веществ: этанола, эфира, закиси азота ацетона, этилмеркаптана

    Инактивация БАВ – более 80 % брадикинина, введенного в легочный кровоток, разрушается при однократном прохождении крови через легкое, происходит превращение ангиотензина I в ангиотензин II под влиянием ангиотензиназы; инактивируется 90-95 % простагландинов групп Е и Р

    Участие в выработке БАВ гепарина, тромбоксана В 2 , простагландинов, тромбопластина, факторов свертывания крови VII и VIII, гистамина, серотонина

Внешнее дыхание

Процесс вентиляции легких, обеспечивающий газообмен между организмом и окружающей средой. Осуществляется благодаря наличию дыхательного центра, его афферентных и эфферентных систем, дыхательных мышц. Оценивается по соотношению альвеолярной вентиляции к минутному объему. Для характеристики внешнего дыхания используют статические и динамические показатели внешнего дыхания

Дыхательный цикл – ритмически повторяющаяся смена состояния дыхательного центра и исполнительных органов дыхания

Воздух попадает в легкие и выходит из них благодаря работе дыхательных мышц. В результате их сокращения и расслабления объем грудной полости изменяется

Дыхательные мышцы

произвольная поперечнополосатая мускулатура, осуществляющая периодические изменения объема грудной клетки

Рис. 12.11. Дыхательные мышцы

Диафрагма – плоская мышца, отделяющая грудную полость от брюшной. Она образует два купола, левый и правый, направленные выпуклостями вверх, между которыми находится небольшая впадина для сердца. В ней есть несколько отверстий, сквозь которые из грудной области в брюшную проходят очень важные структуры организма. Сокращаясь, она увеличивает объем грудной полости и обеспечивает приток воздуха в легкие

Рис. 12.12. Положение диафрагмы во время вдоха и выдоха

Ранняя диагностика респираторных нарушений при заболеваниях легких является чрезвычайно актуальной проблемой. Определение и оценка выраженности нарушений функции внешнего дыхания (ФВД) позволяет поднять диагностический процесс на более высокий уровень.

Основные методы исследования ФВД :

  • спирометрия;
  • пневмотахометрия;
  • бодиплетизмография;
  • исследование легочной диффузии;
  • измерение растяжимости легких;
  • эргоспирометрия;
  • непрямая калориметрия.

Первые два метода считаются скрининговыми и обязательными для использования во всех лечебных учреждениях. Следующие три (бодиплетизмография, исследование диффузионной способности и растяжимости легких ) позволяют оценивать такие характеристики респираторной функции, как бронхиальная проходимость, воздухонаполненность, эластические свойства, диффузионная способность и респираторная мышечная функция. Они являются более углубленными, дорогостоящими методами и доступными только в специализированных центрах. Что же касается эргоспирометрии и непрямой калориметрии , то это довольно сложные методы, которые используются в основном для научных целей.

В настоящее время в Республике Беларусь имеется возможность проведения углубленного исследования функции внешнего дыхания по методике бодиплетизмографии на аппаратуре MasterScreen (VIASYS Healthcare Gmbh, Германия) с определением параметров механики дыхания в норме и при патологии.

Механика дыхания - раздел физиологии дыхания, изучающий механические силы, под действием которых совершаются дыхательные экскурсии; сопротивление этим силам со стороны аппарата вентиляции; изменения объема легких и воздушного потока в дыхательных путях.

В акте дыхания дыхательные мышцы выполняют определенную работу, направленную на преодоление общего дыхательного сопротивления. Сопротивление дыхательных путей можно оценить посредством бодиплетизмографии , а респираторное сопротивление может быть определено с помощью техники форсированных осцилляций .

Общее дыхательное сопротивление складывается из трех составляющих: эластической, фрикционной и инерционной. Эластическая составляющая возникает в связи с упругими деформациями грудной клетки и легких, а также компрессией (декомпрессией) газов и жидкостей в легких, плевральной и брюшной полостях во время дыхания. Фрикционная составляющая отображает действие сил трения при перемещении газов и плотных тел. Инерционная составляющая - преодоление инерции анатомических образований, жидкостей и воздуха; показатель достигает значимых величин только при тахипноэ.

Таким образом, чтобы полностью описать механику дыхания, необходимо рассмотреть соотношение трех параметров - давления (Р), объема (V) и потока (F) на протяжении дыхательного цикла . Поскольку взаимосвязь трех параметров сложна как для регистрации, так и для расчетов, на практике используют соотношение парных показателей в виде индексов или описание каждого из них во времени.

При обычном (спокойном) дыхании активность инспираторных мышц необходима для преодоления сопротивления дыхательной системы. В этом случае достаточно работы диафрагмы (у мужчин) и межреберных мышц (женский тип дыхания). При физической нагрузке или патологических состояниях к работе подключаются дополнительные инспираторные мышцы - межреберные, лестничные и грудино-ключично-сосцевидные . Выдох в покое происходит пассивно за счет эластической отдачи легких и грудной клетки. Работа дыхательных мышц создает градиент давления, необходимый для формирования воздушного потока.

Прямые измерения давления в плевральной полости показали, что в конце выдоха внутриплевральное (внутригрудное) давление на 3-5 см вод. ст., а в конце вдоха - на 6-8 см вод. ст. ниже атмосферного. Обычно измеряют давление не в плевральной полости, а в нижней трети пищевода , которое, как показали исследования, близко по значению и очень хорошо отражает динамику изменения внутригрудного давления. Альвеолярное давление равно сумме давления эластической тяги легкого и плеврального давления и может быть измерено методом перекрытия воздушного потока, когда оно становится равным давлению в ротовой полости. В общем виде уравнение для движущего давления в легких имеет вид:

Ptot = (Е × ΔV) + (R × V") + (I × V""),

  • Ptot - движущее давление;
  • Е - эластичность;
  • ΔV - изменение объема легких;
  • R - сопротивление;
  • V" - объемная скорость потока воздуха;
  • I - инерционность;
  • V"" - ускорение воздушного потока.

Первое выражение в скобках (Е × ΔV) представляет собой давление, необходимое для преодоления эластической отдачи дыхательной системы . Оно равно транспульмональному давлению, которое можно измерить катетером в грудной полости и приближенно равно разнице давлений в ротовой полости и пищеводе. Если одновременно регистрировать объем легких на вдохе и выдохе и внутрипищеводное давление, используя заслонку для перекрытия потока, получим статическую (т. е. при отсутствии потока) кривую «давление - объем», имеющую вид гистерезиса (рис. 1) - кривой, характерной для всех эластических структур.

Кривые «давление - объем » на вдохе и выдохе неодинаковы. При одном и том же давлении объем спадающихся легких больше, чем во время их раздувания (гистерезис ).

Особенностью гистерезиса является то, что для создания определенного объема на вдохе (растяжении) требуется больший градиент давления, чем при выдохе. На рис. 1 видно, что гистерезис не располагается в нулевой точке объема, поскольку легкие изначально содержат объем газа, равный функциональной остаточной емкости (ФОЕ). Отношение между давлением и изменением объема легких не остается постоянным на всем диапазоне легочных объемов. При незначительном наполнении легких это отношение равно Е × ΔV. Константа Е характеризует эластичность - меру упругости легочной ткани. Чем больше эластичность, тем большее давление необходимо приложить для достижения заданного изменения объема легких. Легкое более растяжимо при низких и средних объемах. По достижении максимального объема легкого дальнейший прирост давления увеличить его не может - кривая переходит в ее плоскую часть. Изменение объема на единицу давления отображается наклоном гистерезиса и называется статической растяжимостью (C stat), или комплайенсом . Растяжимость обратно пропорциональна (реципрокна) эластичности (C stat = 1/Е). На уровне функциональной остаточной емкости 0,5 л статическая растяжимость легкого в норме около 200 мл/см вод. ст. у мужчин и 170 мл/см вод. ст. у женщин. Она зависит от многих причин, в том числе, от размера легких. Чтобы исключить последний фактор, вычисляют удельную растяжимость - отношение растяжимости к объему легких, при котором она измеряется, к общей емкости легких (ОЕЛ) а также к функциональной остаточной емкости. Как и для других параметров, для эластичности и растяжимости разработаны должные величины, зависящие от пола, возраста, антропометрических данных пациента.

Эластические свойства легких зависят от содержания эластических структур в тканях. Геометрическое расположение нитей эластина и коллагена в альвеолах, вокруг бронхов и сосудов наряду с поверхностным натяжением сурфактанта придают легким эластические свойства. Патологические процессы в легких изменяют эти свойства. Статическая растяжимость у пациентов с обструктивными заболеваниями близка к норме, если паренхима легких мало затронута при этих заболеваниях. У пациентов с эмфиземой нарушение эластической отдачи легких сопровождается увеличением их растяжимости (комплайенса). Бронхиальная обструкция в свою очередь может приводить к изменению воздухонаполненности (или структуры статических объемов) в сторону гипервоздушности легких. Основным проявлением гипервоздушности легких или увеличения их воздухонаполненности является увеличение общей емкости легких , полученной при бодиплетизмографическом исследовании или методом разведения газов. Один из механизмов повышения общей емкости легких при хронической обструктивной болезни легких (ХОБЛ) - снижение давления эластической отдачи по отношению к соответствующему легочному объему. В основе развития синдрома гипервоздушности легких лежит еще один важный механизм. Повышение легочного объема способствует растяжению дыхательных путей и, следовательно, повышению их проходимости. Таким образом, возрастание функциональной остаточной емкости легких представляет собой своего рода компенсаторный механизм, направленный на растяжение и увеличение внутреннего просвета бронхов. Однако подобная компенсация идет в ущерб эффективности работы респираторных мышц вследствие неблагоприятного соотношения «сила - длина». Гипервоздушность средней степени выраженности приводит к снижению общей работы дыхания, так как при незначительном повышении работы вдоха имеет место существенное снижение экспираторного вязкостного компонента. Отмечается также изменение формы и угла наклона петли «давление - объем». Кривая статистической растяжимости сдвигается вверх и влево. При эмфиземе, которая характеризуется утратой соединительнотканных компонентов, эластичность легких снижается (соответственно, статическая растяжимость увеличивается). Для выраженной ХОБЛ характерно увеличение функциональной остаточной емкости, остаточного объема (ОО) и отношения ОО к общей емкости легких. В частности, общая емкость легких увеличена у пациентов с тяжелой эмфиземой. Увеличение статической легочной растяжимости, снижение давления эластической тяги легкого при данном объеме легкого и изменение формы кривой «статическое давление - объем легкого» характерны для эмфиземы легких. У многих пациентов с ХОБЛ максимальное инспираторное и экспираторное давление (PI max и PE max) снижены. В то время как PEmax снижено вследствие гиперинфляции и укорочения инспираторных дыхательных мышц, PE max менее подвержено влиянию изменений механики дыхания. Снижение PE max может быть связано со слабостью мускулатуры, что обычно имеет место при прогрессирующей ХОБЛ. Измерение максимальных респираторных давлений показано при наличии подозрений на плохое питание или стероидную миопатию, а также в тех случаях, когда степень диспноэ или гиперкапнии не соответствует имеющемуся объему форсированного выдоха за первую секунду.

При рестриктивных легочных заболеваниях , напротив, изменяется структура легочных объемов в сторону снижения общей емкости легких. Это происходит, главным образом, за счет уменьшения жизненной емкости легких. Эти изменения сопровождаются снижением растяжимости легочной ткани. Фиброз легких, застойная сердечная недостаточность, воспалительные изменения уменьшают комплайенс. При дефиците нормального сурфактанта (респираторном дистресс-синдроме) легкие становятся неподатливыми, ригидными.

При эмфиземе показатели диффузионной способности легких DLCO и ее отношения к альвеолярному объему DLCO/Va снижены, главным образом вследствие деструкции альвеолярнокапиллярной мембраны, уменьшающей эффективную площадь газообмена. Однако снижение диффузионной способности легких на единицу объема (DLCO/Va) (т. е. площади альвеолокапиллярной мембраны) может быть компенсировано возрастанием общей емкости легких. Для диагностики эмфиземы исследование DLCO показало себя более информативным, чем определение легочной растяжимости, а по способности к регистрации начальных патологических изменений легочной паренхимы данный метод сопоставим по чувствительности с компьютерной томографией.

У злостных курильщиков , составляющих основную массу больных ХОБЛ, и у пациентов, подвергающихся профессиональному воздействию окиси углерода на рабочем месте, отмечается остаточное напряжение СО в смешанной венозной крови, что может привести к ложно заниженным значениям DLCO и его компонентов.

Расправление легких при гипервоздушности приводит к растяжению альвеолярно-капиллярной мембраны, уплощению капилляров альвеол и возрастанию диаметра «угловых сосудов» между альвеолами. В результате общая диффузионная способность легких и диффузионная способность самой альвеолокапиллярной мембраны возрастают с объемом легких, но соотношение DLCO/Va и объем крови в капиллярах (Qc) уменьшаются. Подобный эффект легочного объема на DLCO и DLCO/VA может приводить к неправильной интерпретации результатов исследования при эмфиземе.

При рестриктивных легочных заболеваниях характерно значительное снижение диффузионной способности легких (DLCO). Отношение DLCO/Va может быть снижено в меньшей степени из-за одновременного значительного уменьшения объема легких.

Большее клиническое значение имеет измерение динамической растяжимости (C dyn), когда рассматривают изменение объема легких относительно изменения давления при наличии воздушного потока. Оно равно наклону линии, соединяющей точки начала вдоха и выдоха на кривой «динамическое давление - объем» (рис. 2).

Если сопротивление дыхательных путей нормальное, C dyn близка по величине к C stat и слабо зависит от частоты дыхания. Уменьшение C dyn по сравнению с C stat может свидетельствовать о негомогенности легочной ткани. При увеличении сопротивления, даже незначительном и ограниченном мелкими бронхами, Cdyn снизится раньше, чем это нарушение будет выявлено обычными функциональными методами. Снижение C dyn особенно проявится при высокой частоте дыхания, так как при частом дыхании время, необходимое для наполнения легкого или его части с обструкцией, становится недостаточным. Изменения Cdyn, зависящие от частоты дыхания, называются частотно-зависимой растяжимостью. В норме C dyn /C stat больше 0,8 при любой частоте дыхания.

При обструкции, в том числе дистальной, это отношение падает с увеличением частоты дыхания. Величина C stat , в отличие от C dyn , зависит не от частоты дыхания, а от его глубины, точнее, от уровня жизненной емкости легких (ЖЕЛ), на котором она регистрировалась. Измерения Cstat на уровне спокойного дыхания дают минимальное значения, при глубоком вдохе величина C stat максимальна. При проведении измерения компьютерная программа вычисляет C stat на различных уровнях ЖЕЛ и строит график зависимости объема легких от внутригрудного (внутрипищеводного) давления. При эмфиземе легких такая кривая будет иметь более крутой наклон (C stat увеличивается), при легочных фиброзах - более пологий (C stat снижается).

Помимо рассмотренных показателей C stat , C dyn исследование дает возможность получить ряд других измеренных и производных величин (рис. 3). Важными показателями, которые мы получаем при измерении растяжимости легких, являются Pel - транспульмональное (пищеводное) давление, которое отражает давление эластической отдачи легких; P 0dyn - давление на уровне функциональной остаточной емкости; Pel RV - давление на уровне остаточного объема; PTL/IC - отношение транспульмонального (пищеводного) давления к емкости вдоха; P0stat, Pel 100, Pel 80, Pel 50 - транспульмональное (пищеводное) давление при глубине вдоха соответственно на уровне функциональной остаточной емкости, ЖЕЛ, 80% ЖЕЛ, 50% ЖЕЛ. Для получения производных величин - отношения комплайенса к функциональной остаточной емкости, внутригрудному объему или общей емкости легких, важность которых определяется тем, что растяжимость легких зависит от их размеров, эти показатели необходимо предварительно измерить (например, при проведении бодиплетизмографии). Отношение С (растяжимости) к общей емкости легких именуют индексом ретракции. Следует отметить, что хотя для всех вышеперечисленных величин предложены формулы расчета должных величин, индивидуальные различия весьма значительны. Используя петлю «давление-объем», можно рассчитать работу по преодолению упругих и вязких сил (эластического и неэластического сопротивления). Площадь условного прямоугольного треугольника, гипотенузой которого является прямая, соединяющая точки смены фаз дыхания, а сторонами - проекции на оси координат (рис. 3), равна работе дыхательных мышц по преодолению эластического сопротивления легких.

Площадь фигуры под гипотенузой соответствует работе вдоха по преодолению аэродинамического (бронхиального) сопротивления. Показатель работы дыхания сильно зависит от минутного объема дыхания, его частоты и глубины и может варьироваться от 0,25 кгм/мин до 15 кгм/мин. В норме около 70% общей работы расходуется на преодоление эластического и 30% - неэластического (аэродинамического) сопротивления. Их соотношение позволяет уточнить преобладание обструктивных или рестриктивных нарушений. Уменьшению энерготрат способствует поверхностное (но частое) дыхание, что мы наблюдаем в клинике у больных с выраженными фиброзными изменениями, или медленное дыхание у больных с тяжелой обструкцией. Измерение комплайенса позволяет не только установить степень поражения легких, но и наблюдать динамику патологического процесса, контролировать лечение. Прежде всего, это важно при хронических распространенных поражениях легких, обусловленных идиопатическими интерстициальными пневмонитами, ревматическими, профессиональными и другими заболеваниями легких. Особая ценность метода в том, что изменения растяжимости могут быть выявлены на ранних стадиях как обструктивных, так и рестриктивных нарушений, которые не фиксируются другими методами исследований, что важно для раннего выявления заболеваний легких.

Лаптева И. М., Томашевский А. В.
Республиканский научно-практический центр пульмонологии и фтизиатрии.
Журнал «Медицинская панорама» № 9, октябрь 2009.

Поскольку стенки мелких бронхов обладают большой податливостью, их просвет поддерживается напряжением эластических структур стромы легких, радиально растягивающих бронхи. При максимальном вдохе эластические структуры легких предельно напряжены.

По мере выдоха их напряжение постепенно ослабевает, в результате чего в определенный момент выдоха происходит сдавление бронхов и перекрытие их просвета. ООЛ и представляет собою тот объем легких, при котором экспираторное усилие перекрывает мелкие бронхи и препятствует дальнейшему опорожнению легких.

Чем беднее эластический каркас легких, тем при меньшем объеме выдоха спадаются бронхи. Этим и объясняется закономерное увеличение ООЛ у лиц пожилого возраста и особенно заметное его увеличение при эмфиземе легких.

Увеличение ООЛ свойственно также и больным с нарушением бронхиальной проходимости. Этому способствует увеличение внутригрудного давления на выдохе, необходимое для продвижения воздуха по суженному бронхиальному дереву.

Одновременно увеличивается и ФОЕ, что в известной мере является компенсаторной реакцией, так как чем больше уровень спокойного дыхания смещен в инспираторную сторону, тем сильнее растягиваются бронхи и тем больше силы эластической отдачи легких, направленные на преодоление повышенного бронхиального сопротивления.

Как показали специальные исследования (А. П. Зильбер, 1974), некоторые бронхи спадаются раньше, чем будет достигнут уровень максимального выдоха. Объем легких, при котором начинают спадаться бронхи, так называемый объем закрытия, и в норме больше ООЛ, у больных он может быть больше ФОЕ. В этих случаях даже при спокойном дыхании в некоторых зонах легких вентиляция нарушается. Смещение уровня дыхания в инспиратор-ную сторону, т. е. увеличение ФОЕ, в такой ситуации оказывается еще более целесообразным.

«Руководство по пульмонологии», Н.В.Путов

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.